Artificial Intelligence as Assessment Tool in Occupational Therapy: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Searches
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Data Extraction
3. Results
3.1. Motor Recovery and Physical Rehabilitation
3.2. Developmental and Pediatric Applications
3.3. Cognitive and Mental Health Applications
3.4. Assistive Technology and Telehealth
Author | Year | Application Domain | Subjects | Injury/Disease | Outcome | Best Machine Learning/Deep Learning | Validation | Results |
---|---|---|---|---|---|---|---|---|
Fair-Field and Modayur [32] | 2025 | Prediction of AIMS | SCOREIT pilot collected AIMS videos of 41 infants aged 3 to 15 months | N/A | AIMS score | Support Vector Regression (SVR) | Leave-one-out | Sensitivity of 1.0 and a specificity of 0.895 |
Zhao and Zariffa. [24] | 2024 | Hand Prehension Assessment | 17 participants | Spinal cord injury (SCI) | GRASSP Prehension Performance subtest | SlowFast | Leave-One-Subject-Out cross validation (LOSO-CV) | 55.10% Accuracy on 5 classes task |
Chandran et al. [28] | 2024 | Capacity Disorder for Specially-Abled Children | 92 Testing samples | Specially-Abled Children | Functional level | Random Forest | 80% training/20% testing | 95.38% Accuracy |
Suzuki and Suzuki [34] | 2023 | Engagement in Occupation | 1554 tweets | N/A | Engagement | Bidirectional Encoder Representations from Transformers (BERT) | Training, validation, and test datasets in the proportion of 8:1:1 | 0.763 |
Ienaga et al. [33] | 2022 | Postural Control Assessment | 34 typically developing preschoolers and 23 adults | N/A | MediaPipe Pose | N/A | 0.8 | |
Kim et al. [25] | 2020 | Quantitative Measures on the Joint Paralysis | Ten stroke patients at Brunnstrom stage 3 and 4 | Stroke | Finger paralysis | Support vector machine (SVM) and a k-means | N/A | A support vector machine revealed a misclassification rate of 20% |
Barth et al. [26] | 2023 | Measurement of upper limb (UL) activity | 54 subjects | early after stroke | UL performance | Bagged model | CV | 100% Accuracy |
Ramirez-Sanz [36] | 2023 | Assessing Physical Telerehabilitation | 76 patients | Parkinson’s disease | Pose estimation | COCO person keypoint detection baselines with keypoint R-CNN models | N/A | 7539.65 Loading (ms) |
Huang et al. [35] | 2022 | Assessing Schizophrenia Patients | 26 patients | Schizophrenia | Language and Communication (TLC), Positive and Negative Syndrome Scale (PANSS) | Neural Network | Leave one-out CV | TLS’s classification 88% accuracy and PANSS’s 80% accuracy |
Radhakrishnan et al. [29] | 2021 | Detection of Autism Spectrum Disorder | 10 typically developing children and 10 autistic children | Autism | Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) | ResNet50 | 5-fold CV | 81.91% Accuracy |
Putatunda [30] | 2020 | Define and document the development, health and functioning of children | 70 children | Disabled children | Self-care problems | Hybrid autoencoder-based method (autoencoders and deep neural networks) | k-fold CV | 81.93% accuracy (7 classes) |
Park et al. [27] | 2019 | Clinical Assessment of Spasticity | 34 subjects with hemiplegia | Spasticity | Modified Ashworth Scale (MAE) of elbow flexors | Multilayer perceptron (MLP) | 648 trials used for training | 82.2% Accuracy |
Zarchi et al. [31] | 2018 | Self-care problems classification | 70 children | Children with physical and motor disability | Self-care problems | MLP | 10-fold CV | 83.1% Accuracy |
