Systematic Review of Deep Learning Techniques in Skin Cancer Detection
Abstract
:1. Introduction
2. Methods
2.1. Information Sources and Search Strategy
2.2. Synthesis Methods
3. Results
3.1. Study Selection
3.2. Qualitative Synthesis
3.2.1. Drawbacks of Deep Learning
3.2.2. Malignant vs. Benign
3.2.3. Multiclassification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, J.; Savin, J.; Dahl, M. The function and structure of the skin. In Clinical Dermatology, 3rd ed.; Blackwell Science: Hoboken, NJ, USA, 2002; pp. 7–28. [Google Scholar]
- Hunter, J.; Savin, J.; Dahl, M. Skin Tumours. In Clinical Dermatology, 3rd ed.; Blackwell Science: Hoboken, NJ, USA, 2002; pp. 253–282. [Google Scholar]
- Gruber, P.; Zito, P.M. Skin Cancer; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Ricotti, C.; Bouzari, N.; Agadi, A.; Cockerell, C.J. Malignant Skin Neoplasms. Med. Clin. N. Am. 2009, 93, 1241–1264. [Google Scholar] [CrossRef] [PubMed]
- Fink, C.; Haenssle, H.A. Non-invasive tools for the diagnosis of cutaneous melanoma. Ski. Res. Technol. 2017, 23, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, D.; Ferrari, A.; Peris, K.; Daidone, R.; Ruggeri, B.; Chimenti, S. Dermoscopic diagnosis by a trained clinician vs. a clinician with minimal dermoscopy training vs. computer-aided diagnosis of 341 pigmented skin lesions: A comparative study. Br. J. Dermatol. 2002, 147, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Przystalski, K.; Leszek, N.; Ogorzałek, M.; Surówka, G. Decision Support System for Skin Cancer Diagnosis. In Proceedings of the Ninth International Symposium on Operations Research and Its Applications (ISORA’10), Chengdu, China, 19–23 August 2010; pp. 406–413. [Google Scholar]
- Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef] [PubMed]
- Razmjooy, N.; Ashourian, M.; Karimifard, M.; Estrela, V.V.; Loschi, H.J.; Nascimento, D.D.; França, R.P.; Vishnevski, M. Computer-aided Diagnosis of Skin Cancer: A Review. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2020, 16, 781–793. [Google Scholar] [CrossRef]
- Bakator, M.; Radosav, D. Deep Learning and Medical Diagnosis: A Review of Literature. Multimodal Technol. Interact. 2018, 2, 47. [Google Scholar] [CrossRef]
- Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef]
- Razzak, M.I.; Naz, S.; Zaib, A. Deep Learning for Medical Image Processing: Overview, Challenges and the Future. arXiv 2017, arXiv:1704.06825v1. [Google Scholar]
- McNeil, B.J.; Keeler, E.; Adelstein, S.J. Primer on Certain Elements of Medical Decision Making. N. Engl. J. Med. 1975, 293, 211–215. [Google Scholar] [CrossRef]
- Wijesinghe, I.; Gamage, C.; Perera, I.; Chitraranjan, C. A Smart Telemedicine System with Deep Learning to Manage Diabetic Retinopathy and Foot Ulcers. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 686–691. [Google Scholar]
- Shihadeh, J.; Ansari, A.; Ozunfunmi, T. Deep Learning Based Image Classification for Remote Medical Diagnosis. In Proceedings of the 2018 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 18–21 October 2018; pp. 1–8. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. he PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 2018, 86, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Harangi, B.; Baran, A.; Hajdu, A. Classification of Skin Lesions Using an Ensemble Of Deep Neural Networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2575–2578. [Google Scholar]
- Anand, V.; Gupta, S.; Altameem, A.; Nayak, S.R.; Poonia, R.C.; Saudagar, A.K.J. An Enhanced Transfer Learning Based Classification for Diagnosis of Skin Cancer. Diagnostics 2022, 12, 1628. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, T.M.; Hussain, S.; Khan, M.F.; Said, R.A.T.; Ahmad, M. Detection of Benign and Malignant Tumors in Skin Empowered with Transfer Learning. Comput. Intell. Neurosci. 2022, 2022, 4826892. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafeez, A.; Mohamed, H.K.; Maher, A.; Khalil, N.A. A novel approach toward skin cancer classification through fused deep features and neutrosophic environment. Front. Public Health 2023, 11, 1123581. [Google Scholar] [CrossRef] [PubMed]
- Jiahao, W.; Xingguang, J.; Yuan, W.; Luo, Z.; Yu, Z. Deep Neural Network for Melanoma Classification in Dermoscopic Images. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 15–17 January 2021; pp. 666–669. [Google Scholar]
- Jibhakate, A.; Parnerkar, P.; Mondal, S.; Bharambe, V.; Mantri, S. Skin lesion classification using deep learning and image processing. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 3–5 December; pp. 333–340.
