Targeting of Tumor Dormancy Pathways: An Editorial to the Special Issue
1. Introduction
2. The Current State of the Knowledge in Tumor Dormancy, Targeting of Tumor Dormancy Pathways, and Future Prospects for Exploiting Tumor Dormancy for Cancer Therapies
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sosa, M.S.; Bragado, P.; Aguirre-Ghiso, J.A. Mechanisms of disseminated cancer cell dormancy: An awakening field. Nat. Rev. Cancer 2014, 14, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Manjili, M.H. Tumor Dormancy and Relapse: From a Natural Byproduct of Evolution to a Disease State. Cancer Res. 2017, 77, 2564–2569. [Google Scholar] [CrossRef] [PubMed]
- Baxevanis, C.N.; Perez, S.A. Cancer Dormancy: A Regulatory Role for Endogenous Immunity in Establishing and Maintaining the Tumor Dormant State. Vaccines 2015, 3, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ghiso, J.A.; Sosa, M.S. Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annu. Rev. Cancer Biol. 2018, 2, 377–393. [Google Scholar] [CrossRef]
- Risson, E.; Nobre, A.R.; Maguer-Satta, V.; Aguirre-Ghiso, J.A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 2020, 1, 672–680. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef]
- Coppe, J.P.; Desprez, P.Y.; Krtolica, A.; Campisi, J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 2010, 5, 99–118. [Google Scholar] [CrossRef]
- Huang, Q.; Li, F.; Liu, X.; Li, W.; Shi, W.; Liu, F.F.; O’Sullivan, B.; He, Z.; Peng, Y.; Tan, A.C.; et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 2011, 17, 860–866. [Google Scholar] [CrossRef]
- Ploumaki, I.; Triantafyllou, E.; Koumprentziotis, I.A.; Karampinos, K.; Drougkas, K.; Karavolias, I.; Trontzas, I.; Kotteas, E.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials. Clin. Transl. Oncol. 2023, 25, 1554–1578. [Google Scholar] [CrossRef]
- Savy, T.; Flanders, L.; Karpanasamy, T.; Sun, M.; Gerlinger, M. Cancer evolution: From Darwin to the extended Evolutionary Synthesis. Trends Cancer 2025, 11, 204–215. [Google Scholar] [CrossRef]
- Maley, C.C.; Aktipis, A.; Graham, T.A.; Sottoriva, A.; Boddy, A.M.; Janiszewska, M.; Silva, A.S.; Gerlinger, M.; Yuan, Y.; Pienta, K.J.; et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 2017, 17, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Overholtzer, M. Entosis in Health and Disease. Adv. Exp. Med. Biol. 2025, 1481, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Yumoto, K.; Eber, M.R.; Berry, J.E.; Taichman, R.S.; Shiozawa, Y. Molecular pathways: Niches in metastatic dormancy. Clin. Cancer Res. 2014, 20, 3384–3389. [Google Scholar] [CrossRef] [PubMed]
- Mirzayans, R. When Therapy-Induced Cancer Cell Apoptosis Fuels Tumor Relapse. Onco 2024, 4, 37–45. [Google Scholar] [CrossRef]
- Jackson, J.G.; Pant, V.; Li, Q.; Chang, L.L.; Quintas-Cardama, A.; Garza, D.; Tavana, O.; Yang, P.; Manshouri, T.; Li, Y.; et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 2012, 21, 793–806. [Google Scholar] [CrossRef]
- Antolino, L.; Nucci, G.d.; Scarpino, S.; Bianco, G.; Lopez, G.; Aurello, P.; Petrucciani, N.; Santoro, R.; Nigri, G.; Agnes, S.; et al. Association of TP53 Arg72Pro (rs1042522) Polymorphism with Pancreatic Cancer Risk in a Patient Cohort. Onco 2025, 5, 44. [Google Scholar] [CrossRef]
- Cao, J.; Chen, Z.; Tian, C.; Yu, J.; Zhang, H.; Yang, J.; Yang, W. A Shared Susceptibility Locus in the p53 Gene for both Gastric and Esophageal Cancers in a Northwestern Chinese Population. Genet. Test. Mol. Biomark. 2020, 24, 804–811. [Google Scholar] [CrossRef]
- Eiholzer, R.A.; Mehta, S.; Kazantseva, M.; Drummond, C.J.; McKinney, C.; Young, K.; Slater, D.; Morten, B.C.; Avery-Kiejda, K.A.; Lasham, A.; et al. Intronic TP53 Polymorphisms Are Associated with Increased Delta133TP53 Transcript, Immune Infiltration and Cancer Risk. Cancers 2020, 12, 2472. [Google Scholar] [CrossRef]
- Toscano-Guerra, E.; Maggio, V.; Garcia, J.; Semidey, M.E.; Celma, A.; Morote, J.; de Torres, I.; Giralt, M.; Ferrer-Costa, R.; Paciucci, R. Association of the rs1042522 SNP with prostate cancer risk: A study of cancer tissues, primary tumor cultures, and serum samples from a Spanish Caucasian population. Front. Oncol. 2024, 14, 1398411. [Google Scholar] [CrossRef]
- Helal, E.A.; Hassan, N.M.; Kamel, M.M.; Amer, M.A.; Shafik, R.E. Contribution of TP53 and MDM4 Genetic Polymorphisms as a Risk Factor in Non-Hodgkin Lymphoma in Adult Egyptian Patients. Clin. Med. Insights Oncol. 2025, 19, 11795549251352047. [Google Scholar] [CrossRef]