3.5. Summary of Included Studies by Application Domain
4. Discussion
4.1. Open Issues in Primary Studies
4.2. Limitations
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cowen, K.; Collins, T.; Carr, S.; Wilson Menzfeld, G. The Role of Occupational Therapy in Community Development to Combat Social Isolation and Loneliness. Br. J. Occup. Ther. 2024, 87, 434–442. [Google Scholar] [CrossRef]
- Rasa, A.R. Artificial Intelligence and Its Revolutionary Role in Physical and Mental Rehabilitation: A Review of Recent Advancements. BioMed Res. Int. 2024, 2024, 9554590. [Google Scholar] [CrossRef] [PubMed]
- Organisation mondiale de la santé ICF. International Classification of Functioning, Disability and Health; World Health Organization: Geneva, Switzerland, 2001; ISBN 92-4-154542-9. [Google Scholar]
- World Federation of Occupational Therapists. Definitions of Occupational Therapy from Member Organisations; World Federation of Occupational Therapists: London, UK, 2013. [Google Scholar]
- Franssen, F.M.E.; Alter, P.; Bar, N.; Benedikter, B.J.; Iurato, S.; Maier, D.; Maxheim, M.; Roessler, F.K.; Spruit, M.A.; Vogelmeier, C.F.; et al. Personalized Medicine for Patients with COPD: Where Are We? Int. J. COPD 2019, 14, 1465–1484. [Google Scholar] [CrossRef] [PubMed]
- Sarsak, H. Occupational Therapy: From A to Z. J. Community Med. Public Health Care 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Tsiara, A.A.; Plakias, S.; Kokkotis, C.; Veneri, A.; Mina, M.A.; Tsiakiri, A.; Kitmeridou, S.; Christidi, F.; Gourgoulis, E.; Doskas, T. Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis. Neurol. Int. 2025, 17, 45. [Google Scholar] [CrossRef]
- Kaelin, V.C.; Valizadeh, M.; Salgado, Z.; Parde, N.; Khetani, M.A. Artificial Intelligence in Rehabilitation Targeting the Participation of Children and Youth with Disabilities: Scoping Review. J. Med. Internet Res. 2021, 23, e25745. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Odetayo, A.; David-Olawade, A.C.; Asaolu, F.; Eberhardt, J. Enhancing Mental Health with Artificial Intelligence: Current Trends and Future Prospects. J. Med. Surg. Public Health 2024, 3, 100099. [Google Scholar] [CrossRef]
- Kokkotis, C.; Moustakidis, S.; Giarmatzis, G.; Giannakou, E.; Makri, E.; Sakellari, P.; Tsiptsios, D.; Karatzetzou, S.; Christidi, F.; Vadikolias, K. Machine Learning Techniques for the Prediction of Functional Outcomes in the Rehabilitation of Post-Stroke Patients: A Scoping Review. BioMed 2022, 3, 1–20. [Google Scholar] [CrossRef]
- Apostolidis, K.; Kokkotis, C.; Moustakidis, S.; Karakasis, E.; Sakellari, P.; Koutra, C.; Tsiptsios, D.; Karatzetzou, S.; Vadikolias, K.; Aggelousis, N. Machine Learning Algorithms for the Prediction of Language and Cognition Rehabilitation Outcomes of Post-Stroke Patients: A Scoping Review. Hum.-Centric Intell. Syst. 2024, 4, 147–160. [Google Scholar] [CrossRef]
- Dipietro, L.; Eden, U.; Elkin-Frankston, S.; El-Hagrassy, M.M.; Camsari, D.D.; Ramos-Estebanez, C.; Fregni, F.; Wagner, T. Integrating Big Data, Artificial Intelligence, and Motion Analysis for Emerging Precision Medicine Applications in Parkinson’s Disease. J. Big Data 2024, 11, 155. [Google Scholar] [CrossRef]
- Sadeghi Milani, A.; Cecil-Xavier, A.; Gupta, A.; Cecil, J.; Kennison, S. A Systematic Review of Human–Computer Interaction (HCI) Research in Medical and Other Engineering Fields. Int. J. Hum.-Comput. Interact. 2024, 40, 515–536. [Google Scholar] [CrossRef]