- Manzo, M.; Pellino, S. Bucket of Deep Transfer Learning Features and Classification Models for Melanoma Detection. J. Imaging 2020, 6, 129. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C. SIIM-ISIC Melanoma Classification with DenseNet. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 14–17. [Google Scholar]
- Zunair, H.; Ben Hamza, A. Melanoma detection using adversarial training and deep transfer learning. Phys. Med. Biol. 2020, 65, 135005. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Dahou, A.; Mabrouk, A.; El-Sappagh, S.; Aseeri, A.O. An Efficient Artificial Rabbits Optimization Based on Mutation Strategy For Skin Cancer Prediction. Comput. Biol. Med. 2023, 163, 107154. [Google Scholar] [CrossRef]
- Ogundokun, R.O.; Li, A.; Babatunde, R.S.; Umezuruike, C.; Sadiku, P.O.; Abdulahi, A.T.; Babatunde, A.N. Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated MobileNetV2 and Xception Models. Bioengineering 2023, 10, 979. [Google Scholar] [CrossRef]
- Adjobo, E.C.; Mahama, A.T.S.; Gouton, P.; Tossa, J. Proposition of convolutional neural network based system for skin cancer detection. In Proceedings of the 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Sorrento, Italy, 26–29 November 2019; pp. 35–39. [Google Scholar]
- Yao, P.; Shen, S.; Xu, M.; Liu, P.; Zhang, F.; Xing, J.; Shao, P.; Kaffenberger, B.; Xu, R.X. Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion Classification. IEEE Trans. Med. Imaging 2022, 41, 1242–1254. [Google Scholar] [CrossRef]
- Pérez, E.; Ventura, S. Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis. Artif. Intell. Med. 2023, 141, 102556. [Google Scholar] [CrossRef]
- Mohamed, E.H.; El-Behaidy, W.H. Enhanced Skin Lesions Classification Using Deep Convolutional Networks. In Proceedings of the 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 8–10 December 2019; pp. 180–188. [Google Scholar]
- Muresan, H.-B. Skin Lesion Diagnosis Using Deep Learning. In Proceedings of the 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 5–7 September 20119; pp. 499–506. [Google Scholar]
- Rezaoana, N.; Hossain, M.S.; Andersson, K. Detection and Classification of Skin Cancer by Using a Parallel CNN Model. In Proceedings of the 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), Bhubaneswar, India, 26–27 December 2020; pp. 380–386. [Google Scholar]
- Hassan, S.R.; Afroge, S.; Mizan, M.B. Skin Lesion Classification Using Densely Connected Convolutional Network. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 750–753. [Google Scholar]
- Thao, L.T.; Quang, N.H. Automatic skin lesion analysis towards melanoma detection. In Proceedings of the 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES), Hanoi, Vietnam, 15–17 November 2017; pp. 106–111. [Google Scholar]
- Jain, S.; Singhania, U.; Tripathy, B.; Nasr, E.A.; Aboudaif, M.K.; Kamrani, A.K. Deep Learning-Based Transfer Learning for Classification of Skin Cancer. Sensors 2021, 21, 8142. [Google Scholar] [CrossRef] [PubMed]
- Alam, T.M.; Shaukat, K.; Khan, W.A.; Hameed, I.A.; Almuqren, L.A.; Raza, M.A.; Aslam, M.; Luo, S. An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics 2022, 12, 2115. [Google Scholar] [CrossRef] [PubMed]
- Montaha, S.; Azam, S.; Rafid, A.K.M.R.H.; Islam, S.; Ghosh, P.; Jonkman, M. A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity. PLoS ONE 2022, 17, e0269826. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Q.; Daadaa, Y.; Rashid, U.; Ibrahim, M.E.A. Assist-Dermo: A Lightweight Separable Vision Transformer Model for Multiclass Skin Lesion Classification. Diagnostics 2023, 13, 2531. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Kiani, K.; Mansouri, T.; Topping, N. SkinLesNet: Classification of Skin Lesions and Detection of Melanoma Cancer Using a Novel Multi-Layer Deep Convolutional Neural Network. Cancers 2023, 16, 108. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, Z.; Zhu, P.; Xue, Y. A GAN-based image synthesis method for skin lesion classification. Comput. Methods Programs Biomed. 2020, 195, 105568. [Google Scholar] [CrossRef]
- Ravi, V. Attention Cost-Sensitive Deep Learning-Based Approach for Skin Cancer Detection and Classification. Cancers 2022, 14, 5872. [Google Scholar] [CrossRef]
- Wu, J.; Hu, W.; Wang, Y.; Wen, Y. A Multi-Input CNNs with Attention for Skin Lesion Classification. In Proceedings of the 2020 IEEE International Conference on Smart Cloud (SmartCloud), Washington, DC, USA, 6–8 November 2020; pp. 78–83. [Google Scholar]
- Wu, J.; Hu, W.; Wen, Y.; Tu, W.; Liu, X. Skin lesion classification using densely connected convolutional networks with attention residual learning. Sensors 2020, 20, 7080. [Google Scholar] [CrossRef]
- Ashraf, R.; Afzal, S.; Rehman, A.U.; Gul, S.; Baber, J.; Bakhtyar, M.; Mehmood, I.; Song, O.-Y.; Maqsood, M. Region-of-Interest Based Transfer Learning Assisted Framework for Skin Cancer Detection. IEEE Access 2020, 8, 147858–147871. [Google Scholar] [CrossRef]
- Jojoa Acosta, M.F.; Caballero Tovar, L.Y.; Garcia-Zapirain, M.B.; Percybrooks, W.S. Melanoma diagnosis using deep learning techniques on dermatoscopic images. BMC Med. Imaging 2021, 21, 6. [Google Scholar] [CrossRef]
- Zhang, D.; Li, A.; Wu, W.; Yu, L.; Kang, X.; Huo, X. CR-Conformer: A fusion network for clinical skin lesion classification. Med. Biol. Eng. Comput. 2023, 62, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Osowski, S.; Les, T. Deep Learning Ensemble for Melanoma Recognition. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.; Jafari, M.; Ward, K.; Najarian, K. Melanoma detection by analysis of clinical images using convolutional neural network. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; Volume 2016, pp. 1373–1376. [Google Scholar]
- Naronglerdrit, P.; Mporas, I.; Paraskevas, M.; Kapoulas, V. Melanoma Detection from Dermatoscopic Images using Deep Convolutional Neural Networks. In Proceedings of the 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 24–27 September 2020; pp. 13–16. [Google Scholar]
