Emission Impacts of Post-Pandemic Travel Behaviour in Intercity Corridors
Abstract
:1. Introduction
- (1)
- Defining a set of plausible transformations associated with network demand and transport mode;
- (2)
- Assessing the impact of those transformations on emissions;
- (3)
- Providing general recommendations based on the results obtained.
2. Methodology
2.1. Scenarios Understudy
2.2. Traffic Macroscopic Model
2.3. Emissions and Volume/Capacity Ratio
3. Results
3.1. Baseline Scenario
3.2. Alternative Scenarios
4. Discussion
5. Conclusions
- (1)
- Changes in demand patterns can generate a new balance of passenger demand and traffic distribution in the transport network. Eventually, these changes may increase negative environmental pressures in more sensitive areas that need new monitoring tools;
- (2)
- Intercity trips account for a very significant component of the transport sector’s contributions to climate change. New mobility habits must be taken into consideration and, if necessary, redesign the planning of services and infrastructures in IC corridors;
- (3)
- Public transport is a major solution to decrease emissions. If necessary, the public transport offer should be better adjusted to suit the population needs;
- (4)
- Use of ICT tools to improve and foster public transport should be used, for example, transport operators could have solutions such as pre-booking seats; real-time crowding information to see how many people are using a given public transport; and dynamic prices and innovative ticketing strategies;
- (5)
- Regarding private transportation, a set of tools to mitigate the environmental impacts should also be considered, mainly the adjustment of toll prices and the use of, for example, dynamic tolls.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EMISIA. COPERT Countries Data. 2019. Available online: https://www.emisia.com/utilities/copert-data/ (accessed on 20 September 2021).
- IEA (International Energy Agency). Changes in Transport Behaviour during the COVID-19 Crisis—Analysis. IEA. 2020. Available online: https://www.iea.org/articles/changes-in-transport-behaviour-during-the-covid-19-crisis (accessed on 20 September 2021).
- Kanda, W.; Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 2020, 68, 101666. [Google Scholar] [CrossRef] [PubMed]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, A.; Mazzei, V.; et al. Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Askitas, N.; Tatsiramos, K.; Verheyden, B. Lockdown Strategies, Mobility Patterns and COVID-19; IZA Discussion Papers 13293; Institute of Labor Economics (IZA): Bonn, Germany, 2020. [Google Scholar]
- Musselwhite, C.; Avineri, E.; Susilo, Y. Editorial JTH 16 –The Coronavirus Disease COVID-19 and implications for transport and health. J. Transp. Health 2020, 16, 100853. [Google Scholar] [CrossRef] [PubMed]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behaviour. Transp. Res. Interdiscip. Perspect. 2020, 5, 100–121. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Beck, M.J.; Hensher, D.A. Insights into the impact of COVID-19 on household travel and activities in Australia—The early days of easing restrictions. Transp. Policy 2020, 99, 95–119. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ma, S.; Jia, N.; Tian, J. Understanding public transport satisfaction in post COVID-19 pandemic. Transp. Policy 2021, 101, 81–88. [Google Scholar] [CrossRef]
- Ceccato, R.; Rossi, R.; Gastaldi, M. Travel Demand Prediction during COVID-19 Pandemic: Educational and Working Trips at the University of Padova. Sustainability 2021, 13, 6596. [Google Scholar] [CrossRef]
- Kolarova, V.; Eisenmann, C.; Nobis, C.; Winkler, C.; Lenz, B. Analysing the impact of the COVID-19 outbreak on everyday travel behaviour in Germany and potential implications for future travel patterns. Eur. Transp. Res. Rev. 2021, 13, 27. [Google Scholar] [CrossRef]
- Thombre, A.; Agarwal, A. A paradigm shift in urban mobility: Policy insights from travel before and after COVID-19 to seize the opportunity. Transp. Policy 2021, 110, 335–353. [Google Scholar] [CrossRef]
- Sampaio, C.; Macedo, E.; Coelho, M.C.; Bandeira, J.M. Characterisation of road traffic externalities in an intercity corridor. Int. J. Transp. Dev. Integr. 2019, 3, 222–231. [Google Scholar] [CrossRef]
- PORDATA. Pordata Statistics. 2020. Available online: https://www.pordata.pt/ (accessed on 20 September 2021).
- Piątkowski, B.; Maciejewski, M. Comparison of traffic assignment in visum and transport simulation in MATSim. Transp. Probl. 2013, 8, 113–120. [Google Scholar]
- Kuang, Y.; Yen, B.T.H.; Suprun, E.; Sahin, O. A soft traffic management approach for achieving environmentally sustainable and economically viable outcomes: An Australian case study. J. Environ. Manag. 2019, 237, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Google Maps. Google Maps 2021. Available online: https://www.google.pt/maps (accessed on 20 September 2021).
- TiS. Plano Intermunicipal de Mobilidade e Transportes da Região de Aveiro—Relatório de Síntese. 2014. Available online: https://www.regiaodeaveiro.pt/regiaodeaveiro/uploads/document/file/1354/relat_c3_b3rio_20sintese_20final_20_n_c3_a3o_20t_c3_a9cnico_.pdf (accessed on 20 September 2021).