- Lane, A.B.S.D.M. Teletherapy Occupational Therapy: Revolutionizing Remote Healthcare Services; NeuroLaunch: Atlanta, GA, USA, 2024. [Google Scholar]
- Thakkar, A.; Gupta, A.; De Sousa, A. Artificial Intelligence in Positive Mental Health: A Narrative Review. Front. Digit. Health 2024, 6, 1280235. [Google Scholar] [CrossRef]
- Welch, V.; Wy, T.J.; Ligezka, A.; Hassett, L.C.; Croarkin, P.E.; Athreya, A.P.; Romanowicz, M. Use of Mobile and Wearable Artificial Intelligence in Child and Adolescent Psychiatry: Scoping Review. J. Med. Internet Res. 2022, 24, e33560. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alrazaq, A.; AlSaad, R.; Shuweihdi, F.; Ahmed, A.; Aziz, S.; Sheikh, J. Systematic Review and Meta-Analysis of Performance of Wearable Artificial Intelligence in Detecting and Predicting Depression. NPJ Digit. Med. 2023, 6, 84. [Google Scholar] [CrossRef] [PubMed]
- Woll, S.; Birkenmaier, D.; Biri, G.; Nissen, R.; Lutz, L.; Schroth, M.; Ebner-Priemer, U.W.; Giurgiu, M. Applying AI in the Context of the Association Between Device-Based Assessment of Physical Activity and Mental Health: Systematic Review. JMIR MHealth UHealth 2025, 13, e59660. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, X.; Wang, J.; Wang, F.; Liu, J.; Liu, N. The Influence of Eight Cognitive Training Regimes upon Cognitive Screening Tool Performance in Post-Stroke Survivors: A Network Meta-Analysis. Front. Aging Neurosci. 2024, 16, 1374546. [Google Scholar] [CrossRef]
- Guo, C.; Cun, Y.; Xia, B.; Chen, S.; Zhang, C.; Chen, Y.; Shan, E.; Zhang, P.; Tai, X. An Analysis of Stimulation Methods Used in Rehabilitation Equipment for Children with Cerebral Palsy. Front. Neurol. 2024, 15, 1371332. [Google Scholar] [CrossRef]
- Holguin, J.A.; Margetis, J.L.; Narayan, A.; Yoneoka, G.M.; Irimia, A. Vascular Cognitive Impairment after Mild Stroke: Connectomic Insights, Neuroimaging, and Knowledge Translation. Front. Neurosci. 2022, 16, 905979. [Google Scholar] [CrossRef]
- Peters, M.D.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated Methodological Guidance for the Conduct of Scoping Reviews. JBI Evid. Implement. 2021, 19, 3–10. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Zhao, N.; Zariffa, J. Automated Hand Prehension Assessment From Egocentric Video After Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2864–2872. [Google Scholar] [CrossRef]
- Kim, J.; Lee, G.; Jo, H.; Park, W.; Jin, Y.S.; Kim, H.D.; Kim, J. A Wearable Soft Robot for Stroke Patients’ Finger Occupational Therapy and Quantitative Measures on the Joint Paralysis. Int. J. Precis. Eng. Manuf. 2020, 21, 2419–2426. [Google Scholar] [CrossRef]
- Barth, J.; Lohse, K.R.; Bland, M.D.; Lang, C.E. Predicting Later Categories of Upper Limb Activity from Earlier Clinical Assessments Following Stroke: An Exploratory Analysis. J. Neuroeng. Rehabil. 2023, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Kim, Y.; Lee, K.-J.; Yoon, Y.-S.; Kang, S.H.; Kim, H.; Park, H.-S. Artificial Neural Network Learns Clinical Assessment of Spasticity in Modified Ashworth Scale. Arch. Phys. Med. Rehabil. 2019, 100, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Chandran, P.; Vijaykumar, S.; Behl, G.; Pawar, S.; Dubey, M.; Arora, V. Machine Learning Based Developmental Capability Prediction: A Diagnosis to the Learning Capacity Disorder for Specially-Abled Children. Int. J. Inf. Educ. Technol. 2024, 14, 240–247. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Ramamurthy, K.; Choudhury, K.K.; Won, D.; Manoharan, T.A. Performance Analysis of Deep Learning Models for Detection of Autism Spectrum Disorder from EEG Signals. Trait. Signal 2021, 38, 853–863. [Google Scholar] [CrossRef]