- Bhimavarapu, U.; Battineni, G. Skin Lesion Analysis for Melanoma Detection Using the Novel Deep Learning Model Fuzzy GC-SCNN. Healthcare 2022, 10, 962. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zadeh, Y.A.F.A. Deep Learning-Based Classification for Melanoma Detection Using XceptionNet. J. Healthc. Eng. 2022, 2022, 2196096. [Google Scholar] [CrossRef] [PubMed]
- Behara, K.; Bhero, E.; Agee, J.T. Skin Lesion Synthesis and Classification Using an Improved DCGAN Classifier. Diagnostics 2023, 13, 2635. [Google Scholar] [CrossRef]
- Putten, E.V.; Kambod, A.; Kambod, M. Deep residual neural networks for automated Basal Cell Carcinoma detection. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA, 4–7 March 2018; pp. 337–340. [Google Scholar]
- Pham, H.N.; Koay, C.Y.; Chakraborty, T.; Gupta, S.; Tan, B.L.; Wu, H.; Vardhan, A.; Nguyen, Q.H.; Palaparthi, N.R.; Nguyen, B.P.; et al. Lesion Segmentation and Automated Melanoma Detection using Deep Convolutional Neural Networks and XGBoost. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; pp. 142–147. [Google Scholar]
- Khouloud, S.; Ahlem, M.; Fadel, T.; Amel, S. W-net and inception residual network for skin lesion segmentation and classification. Appl. Intell. 2021, 52, 3976–3994. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Xia, Y.; Shen, C. A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification. IEEE Trans. Med. Imaging 2020, 39, 2482–2493. [Google Scholar] [CrossRef]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Trans. Med. Imaging 2017, 36, 994–1004. [Google Scholar] [CrossRef]
- Gouda, W.; Sama, N.U.; Al-Waakid, G.; Humayun, M.; Jhanjhi, N.Z. Detection of Skin Cancer Based on Skin Lesion Images Using Deep Learning. Healthcare 2022, 10, 1183. [Google Scholar] [CrossRef]
- Afza, F.; Sharif, M.; Mittal, M.; Khan, M.A.; Jude Hemanth, D. A hierarchical three-step superpixels and deep learning framework for skin lesion classification. Methods 2022, 88–102. [Google Scholar] [CrossRef]
- Benyahia, S.; Meftah, B.; Lézoray, O. Multi-features extraction based on deep learning for skin lesion classification. Tissue Cell 2022, 74, 101701. [Google Scholar] [CrossRef]
- Ameri, A. A Deep Learning Approach to Skin Cancer Detection in Dermoscopy Images. J. Biomed. Phys. Eng. 2020, 10, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Zaman, K.; Bangash, J.I.; Maghdid, S.S.; Hassan, S.; Afridi, H.; Zohaib, M. Analysis and Classification of Skin Cancer Images using Convolutional Neural Network Approach. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–8. [Google Scholar]
- Xiang, A.; Wang, F. Towards Interpretable Skin Lesion Classification with Deep Learning Models. AMIA Annu. Symp. Proc. 2019, 2019, 1246–1255. [Google Scholar] [PubMed]
- Tschandl, P.; Argenziano, G.; Razmara, M.; Yap, J. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. Br. J. Dermatol. 2019, 181, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Nauta, M.; Walsh, R.; Dubowski, A.; Seifert, C. Uncovering and Correcting Shortcut Learning in Machine Learning Models for Skin Cancer Diagnosis. Diagnostics 2021, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.Z.U.; Ahmed, F.; Alsuhibany, S.A.; Jamal, S.S.; Ali, M.Z.; Ahmad, J. Classification of Skin Cancer Lesions Using Explainable Deep Learning. Sensors 2022, 22, 6915. [Google Scholar] [CrossRef]
- Singh, R.K.; Gorantla, R.; Allada, S.G.R.; Narra, P. SkiNet: A deep learning framework for skin lesion diagnosis with uncertainty estimation and explainability. PLoS ONE 2022, 17, e0276836. [Google Scholar] [CrossRef]
- Alfi, I.A.; Rahman, M.; Shorfuzzaman, M.; Nazir, A. A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models. Diagnostics 2022, 12, 726. [Google Scholar] [CrossRef]
- Lee, J.R.H.; Pavlova, M.; Famouri, M.; Wong, A. Cancer-Net SCa: Tailored deep neural network designs for detection of skin cancer from dermoscopy images. BMC Med. Imaging 2022, 22, 143. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Y.; Wang, D.; Wang, Y.; Jin, Y. Interpretability-Based Multimodal Convolutional Neural Networks for Skin Lesion Diagnosis. IEEE Trans. Cybern. 2022, 52, 12623–12637. [Google Scholar] [CrossRef]
- Maiti, R.; Agarwal, P.; Kumar, R.R.; Bhat, A. Detection of skin cancer using neural architecture search with model quantization. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1807–1814. [Google Scholar]
- Shinde, R.K.; Alam, S.; Hossain, B.; Imtiaz, S.M.; Kim, J.; Padwal, A.A.; Kim, N. Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning. Cancers 2022, 15, 12. [Google Scholar] [CrossRef]
- Aishwarya, U.; Daniel, I.J.; Raghul, R. Convolutional Neural Network based Skin Lesion Classification and Identification. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020; pp. 264–270. [Google Scholar]
- Demir, A.; Yilmaz, F.; Kose, O. Early detection of skin cancer using deep learning architectures: Resnet-101 and inception-v3. In Proceedings of the 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 3–5 October 2019. [Google Scholar]
- Durupt, M.; Bouchy, O.; Christophe, S.; Kivits, J.; Boivin, J.-M. La télémédecine en zones rurales: Représentations et expériences de médecins généralistes. Sante Publique 2016, 28, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Sanketh, R.S.; Bala, M.M.; Reddy, P.V.N.; Kumar, G.V.S.P. Melanoma Disease Detection Using Convolutional Neural Networks. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020; pp. 1031–1037. [Google Scholar]
- Shah, V.; Autee, P.; Sonawane, P. Detection of Melanoma from Skin Lesion Images using Deep Learning Techniques. In Proceedings of the 2020 International Conference on Data Science and Engineering (ICDSE), Kochi, India, 3–5 December 2020; pp. 1–8. [Google Scholar]
- Sherif, F.; Mohamed, W.A.; Mohra, A. Skin lesion analysis toward melanoma detection using deep learning techniques. Int. J. Electron. Telecommun. 2019, 65, 597–602. [Google Scholar] [CrossRef]
