Are Mitochondria the True Origin of Cancer? A Hypothesis-Driven Perspective
Simple Summary
Abstract
1. Introduction
2. Mitochondrial Evolution and Autonomy
2.1. Endosymbiotic Legacy and Genomic Conflict
2.2. Selfish mtDNA and Clonal Expansion
2.3. Mitochondrial Retrograde Signaling and Metastatic Reprogramming
2.4. Legacy Foundations and the Fusion Hybrid Model of Metastasis
2.5. Evolutionary Conflict Within an Ancient Symbiosis
2.6. Mitophagy as a Driver of Cancer Cell Survival and Adaptability
3. Evidence for a Mitochondria-First Hypothesis
3.1. High Mutation Rate and ROS Feedback Loops
3.2. Metabolic Reprogramming as a Mitochondrial Survival Strategy
3.3. Immune Evasion via Mitochondrial Transfer
4. Mechanistic Insights
4.1. Mitophagy Evasion and USP30 Overexpression
4.2. Retrograde Signaling and Nuclear Reprogramming
4.3. Mitochondrial Heterogeneity and Selective Pressure
5. Clinical and Therapeutic Implications
5.1. Diagnostic Biomarkers
5.2. Mitochondrial Remodeling and Neuro-Tumoral Signaling in Cancer Progression
5.3. Mitochondria-Targeted Therapies
6. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.W. Mitochondrial Evolution. Science 1999, 283, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondria and Cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, C.M.; Falkenberg, M.; Larsson, N.G. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu. Rev. Biochem. 2016, 85, 133–160. [Google Scholar] [CrossRef]
- Alexeyev, M.; Shokolenko, I.; Wilson, G.; LeDoux, S. The Maintenance of Mitochondrial DNA Integrity—Critical Analysis and Update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef]
- Grandemange, S.; Herzig, S.; Martinou, J.C. Mitochondrial Dynamics and Cancer. Semin. Cancer Biol. 2009, 19, 50–56. [Google Scholar] [CrossRef]
- Kopinski, P.K.; Singh, L.N.; Zhang, S.; Lott, M.T.; Wallace, D.C. Mitochondrial DNA Variation and Cancer. Nat. Rev. Cancer 2021, 21, 431–445. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Cancer Metabolism: Looking Forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef]
- Ju, Y.S.; Alexandrov, L.B.; Gerstung, M.; Martincorena, I.; Nik-Zainal, S.; Ramakrishna, M.; Davies, H.R.; Papaemmanuil, E.; Gundem, G.; Shlien, A.; et al. Origins and Functional Consequences of Somatic Mitochondrial DNA Mutations in Human Cancer. eLife 2014, 3, e02935. [Google Scholar] [CrossRef]
- Ikeda, H.; Kawase, K.; Nishi, T.; Watanabe, T.; Takenaga, K.; Inozume, T.; Ishino, T.; Aki, S.; Lin, J.; Kawashima, S.; et al. Immune Evasion through Mitochondrial Transfer in the Tumour Microenvironment. Nature 2025, 638, 225–236. [Google Scholar] [CrossRef]
- Mishra, P.; Chan, D.C. Mitochondrial Dynamics and Inheritance during Cell Division, Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Bingol, B.; Tea, J.S.; Phu, L.; Reichelt, M.; Bakalarski, C.E.; Song, Q.; Foreman, O.; Kirkpatrick, D.S.; Sheng, M. The Mitochondrial Deubiquitinase USP30 Opposes Parkin-Mediated Mitophagy. Nature 2014, 510, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Haigis, M.C. Mitochondria and Cancer. Cell 2016, 166, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Tseng, L.M.; Lee, H.C. Role of Mitochondria in Cancer Therapy—A Potential Target for Chemotherapy. Exp. Biol. Med. 2016, 241, 1281–1291. [Google Scholar] [CrossRef]
- Seyfried, T.N. Cancer as a mitochondrial metabolic disease. Front. Cell Dev. Biol. 2015, 3, 43. [Google Scholar] [CrossRef]
- Huysentruyt, L.C.; Seyfried, T.N. Perspectives on the mesenchymal origin of metastatic cancer. Cancer Metastasis Rev. 2010, 29, 695–707. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [Google Scholar] [CrossRef]
- Da Silva, S. The Extended vs. The Modern Synthesis of Evolutionary Theory. Philosophies 2025, 10, 58. [Google Scholar] [CrossRef]