- Putatunda, S. Care2Vec: A Hybrid Autoencoder-Based Approach for the Classification of Self-Care Problems in Physically Disabled Children. Neural Comput. Appl. 2020, 32, 17669–17680. [Google Scholar] [CrossRef]
- Zarchi, M.S.; Fatemi Bushehri, S.M.M.; Dehghanizadeh, M. SCADI: A Standard Dataset for Self-Care Problems Classification of Children with Physical and Motor Disability. Int. J. Med. Inf. 2018, 114, 81–87. [Google Scholar] [CrossRef]
- Fair-Field, T.; Modayur, B. Clinical Validation of an Abridged AIMS: Streamlining Motor Screening in the First-Year Infant. Early Hum. Dev. 2025, 202, 106207. [Google Scholar] [CrossRef]
- Ienaga, N.; Takahata, S.; Terayama, K.; Enomoto, D.; Ishihara, H.; Noda, H.; Hagihara, H. Development and Verification of Postural Control Assessment Using Deep-Learning-Based Pose Estimators: Towards Clinical Applications. Occup. Ther. Int. 2022, 2022, 6952999. [Google Scholar] [CrossRef]
- Suzuki, T.; Suzuki, H. Development of Classifier of Engagement in Occupation With Machine Learning (CEOML) for Quantifying Context. SAGE Open 2023, 13, 21582440231176998. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Lin, Y.-T.; Liu, C.-C.; Lee, L.-E.; Hung, S.-H.; Lo, J.-K.; Fu, L.-C. Assessing Schizophrenia Patients Through Linguistic and Acoustic Features Using Deep Learning Techniques. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Sanz, J.M.; Garrido-Labrador, J.L.; Olivares-Gil, A.; García-Bustillo, Á.; Arnaiz-González, Á.; Díez-Pastor, J.-F.; Jahouh, M.; González-Santos, J.; González-Bernal, J.J.; Allende-Río, M.; et al. A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept. Healthcare 2023, 11, 507. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkotis, C.; Kansizoglou, I.; Stampoulis, T.; Giannakou, E.; Siaperas, P.; Kallidis, S.; Koutra, M.; Koutra, C.; Beneka, A.; Bebetsos, E. Artificial Intelligence as Assessment Tool in Occupational Therapy: A Scoping Review. BioMedInformatics 2025, 5, 22. https://doi.org/10.3390/biomedinformatics5020022
Kokkotis C, Kansizoglou I, Stampoulis T, Giannakou E, Siaperas P, Kallidis S, Koutra M, Koutra C, Beneka A, Bebetsos E. Artificial Intelligence as Assessment Tool in Occupational Therapy: A Scoping Review. BioMedInformatics. 2025; 5(2):22. https://doi.org/10.3390/biomedinformatics5020022
Chicago/Turabian StyleKokkotis, Christos, Ioannis Kansizoglou, Theodoros Stampoulis, Erasmia Giannakou, Panagiotis Siaperas, Stavros Kallidis, Maria Koutra, Christina Koutra, Anastasia Beneka, and Evangelos Bebetsos. 2025. "Artificial Intelligence as Assessment Tool in Occupational Therapy: A Scoping Review" BioMedInformatics 5, no. 2: 22. https://doi.org/10.3390/biomedinformatics5020022
APA StyleKokkotis, C., Kansizoglou, I., Stampoulis, T., Giannakou, E., Siaperas, P., Kallidis, S., Koutra, M., Koutra, C., Beneka, A., & Bebetsos, E. (2025). Artificial Intelligence as Assessment Tool in Occupational Therapy: A Scoping Review. BioMedInformatics, 5(2), 22. https://doi.org/10.3390/biomedinformatics5020022