- TRENMO. Plano Intermunicipal de Mobilidade e Transportes da Região de Coimbra. 2016. Available online: https://www.cim-regiaodecoimbra.pt/cim-rc/o-que-fazemos/estudos-e-planeamento/pimt-plano-intermunicipal-de-mobilidade-e-transportes/ (accessed on 20 September 2021).
- IMT (Instituto da Mobilidade e dos Transportes). Relatório de Tráfego na Rede Nacional de Autoestradas—1o Trimestre de 2019. 2019. Available online: http://www.imt-ip.pt/sites/IMTT/Portugues/InfraestruturasRodoviarias/RedeRodoviaria/Relatrios/Relat%C3%B3rio%20de%20Tr%C3%A1fego%20-%201%C2%BA%20Trimestre%20de%202019.pdf (accessed on 20 September 2021).
- IMT (Instituto da Mobilidade e dos Transportes). Traffic data (intercity corridor Aveiro—Coimbra). 2020. Available online: https://www.imt-ip.pt/sites/IMTT/Portugues/Paginas/IMTHome.aspx (accessed on 20 September 2021).
- Gentile, G.; Roma, D.; Noekel, K.; Ag, P. Linear User Cost Equilibrium: The new algorithm for traffic assignment in VISUM. In Proceedings of the European Transport Conference 2009, Noordwijkerhout, The Netherlands, 5–7 October 2009; Available online: https://www.researchgate.net/publication/228425160_Linear_User_Cost_Equilibrium_the_new_algorithm_for_traffic_assignment_in_VISUM (accessed on 20 October 2021).
- Kim, S.-J.; Kim, W.; Rilett, L.R. Calibration of Microsimulation Models Using Nonparametric Statistical Techniques. Transp. Res. Rec. 2005, 1935, 111–119. [Google Scholar] [CrossRef]
- Macedo, E.; Tomás, R.; Fernandes, P.; Coelho, M.C.; Bandeira, J.M. Quantifying Road traffic emissions embedded in a multi-objective traffic assignment model. Transp. Res. Procedia 2020, 47, 648–655. [Google Scholar] [CrossRef]
Scenario | Specifications |
---|---|
(1) | The number of train passengers will decrease by 10%; 20%; 30%; 40% and 50%, representing an increase in the number of vehicles. |
(2) | The occupancy rate will decrease: 1.25; 1.20; 1.15; 1.10; 1.05 and 1.00. This will lead to an increase in the number of vehicles. |
(3) | This scenario compares the off-peak and peak scenarios, simulating the teleworking impact |
(4) | The occupancy rate will increase by 1.35 and, 1.40. Fewer vehicles in the network |
Population Group (i) | a | b | c | |
---|---|---|---|---|
Workers | 2 | 0.55 | 1 | |
Students | (University) | 2 | 0.20 | 1 |
Other | 2 | 0.05 | 1 | |
Other | 1.2 | 0.7 | 0.25 |
Occupancy Rate | CO2 Emissions Growth Rate (%) | NOx Emissions Growth Rate (%) |
---|---|---|
1.30–1.25 | 4.2 | 3.8 |
1.25–1.20 | 4.5 | 4.4 |
1.20–1.15 | 4.9 | 4.8 |
1.15–1.10 | 5.3 | 5.2 |
1.10–1.05 | 5.9 | 5.6 |
1.05–1.00 | 6.6 | 5.7 |
Occupancy Rate | Number of Road Segments with V/C > 1 | Average Vehicles per km | Average gCO2/veh·km |
---|---|---|---|
1.30 (baseline scenario) | 56 | 3084 | 161.6 |
1.25 | 56 | 3053 | 161.5 |
1.20 | 60 | 3091 | 161.8 |
1.15 | 71 | 3208 | 162.3 |
1.10 | 74 | 3222 | 162.5 |
1.05 | 79 | 2947 | 161.4 |
1.00 | 100 | 2831 | 160.7 |
Scenario | CO2 Emissions | NOx Emissions | V/C (nr. of Links with V/C > 1) |
---|---|---|---|
Baseline | 23.00 | 0.071 | 56 |
Occupancy rate of 1.35 | 22.09 | 0.069 | 56 |
Occupancy rate of 1.40 | 21.26 | 0.067 | 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampaio, C.; Coelho, M.C.; Macedo, E.; Bandeira, J.M. Emission Impacts of Post-Pandemic Travel Behaviour in Intercity Corridors. Future Transp. 2022, 2, 249-262. https://doi.org/10.3390/futuretransp2010013
Sampaio C, Coelho MC, Macedo E, Bandeira JM. Emission Impacts of Post-Pandemic Travel Behaviour in Intercity Corridors. Future Transportation. 2022; 2(1):249-262. https://doi.org/10.3390/futuretransp2010013
Chicago/Turabian StyleSampaio, Carlos, Margarida C. Coelho, Eloísa Macedo, and Jorge M. Bandeira. 2022. "Emission Impacts of Post-Pandemic Travel Behaviour in Intercity Corridors" Future Transportation 2, no. 1: 249-262. https://doi.org/10.3390/futuretransp2010013
APA StyleSampaio, C., Coelho, M. C., Macedo, E., & Bandeira, J. M. (2022). Emission Impacts of Post-Pandemic Travel Behaviour in Intercity Corridors. Future Transportation, 2(1), 249-262. https://doi.org/10.3390/futuretransp2010013