- Terpos, E.; Kostopoulos, I.V.; Kastritis, E.; Ntanasis-Stathopoulos, I.; Migkou, M.; Rousakis, P.; Argyriou, A.T.; Kanellias, N.; Fotiou, D.; Eleutherakis-Papaiakovou, E.; et al. Impact of Minimal Residual Disease Detection by Next-Generation Flow Cytometry in Multiple Myeloma Patients with Sustained Complete Remission after Frontline Therapy. Hemasphere 2019, 3, e300. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, M.; Brown, R.D.; Gibson, J.; Joshua, D.E. T cells in myeloma. Hematol. Oncol. 2003, 21, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.; Caetano, J.; Ferreira, B.; Barahona, F.; Carneiro, E.A.; Joao, C. The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers 2021, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Ponzetta, A.; Benigni, G.; Antonangeli, F.; Sciume, G.; Sanseviero, E.; Zingoni, A.; Ricciardi, M.R.; Petrucci, M.T.; Santoni, A.; Bernardini, G. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Res. 2015, 75, 4766–4777. [Google Scholar] [CrossRef]
- Jensen, C.E.; Vohra, S.N.; Nyrop, K.A.; Deal, A.M.; LeBlanc, M.R.; Grant, S.J.; Muss, H.B.; Lichtman, E.I.; Rubinstein, S.M.; Wood, W.A.; et al. Physical Function, Psychosocial Status, and Symptom Burden Among Adults with Plasma Cell Disorders and Associations with Quality of Life. Oncologist 2022, 27, 694–702. [Google Scholar] [CrossRef]
- Gulbrandsen, N.; Hjermstad, M.J.; Wisloff, F.; Nordic Myeloma Study, G. Interpretation of quality of life scores in multiple myeloma by comparison with a reference population and assessment of the clinical importance of score differences. Eur. J. Haematol. 2004, 72, 172–180. [Google Scholar] [CrossRef]
- Spiliopoulou, P.; Rousakis, P.; Panteli, C.; Eleutherakis-Papaiakovou, E.; Migkou, M.; Kanellias, N.; Ntanasis-Stathopoulos, I.; Malandrakis, P.; Theodorakakou, F.; Fotiou, D.; et al. The Role of the Bone Marrow Microenvironment in Physical Function and Quality of Life in Patients with Multiple Myeloma After First-Line Treatment with Novel Agents and Autologous Transplantation. Onco 2025, 5, 21. [Google Scholar] [CrossRef]
- Yeh, A.C.; Ramaswamy, S. Mechanisms of Cancer Cell Dormancy—Another Hallmark of Cancer? Cancer Res. 2015, 75, 5014–5022. [Google Scholar] [CrossRef]
- Nishimura, G.; Yanoma, S.; Satake, K.; Ikeda, Y.; Taguchi, T.; Nakamura, Y.; Hirose, F.; Tsukuda, M. An experimental model of tumor dormancy therapy for advanced head and neck carcinoma. Jpn. J. Cancer Res. 2000, 91, 1199–1203. [Google Scholar] [CrossRef]
- Shukla, S.; Shukla, A.K.; Ray, N.; Upadhyay, A.M.; Fahad, F.I.; Dutta, S.D.; Nagappan, A.; Mongre, R.K. Targeting Pathways and Mechanisms in Gynecological Cancer with Antioxidant and Anti-Inflammatory Phytochemical Drugs. Onco 2025, 5, 24. [Google Scholar] [CrossRef]
- Boydell, E.; Borgeaud, M.; Tsantoulis, P. Dormant Tumor Cells: Current Opportunities and Challenges in Clinical Practice. Onco 2025, 5, 3. [Google Scholar] [CrossRef]
- Chen, X.; Iliopoulos, D.; Zhang, Q.; Tang, Q.; Greenblatt, M.B.; Hatziapostolou, M.; Lim, E.; Tam, W.L.; Ni, M.; Chen, Y.; et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014, 508, 103–107. [Google Scholar] [CrossRef]
- Schewe, D.M.; Aguirre-Ghiso, J.A. ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 10519–10524. [Google Scholar] [CrossRef]
- Pommier, A.; Anaparthy, N.; Memos, N.; Kelley, Z.L.; Gouronnec, A.; Yan, R.; Auffray, C.; Albrengues, J.; Egeblad, M.; Iacobuzio-Donahue, C.A.; et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 2018, 360, eaao4908. [Google Scholar] [CrossRef]
- Enwere, M.; Irobi, E.; Chime, V.; Ezeogu, A.; Onu, A.; El Hussein, M.T.; Ogungbade, G.; Davies, E.; Omoniwa, O.; Omale, C.; et al. Metabolic Reprogramming as a Therapeutic Target in Cancer: A Qualitative Systematic Review (QualSR) of Natural Compounds Modulating Glucose and Glutamine Pathways. Onco 2025, 5, 43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baxevanis, C.N.; Gritzapis, A.D. Targeting of Tumor Dormancy Pathways: An Editorial to the Special Issue. Onco 2025, 5, 48. https://doi.org/10.3390/onco5040048
Baxevanis CN, Gritzapis AD. Targeting of Tumor Dormancy Pathways: An Editorial to the Special Issue. Onco. 2025; 5(4):48. https://doi.org/10.3390/onco5040048
Chicago/Turabian StyleBaxevanis, Constantin N., and Angelos D. Gritzapis. 2025. "Targeting of Tumor Dormancy Pathways: An Editorial to the Special Issue" Onco 5, no. 4: 48. https://doi.org/10.3390/onco5040048
APA StyleBaxevanis, C. N., & Gritzapis, A. D. (2025). Targeting of Tumor Dormancy Pathways: An Editorial to the Special Issue. Onco, 5(4), 48. https://doi.org/10.3390/onco5040048