- Yang, S.; Shu, C.; Hu, H.; Ma, G.; Yang, M. Dermoscopic Image Classification of Pigmented Nevus under Deep Learning and the Correlation with Pathological Features. Comput. Math. Methods Med. 2022, 2022, 9726181. [Google Scholar] [CrossRef] [PubMed]
- Alwakid, G.; Gouda, W.; Humayun, M.; Sama, N.U. Melanoma Detection Using Deep Learning-Based Classifications. Healthcare 2022, 10, 2481. [Google Scholar] [CrossRef] [PubMed]
- Mahum, R.; Aladhadh, S. Skin Lesion Detection Using Hand-Crafted and DL-Based Features Fusion and LSTM. Diagnostics 2022, 12, 2974. [Google Scholar] [CrossRef]
- Alenezi, F.; Armghan, A.; Polat, K. A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images. Diagnostics 2023, 13, 262. [Google Scholar] [CrossRef]
- Hsu, B.W.-Y.; Tseng, V.S. Hierarchy-aware contrastive learning with late fusion for skin lesion classification. Comput. Methods Programs Biomed. 2022, 216, 106666. [Google Scholar] [CrossRef]
- Akram, A.; Rashid, J.; Jaffar, M.A.; Faheem, M.; Amin, R.U. Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things. Ski. Res. Technol. 2023, 29, e13524. [Google Scholar] [CrossRef]
- Dascalu, A.; Walker, B.N.; Oron, Y.; David, E.O. Non-melanoma skin cancer diagnosis: A comparison between dermoscopic and smartphone images by unified visual and sonification deep learning algorithms. J. Cancer Res. Clin. Oncol. 2021, 148, 2497–2505. [Google Scholar] [CrossRef]
- Alzahrani, S.; Al-Nuaimy, W.; Al-Bander, B. Seven-Point Checklist with Convolutional Neural Networks for Melanoma Diagnosis. In Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP), Rome, Italy, 28–31 October 2019; pp. 211–216. [Google Scholar]
- Almufareh, M.F.; Tariq, N.; Humayun, M.; Khan, F.A. Melanoma identification and classification model based on fine-tuned convolutional neural network. Digit. Health 2024, 10, 20552076241253757. [Google Scholar] [CrossRef]
- Moturi, D.; Surapaneni, R.K.; Avanigadda, V.S.G. Developing an efficient method for melanoma detection using CNN techniques. J. Egypt. Natl. Cancer Inst. 2024, 36, 6. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Hossain, M.; Arefin, M.B.; Akhtar, F.; Blake, J. Combining State-of-the-Art Pre-Trained Deep Learning Models: A Noble Approach for Skin Cancer Detection Using Max Voting Ensemble. Diagnostics 2023, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, D.; Kluska, P.; Reich, A. Convolutional neural networks for the detection of malignant melanoma in dermoscopy images. Adv. Dermatol. Allergol. 2021, 38, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Budhiman, A.; Suyanto, S.; Arifianto, A. Melanoma Cancer Classification Using ResNet with Data Augmentation. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019; pp. 17–20. [Google Scholar]
- Hossin, A.; Rupom, F.F.; Mahi, H.R.; Sarker, A.; Ahsan, F.; Warech, S. Melanoma Skin Cancer Detection Using Deep Learning and Advanced Regularizer. In Proceedings of the 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia, 17–18 October 2020; pp. 89–94. [Google Scholar]
- Maiti, A.; Chatterjee, B. Improving detection of Melanoma and Naevus with deep neural networks. Multimedia Tools Appl. 2019, 79, 15635–15654. [Google Scholar] [CrossRef]
- Jayalakshmi, G.; Kumar, V.S. Performance analysis of Convolutional Neural Network (CNN) based Cancerous Skin Lesion Detection System. In Proceedings of the 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Gurugram, India, 6–7 September 2019. [Google Scholar]
- Seeja, R.D.; Suresh, A. Melanoma Segmentation and Classification using Deep Learning. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2667–2672. [Google Scholar] [CrossRef]
- Rokhana, R.; Herulambang, W.; Indraswari, R. Deep Convolutional Neural Network for Melanoma Image Classification. In Proceedings of the 2020 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020; pp. 481–486. [Google Scholar]
- Albahar, M.A. Skin Lesion Classification Using Convolutional Neural Network with Novel Regularizer. IEEE Access 2019, 7, 38306–38313. [Google Scholar] [CrossRef]
- Afza, F.; Sharif, M.; Khan, M.A.; Tariq, U.; Yong, H.-S.; Cha, J. Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine. Sensors 2022, 22, 799. [Google Scholar] [CrossRef]
- Guo, L.; Xie, G.; Xu, X.; Ren, J. Effective Melanoma Recognition Using Deep Convolutional Neural Network with Covariance Discriminant Loss. Sensors 2020, 20, 5786. [Google Scholar] [CrossRef]
- Mishra, V.; Kumar, A.; Arora, M. Deep convolution neural network based automatic multi-class classification of skin cancer from dermoscopic images. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 800–805. [Google Scholar]
- Hagerty, J.R.; Stanley, R.J.; Almubarak, H.A.; Lama, N.; Kasmi, R.; Guo, P.; Drugge, R.J.; Rabinovitz, H.S.; Oliviero, M.; Stoecker, W.V. Deep Learning and Handcrafted Method Fusion: Higher Diagnostic Accuracy for Melanoma Dermoscopy Images. IEEE J. Biomed. Health Inform. 2019, 23, 1385–1391. [Google Scholar] [CrossRef]
- Ashraf, R.; Kiran, I.; Mahmood, T.; Butt, A.U.R.; Razzaq, N.; Farooq, Z. An efficient technique for skin cancer classification using deep learning. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–5. [Google Scholar]
- Gouda, N.; Amudha, J. Skin Cancer Classification using ResNet. In Proceedings of the 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 30–31 October 2020; pp. 536–541. [Google Scholar]
- Dahou, A.; Aseeri, A.O.; Mabrouk, A.; Ibrahim, R.A.; Al-Betar, M.A.; Elaziz, M.A. Optimal Skin Cancer Detection Model Using Transfer Learning and Dynamic-Opposite Hunger Games Search. Diagnostics 2023, 13, 1579. [Google Scholar] [CrossRef]