- Behera, B.P.; Mishra, S.R.; Patra, S.; Mahapatra, K.K.; Bhol, C.S.; Panigrahi, D.P.P.; Praharaj, P.P.; Klionsky, D.J.; Bhutia, S.K. Molecular Regulation of Mitophagy Signaling in Tumor Microenvironment and Its Targeting for Cancer Therapy. Cytokine Growth Factor Rev. 2025, 73, 102207. [Google Scholar] [CrossRef]
- Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in Cancer: Initiators, Amplifiers or an Achilles’ Heel? Nat. Rev. Cancer 2014, 14, 709–721. [Google Scholar] [CrossRef]
- Weinberg, F.; Chandel, N.S. Mitochondrial Metabolism and ROS Generation Are Essential for Kras-Mediated Tumorigenicity. Proc. Natl. Acad. Sci. USA 2010, 107, 8788–8793. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.B.; Chandel, N.S. Mitochondrial Reactive Oxygen Species and Cancer. Cancer Metab. 2014, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Soto-Heredero, G.; Desdín-Micó, G.; Mittelbrunn, M. Mitochondrial Dysfunction Defines T Cell Exhaustion. Cell Metab. 2021, 33, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; et al. T Cells with Dysfunctional Mitochondria Induce Multimorbidity and Premature Senescence. Science 2020, 368, 1371–1376. [Google Scholar] [CrossRef]
- Miller, B.C.; Sen, D.R.; Al Abosy, R.; Bi, K.; Virkud, Y.V.; LaFleur, M.W.; Yates, K.B.; Lako, A.; Felt, K.; Naik, G.S.; et al. Subsets of Exhausted CD8⁺ T Cells Differentially Mediate Tumor Control and Respond to Checkpoint Blockade. Nat. Immunol. 2019, 20, 326–336. [Google Scholar] [CrossRef]
- Rusilowicz-Jones, E.V.; Jardine, J.; Kallinos, A.; Pinto-Fernandez, A.; Guenther, F.; Giurrandino, M.; Barone, F.G.; McCarron, K.; Burke, C.J.; Murad, A.; et al. USP30 Sets a Trigger Threshold for PINK1-PARKIN Amplification of Mitochondrial Ubiquitylation. Life Sci. Alliance 2020, 3, e202000768. [Google Scholar] [CrossRef]
- Rodrigues, T.; Ferraz, L.S. Therapeutic Potential of Targeting Mitochondrial Dynamics in Cancer. Biochem. Pharmacol. 2020, 182, 114282. [Google Scholar] [CrossRef]
- Cárdenas, C.; Miller, R.A.; Smith, I.; Bui, T.; Molgó, J.; Müller, M.; Vais, H.; Cheung, K.-H.; Yang, J.; Parker, I.; et al. Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria. Cell 2010, 142, 270–283. [Google Scholar] [CrossRef]
- Lam, W.Y.; Becker, A.M.; Kennerly, K.M.; Wong, R.; Curtis, J.D.; Llufrio, E.M.; McCommis, K.S.; Fahrmann, J.; Pizzato, H.A.; Nunley, R.M.; et al. Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity 2016, 45, 60–73. [Google Scholar] [CrossRef]
- Mosharov, E.V.; Rosenberg, A.M.; Monzel, A.S.; Osto, C.A.; Stiles, L.; Rosoklija, G.B.; Dwork, A.J.; Bindra, S.; Junker, A.; Zhang, Y.; et al. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. Nature 2025, 641, 749–758. [Google Scholar] [CrossRef]
- Peng, F.; Wang, S.; Feng, Z.; Zhou, K.; Zhang, H.; Guo, X.; Xing, J.; Liu, Y. Circulating Cell-Free mtDNA as a New Biomarker for Cancer Detection and Management. Cancer Biol. Med. 2023, 21, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Reznik, E.; Miller, M.L.; Şenbabaoğlu, Y.; Riaz, N.; Sarungbam, J.; Tickoo, S.K.; Al-Ahmadie, H.A.; Lee, W.; Seshan, V.E.; Hakimi, A.A.; et al. Mitochondrial DNA Copy Number Variation Across Human Cancers. eLife 2016, 5, e10769. [Google Scholar] [CrossRef]
- Venkataramani, V.; Tanev, D.I.; Strahle, C.; Studier-Fischer, A.; Fankhauser, L.; Kessler, T.; Körber, C.; Kardorff, M.; Ratliff, M.; Xie, R.; et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019, 573, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, H.S.; Johung, T.B.; Caretti, V.; Noll, A.; Tang, Y.; Nagaraja, S.; Gibson, E.M.; Mount, C.W.; Polepalli, J.; Mitra, S.S.; et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 2015, 161, 803–816. [Google Scholar] [CrossRef]
- Jin, H.; Kanthasamy, A.; Ghosh, A.; Anantharam, V.; Kalyanaraman, B.; Kanthasamy, A.G. Mitochondria-Targeted Antioxidants for Treatment of Parkinson’s Disease: Preclinical and Clinical Outcomes. Biochim. Biophys. Acta 2014, 1842, 1282–1294. [Google Scholar] [CrossRef]
- Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Novel Frontiers in Regenerative Medicine. Stem Cell Res. Ther. 2018, 9, 63. [Google Scholar] [CrossRef]
- Lim, K. Mitochondrial Genome Editing: Strategies, Challenges, and Applications. BMB Rep. 2024, 57, 19–29. [Google Scholar] [CrossRef]
- Banu, I.I.; Waseem, M.; Banerjee, S. Understanding the Clinical Link between Fasting and Response to Cancer Therapy. Curr. Pharmacol. Rep. 2022, 8, 290–299. [Google Scholar] [CrossRef]
- Ibrahim, E.M.; Al-Foheidi, M.H.; Al-Mansour, M.M. Energy and Caloric Restriction, and Fasting and Cancer: A Narrative Review. Support Care Cancer 2020, 28, 4017–4030. [Google Scholar] [CrossRef]
- Hamaguchi, R.; Uemoto, S.; Wada, H. Editorial: The Impact of Alkalizing the Acidic Tumor Microenvironment to Improve Efficacy of Cancer Treatment. Front. Oncol. 2023, 13, 1223025. [Google Scholar] [CrossRef] [PubMed]
- Kachi, S.; Hamaguchi, R.; Narui, R.; Morikawa, H.; Okamoto, T.; Wada, H. Cancer Can Be Suppressed by Alkalizing the Tumor Microenvironment: The Effectiveness of “Alkalization Therapy” in Cancer Treatment. Oncologie 2025, 27, 393–401. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Nelson, S.T.; Strahan, J.R. Photobiomodulation and Cancer: What Is the Truth? Photomed. Laser Surg. 2018, 36, 241–245. [Google Scholar] [CrossRef]
- Da Silva, T.G.; Rodrigues, J.A.; Siqueira, P.B.; Soares, M.S.; Mencalha, A.L.; Fonseca, A.S. Effects of photobiomodulation by low-power lasers and LEDs on the viability, migration, and invasion of breast cancer cells. Lasers Med. Sci. 2023, 38, 191. [Google Scholar] [CrossRef]
- Wainwright, M.; Crossley, K.B. Methylene Blue—A Therapeutic Dye for All Seasons? J. Chemother. 2002, 14, 431–443. [Google Scholar] [CrossRef]
- Taldaev, A.; Terekhov, R.; Nikitin, I.; Melnik, E.; Kuzina, V.; Klochko, M.; Reshetov, I.; Shiryaev, A.; Loschenov, V.; Ramenskaya, G. Methylene Blue in Anticancer Photodynamic Therapy: Systematic Review of Preclinical Studies. Front. Pharmacol. 2023, 14, 1264961. [Google Scholar] [CrossRef]
Feature | Nuclear-Centric Model | Mitochondria-First Hypothesis |
---|---|---|
Primary Driver of Oncogenesis | Nuclear DNA mutations (e.g., TP53, KRAS) | mtDNA mutations and mitochondrial dysfunction |
Role of Mitochondria | Downstream metabolic reprogramming | Initiating role through metabolic and redox disruption |
Mutation Rate | Lower (protected by histones and repair machinery) | Higher (lack of histones, limited repair mechanisms) |
ROS Impact | Secondary effect of oncogenic signaling | Primary driver of genomic instability and signaling |
Immune Modulation | Tumor antigens drive immune escape | mtDNA transfer alters T cell metabolism and function |
Predictive Biomarkers | PD-L1, TMB, driver mutations | mtDNA copy number, metabolic phenotype, mitophagy status |
Therapeutic Targets | Checkpoints, kinases, oncogenes | Mitophagy pathways (e.g., USP30), mitochondrial transfer |
Evolutionary Perspective | Clonal selection of nuclear mutations | Selection of “selfish” mitochondria under stress |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Silva, S. Are Mitochondria the True Origin of Cancer? A Hypothesis-Driven Perspective. Onco 2025, 5, 32. https://doi.org/10.3390/onco5030032
Da Silva S. Are Mitochondria the True Origin of Cancer? A Hypothesis-Driven Perspective. Onco. 2025; 5(3):32. https://doi.org/10.3390/onco5030032
Chicago/Turabian StyleDa Silva, Sergio. 2025. "Are Mitochondria the True Origin of Cancer? A Hypothesis-Driven Perspective" Onco 5, no. 3: 32. https://doi.org/10.3390/onco5030032
APA StyleDa Silva, S. (2025). Are Mitochondria the True Origin of Cancer? A Hypothesis-Driven Perspective. Onco, 5(3), 32. https://doi.org/10.3390/onco5030032