- Li, G.; Jimenez, G. Optimal diagnosis of the skin cancer using a hybrid deep neural network and grasshopper optimization algorithm. Open Med. 2022, 17, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Naeem, A.; Malik, H.; Tanveer, J.; Naqvi, R.A.; Lee, S.-W. DSCC_Net: Multi-Classification Deep Learning Models for Diagnosing of Skin Cancer Using Dermoscopic Images. Cancers 2023, 15, 2179. [Google Scholar] [CrossRef] [PubMed]
- Gilani, S.Q.; Syed, T.; Umair, M.; Marques, O. Skin Cancer Classification Using Deep Spiking Neural Network. J. Digit. Imaging 2023, 36, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, J.; Xu, Q.; Zhong, Y. A Collaborative Learning Model for Skin Lesion Segmentation and Classification. Diagnostics 2023, 13, 912. [Google Scholar] [CrossRef]
- Raghavendra, P.V.S.P.; Charitha, C.; Begum, K.G.; Prasath, V.B.S. Deep Learning–Based Skin Lesion Multi-class Classification with Global Average Pooling Improvement. J. Digit. Imaging 2023, 36, 2227–2248. [Google Scholar] [CrossRef]
- Juan, C.-K.; Su, Y.-H.; Wu, C.-Y.; Yang, C.-S.; Hsu, C.-H.; Hung, C.-L.; Chen, Y.-J. Deep convolutional neural network with fusion strategy for skin cancer recognition: Model development and validation. Sci. Rep. 2023, 13, 17087. [Google Scholar] [CrossRef]
- Josphineleela, R.; Rao, P.B.V.R.; Shaikh, A.; Sudhakar, K. A Multi-Stage Faster RCNN-Based iSPLInception for Skin Disease Classification Using Novel Optimization. J. Digit. Imaging 2023, 36, 2210–2226. [Google Scholar] [CrossRef]
- Mehmood, A.; Gulzar, Y.; Ilyas, Q.M.; Jabbari, A.; Ahmad, M.; Iqbal, S. SBXception: A Shallower and Broader Xception Architecture for Efficient Classification of Skin Lesions. Cancers 2023, 15, 3604. [Google Scholar] [CrossRef]
- Radhika, V.; Chandana, B.S. MSCDNet-based multi-class classification of skin cancer using dermoscopy images. PeerJ Comput. Sci. 2023, 9, e1520. [Google Scholar] [CrossRef]
- Islam, K.; Ali, S.; Ali, M.; Haque, M.F.; Das, A.A.; Hossain, M.; Duranta, D.S.; Rahman, A. Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning. In Proceedings of the 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), Riyadh, Saudi Arabia, 6–7 April 2021; pp. 48–53. [Google Scholar]
- Kanchana, K.; Kavitha, S.; Anoop, K.J.; Chinthamani, B. Enhancing Skin Cancer Classification using Efficient Net B0-B7 through Convolutional Neural Networks and Transfer Learning with Patient-Specific Data. Asian Pac. J. Cancer Prev. 2024, 25, 1795–1802. [Google Scholar] [CrossRef]
- Selvaraj, K.M.; Gnanagurusubbiah, S.; Roy, R.R.R.; Peter, J.H.J.; Balu, S. Enhancing skin lesion classification with advanced deep learning ensemble models: A path towards accurate medical diagnostics. Curr. Probl. Cancer 2024, 49, 101077. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Sheykhahmad, F.R. Boosted dipper throated optimization algorithm-based Xception neural network for skin cancer diagnosis: An optimal approach. Heliyon 2024, 10, e26415. [Google Scholar] [CrossRef]
- Ali, M.U.; Khalid, M.; Alshanbari, H.; Zafar, A.; Lee, S.W. Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework. Bioengineering 2023, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Hilmy, M.A.; Sasongko, P.S. Ensembles of Convolutional Neural Networks for Skin Lesion Dermoscopy Images Classification. In Proceedings of the 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 29–30 October 2019; pp. 1–6. [Google Scholar]
- Jusman, Y.; Firdiantika, I.M.; Dharmawan, D.A.; Purwanto, K. Performance of Multi Layer Perceptron and Deep Neural Networks in Skin Cancer Classification. In Proceedings of the 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), Kyoto, Japan, 10–12 March 2021; pp. 534–538. [Google Scholar]
- Jeny, A.A.; Sakib, A.N.M.; Junayed, M.S.; Lima, K.A.; Ahmed, I.; Islam, B. SkNet: A Convolutional Neural Networks Based Classification Approach for Skin Cancer Classes. In Proceedings of the 2020 23rd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 19–21 December 2020; pp. 1–6. [Google Scholar]
- Khan, M.A.; Zhang, Y.-D.; Sharif, M.; Akram, T. Pixels to Classes: Intelligent Learning Framework for Multiclass Skin Lesion Localization and Classification. Comput. Electr. Eng. 2021, 90, 106956. [Google Scholar] [CrossRef]
- Li, Y.; Shen, L. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network. Sensors 2018, 18, 556. [Google Scholar] [CrossRef] [PubMed]
- Hosny, K.M.; Kassem, M.A. Refined Residual Deep Convolutional Network for Skin Lesion Classification. J. Digit. Imaging 2022, 35, 258–280. [Google Scholar] [CrossRef]
- Reis, H.C.; Turk, V.; Khoshelham, K.; Kaya, S. InSiNet: A deep convolutional approach to skin cancer detection and segmentation. Med. Biol. Eng. Comput. 2022, 60, 643–662. [Google Scholar] [CrossRef]
- Reisinho, J.; Coimbra, M.; Renna, F. Deep Convolutional Neural Network Ensembles For Multi-Classification of Skin Lesions From Dermoscopic and Clinical Images. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in Conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society, Montreal, QC, Canada, 20–24 July 2020; pp. 1940–1943. [Google Scholar]
- Al-Masni, M.A.; Kim, D.-H.; Kim, T.-S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput. Methods Programs Biomed. 2020, 190, 105351. [Google Scholar] [CrossRef]
- Jasil, S.P.G.; Ulagamuthalvi, V. Deep learning architecture using transfer learning for classification of skin lesions. J. Ambient. Intell. Humaniz. Comput. 2021, 1–8. [Google Scholar] [CrossRef]
- Jasil, S.G.; Ulagamuthalvi, V. Skin Lesion Classification Using Pre-Trained DenseNet201 Deep Neural Network. In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 393–396. [Google Scholar]
- Sevli, O. A deep convolutional neural network-based pigmented skin lesion classification application and experts evaluation. Neural Comput. Appl. 2021, 33, 12039–12050. [Google Scholar] [CrossRef]
- Rezvantalab, A.; Safigholi, H.; Karimijeshni, S. Dermatologist Level Dermoscopy Skin Cancer Classification Using Different Deep Learning Convolutional Neural Networks Algorithms. 2018. Available online: http://arxiv.org/abs/1810.10348 (accessed on 8 October 2024).
- Chaturvedi, S.S.; Tembhurne, J.V.; Diwan, T. A multi-class skin Cancer classification using deep convolutional neural networks. Multimedia Tools Appl. 2020, 79, 28477–28498. [Google Scholar] [CrossRef]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Fink, C.; Blum, A.; Buhl, T.; Mitteldorf, C.; Hofmann-Wellenhof, R.; Deinlein, T.; Stolz, W.; Trennheuser, L.; Cussigh, C.; Deltgen, D.; et al. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. J. Eur. Acad. Dermatol. Venereol. 2019, 34, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Otomo, Y.; Ogata, Y.; Nakamura, Y.; Fujita, R.; Ishitsuka, Y.; Watanabe, R.; Okiyama, N.; Ohara, K.; Fujimoto, M. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br. J. Dermatol. 2018, 180, 373–381. [Google Scholar] [CrossRef]
- Jinnai, S.; Yamazaki, N.; Hirano, Y.; Sugawara, Y.; Ohe, Y.; Hamamoto, R. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Biomolecules 2020, 10, 1123. [Google Scholar] [CrossRef]
- Hekler, A.; Utikal, J.S.; Enk, A.H.; Hauschild, A.; Weichenthal, M.; Maron, R.C.; Berking, C.; Haferkamp, S.; Klode, J.; Schadendorf, D.; et al. Superior skin cancer classification by the combination of human and artificial intelligence. Eur. J. Cancer 2019, 120, 114–121. [Google Scholar] [CrossRef]
- Aburaed, N.; Panthakkan, A.; Al-Saad, M.; Amin, S.A.; Mansoor, W. Deep Convolutional Neural Network (DCNN) for Skin Cancer Classification. In Proceedings of the 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020; pp. 3–6. [Google Scholar]
- ElGhany, S.A.; Ibraheem, M.R.; Alruwaili, M.; Elmogy, M. Diagnosis of Various Skin Cancer Lesions Based on Fine-Tuned ResNet50 Deep Network. Comput. Mater. Contin. 2021, 68, 117–135. [Google Scholar] [CrossRef]
- Emara, T.; Afify, H.M.; Ismail, F.H.; Hassanien, A.E. A Modified Inception-v4 for Imbalanced Skin Cancer Classification Dataset. In Proceedings of the 2019 14th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 17–18 December 2019; pp. 28–33. [Google Scholar]
- Gessert, N.; Sentker, T.; Madesta, F.; Schmitz, R.; Kniep, H.; Baltruschat, I.; Werner, R.; Schlaefer, A. Skin Lesion Classification Using CNNs with Patch-Based Attention and Diagnosis-Guided Loss Weighting. IEEE Trans. Biomed. Eng. 2019, 67, 495–503. [Google Scholar] [CrossRef]
- Kondaveeti, H.K.; Edupuganti, P. Skin Cancer Classification using Transfer Learning. In Proceedings of the 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Buldhana, India, 30 December 2020; pp. 1–4. [Google Scholar]
- Namozov, A.; Ergashev, D.; Cho, Y.I. Adaptive Activation Functions for Skin Lesion Classification Using Deep Neural Networks. In Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December 2018; pp. 232–235. [Google Scholar]
- Pai, K.; Giridharan, A. Convolutional Neural Networks for classifying skin lesions. In Proceedings of the TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 1794–1796. [Google Scholar]
- Salian, A.C.; Vaze, S.; Singh, P.; Shaikh, G.N.; Chapaneri, S.; Jayaswal, D. Skin Lesion Classification using Deep Learning Architectures. In Proceedings of the 2020 3rd International Conference on Communication System, Computing and IT Applications (CSCITA), Mumbai, India, 3–4 April 2020; Volume 703, pp. 168–173. [Google Scholar]
- Subramanian, R.R.; Achuth, D.; Kumar, P.S.; Reddy, K.N.K.; Amara, S.; Chowdary, A.S. Skin cancer classification using Convolutional neural networks. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 13–19. [Google Scholar]
- Thurnhofer-Hemsi, K.; Lopez-Rubio, E.; Dominguez, E.; Elizondo, D.A. Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting. IEEE Access 2021, 9, 112193–112205. [Google Scholar] [CrossRef]
- Fraiwan, M.; Faouri, E. On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning. Sensors 2022, 22, 4963. [Google Scholar] [CrossRef]
- Naeem, A.; Anees, T.; Fiza, M.; Naqvi, R.A.; Lee, S.-W. SCDNet: A Deep Learning-Based Framework for the Multiclassification of Skin Cancer Using Dermoscopy Images. Sensors 2022, 22, 5652. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Khan, M.A.; Tariq, U.; Armghan, A.; Alenezi, F.; Javed, M.Y.; Aslam, S.M.; Kadry, S. A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification. Comput. Intell. Neurosci. 2021, 2021, 9619079. [Google Scholar] [CrossRef] [PubMed]
- Alkarakatly, T.; Eidhah, S.; Al-Sarawani, M.; Al-Sobhi, A.; Bilal, M. Skin Lesions Identification Using Deep Convolutional Neural Network. In Proceedings of the 2019 International Conference on Advances in the Emerging Computing Technologies (AECT), Medina, Saudi Arabia, 13–15 May 2020; pp. 1–5. [Google Scholar]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Skin Cancer Classification using Deep Learning and Transfer Learning. In Proceedings of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 20–22 December 2018; pp. 90–93. [Google Scholar]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE 2019, 14, e0217293. [Google Scholar] [CrossRef] [PubMed]
- Serener, A.; Serte, S. Keratinocyte Carcinoma Detection via Convolutional Neural Networks. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019; pp. 1–5. [Google Scholar]
- Serte, S.; Demirel, H. Gabor wavelet-based deep learning for skin lesion classification. Comput. Biol. Med. 2019, 113, 103423. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Comput. Med. Imaging Graph. 2021, 88, 101843. [Google Scholar] [CrossRef]
- Alkarakatly, T.; Eidhah, S.; Al-Sarawani, M.; Al-Sobhi, A.; Bilal, M. Skin lesions identification using deep convolutional neural network. IEEE Access 2020, 8, 264–270. [Google Scholar] [CrossRef]
- Kassem, M.A.; Hosny, K.M.; Fouad, M.M. Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning. IEEE Access 2020, 8, 114822–114832. [Google Scholar] [CrossRef]
- Ahmed, S.A.A.; Yanikoglu, B.; Goksu, O.; Aptoula, E. Skin Lesion Classification with Deep CNN Ensembles. In Proceedings of the 2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 5–7 October 2020; pp. 1–4. [Google Scholar]
- Barata, C.; Marques, J.S. Deep Learning For Skin Cancer Diagnosis with Hierarchical Architectures. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI), Venice, Italy, 8–11 April 2019; pp. 841–845. [Google Scholar]
- Kaymak, S.; Esmaili, P.; Serener, A. Deep Learning for Two-Step Classification of Malignant Pigmented Skin Lesions. In Proceedings of the 14th Symposium on Neural Networks and Applications (NEUREL 2018), Belgrade, Serbia, 20–21 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Moldovan, D. Transfer Learning Based Method for Two-Step Skin Cancer Images Classification. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4. [Google Scholar]
- Han, S.S.; Kim, M.S.; Lim, W.; Park, G.H.; Park, I.; Chang, S.E. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J. Investig. Dermatol. 2018, 138, 1529–1538. [Google Scholar] [CrossRef]
- Pratiwi, R.A.; Nurmaini, S.; Rini, D.P.; Rachmatullah, M.N.; Darmawahyuni, A. Deep ensemble learning for skin lesions classification with convolutional neural network. IAES Int. J. Artif. Intell. (IJ-AI) 2021, 10, 563. [Google Scholar] [CrossRef]
- Guo, Y.; Ashour, A.S.; Si, L.; Mandalaywala, D.P. Multiple Convolutional Neural Network for Skin Dermoscopic Image Classification. In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 365–369. [Google Scholar]
- Shahin, A.H.; Kamal, A.; Elattar, M.A. Deep Ensemble Learning for Skin Lesion Classification from Dermoscopic Images. In Proceedings of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 20–22 December 2018; pp. 150–153. [Google Scholar]
- Nugroho, E.S.; Ardiyanto, I.; Nugroho, H.A. Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification. Ski. Res. Technol. 2023, 29, e13505. [Google Scholar] [CrossRef]
- Obayya, M.; Arasi, M.A.; Almalki, N.S.; Alotaibi, S.S.; Al Sadig, M.; Sayed, A. Internet of Things-Assisted Smart Skin Cancer Detection Using Metaheuristics with Deep Learning Model. Cancers 2023, 15, 5016. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Khan, M.A.; Damaševičius, R.; Alasiry, A.; Marzougui, M.; Alhaisoni, M.; Masood, A. SkinNet-INIO: Multiclass Skin Lesion Localization and Classification Using Fusion-Assisted Deep Neural Networks and Improved Nature-Inspired Optimization Algorithm. Diagnostics 2023, 13, 2869. [Google Scholar] [CrossRef] [PubMed]
- Lilhore, U.K.; Simaiya, S.; Sharma, Y.K.; Kaswan, K.S.; Rao, K.B.V.B.; Rao, V.V.R.M.; Baliyan, A.; Bijalwan, A.; Alroobaea, R. A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization. Sci. Rep. 2024, 14, 4299. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Bui, N.D.; Do, H.K. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. Sensors 2022, 22, 7530. [Google Scholar] [CrossRef]
- Jaisakthi, S.M.; Mirunalini, P.; Aravindan, C.; Appavu, R. Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimed. Tools Appl. 2022, 82, 15763–15778. [Google Scholar] [CrossRef]
- Mehr, R.A.; Ameri, A. Skin Cancer Detection Based on Deep Learning. J. Biomed. Phys. Eng. 2022, 12, 559–568. [Google Scholar] [CrossRef]
- Pacheco, A.G.C.; Krohling, R.A. An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification. IEEE J. Biomed. Health Inform. 2021, 25, 3554–3563. [Google Scholar] [CrossRef]
- Ou, C.; Zhou, S.; Yang, R.; Jiang, W.; He, H.; Gan, W.; Chen, W.; Qin, X.; Luo, W.; Pi, X.; et al. A deep learning based multimodal fusion model for skin lesion diagnosis using smartphone collected clinical images and metadata. Front. Surg. 2022, 9, 1029991. [Google Scholar] [CrossRef]
- Mijwil, M.M. Skin cancer disease images classification using deep learning solutions. Multimedia Tools Appl. 2021, 80, 1–17. [Google Scholar] [CrossRef]
Year [Ref.] | Network 1 | Database | Dataset Size | Training/ Testing/ Validation Split | ACC | SN | SP |
---|---|---|---|---|---|---|---|
2016 [50] | CNN | MED-DONE | 170 | - | 0.81 | 0.81 | 0.80 |
2016 [2,59] | CNN | ISIC 2016 | 1250 | 0.72/0.28/- | 0.855 | 0.507 | 0.94 |
2017 [3,36] | VGG-16 | ISIC 2017 | 2600 | 0.77/0.23/- | 0.797 | 0.341 | 0.907 |
2018 [4,167] | ResNet-50 | ISIC 2016 | 1279 | 0.7/0.3/- | 0.852 | - | - |
2018 [5,18] | Google-, VGG- Alex-Net | ISIC 2017 | 2600 | 0.77/0.23/- | 0.838 | - | - |
2018 [6,135] | Inception-V4 | ISIC 2016 | 300 | - | - | 0.889 | 0.825 |
2018 [7,154] | AlexNet | PH2 | 200 | - | 0.986 | 0.983 | 0.989 |
2018 [8,163] | AlexNet | HAM10000 | 10,015 | 0.8/0.2/- | 0.78 | 0.839 | 0.635 |
2018 [9,55] | CNN | ISIC 2016 | - | - | - | 0.96 | 0.89 |
2019 [137] | GoogleNet | Private dataset | 6009 | 0.8/0.2/- | 0.765 | 0.963 | 0.895 |
2019 [99] | CNN | ISIC archives | 23,906 | 0.7/0.3/- | 0.975 | 0.943 | 0.936 |
2019 [88] | CNN | - | - | 0.6/0.4/- | 0.643 | 0.553 | 0.892 |
2019 [76] | Inception_V3 | ISIC archives | 3097 | 0.78/0.22/- | 0.9 | - | - |
2019 [155] | AlexNet | MED-NODE | 170 | - | 0.977 | 0.973 | 0.973 |
2019 [96] | CNN | ISIC archives | 2400 | 0.7/0.3/- | 0.893 | - | - |
2019 [97] | VGG-16 | ISIC 2016 | 900 | 0.9/0.1/- | 0.931 | 0.955 | 0.962 |
2019 [56] | DenseNet-161 | ISIC 2017 | 2750 | 0.72/0.22/0.06 | 0.863 | - | - |
2019 [80] | CNN | ISIC 2018 | 700 | 0.7/0.3/- | 0.966 | - | - |
2019 [103] | ResNet-50 | - | - | - | 0.94 | - | - |
2019 [157] | CNN | ||||||
2019 [58] | CNN | ISIC archives, PH2 | - | - | 0.878 | 0.727 | 0.915 |
2019 [29] | CNN | ISIC 2019 | - | 0.963 | - | - | |
2020 [46] | AlexNet | Dermis, DermQuest | 222 | 0.77/0.23/- | 0.974 | - | - |
2020 [136] | CNN | Private database | 72 | - | - | 0.971 | 0.788 |
2020 [101] | ResNet | ISIC 2018 | 10,015 | 0.5/0.25/0.25 | 0.769 | 0.942 | 0.747 |
2020 [75] | CNN | ISIC archives | - | - | 0.973 | 0.987 | 0.998 |
2020 [94] | CNN | ISIC 2019 | - | - | 0.935 | - | - |
2020 [138] | CNN | Private dataset | - | 0.89/0.11/- | 0.915 | - | - |
2020 [24] | ResNet-50, GoogleNet, AlexNet | MED-NODE, Dermis and DermQuest | 376 | - | 0.93 | - | - |
2020 [51] | ResNet-101 | HAM10000 | 10,015 | - | 0.977 | - | - |
2020 [49] | AlexNet | ISIC archives | - | - | 0.808 | 0.661 | 0.896 |
2020 [98] | CNN | ISIC archives | 3297 | 0.89/0.11/- | 0.847 | 0.919 | 0.787 |
2020 [78] | CNN | ISIC archives | 2722 | 0.7/0.3/- | 0.91 | - | - |
2020 [79] | ResNet-50 | ISIC 2020 | 3455 | - | 0.939 | 0.997 | 0.556 |
2020 [26] | VGG-16 | ISIC 2016 | 1276 | 0.7/0.3/- | 0.917 | - | - |
2020 [101] | CNN | ISIC 2018 | 10,015 | 0.5/0.25/0.25 | 0.769 | 0.942 | 0.747 |
2021 [87] | CNN | HAM10000 and private dataset | 363 | - | 0.878 | 0.955 | 0.576 |
2021 [116] | CNN | HAM10000 | 10,015 | 0.8/0.2/- | 0.909 | - | - |
2021 [95] | CNN | ISIC archives | 2170 | 0.8/0.2/- | 0.968 | - | - |
2021 [22] | Efficient-B5 | ISIC 2020 | - | 0.7/0.2/0.1 | - | - | - |
2021 [47] | ResNet-152 | ISIC 2017 | 2742 | 0.72/0.21/0.07 | 0.872 | 0.82 | 0.925 |
2021 [178] | Inception_V3 | ISIC archives | 24,225 | 0.8/0.2/- | 0.869 | 0.861 | 0.876 |
2021 [25] | DenseNet-201 | ISIC 2020 | - | - | - | - | - |
2022 [60] | CNN | ISIC 2018 | 11,527 | - | 0.832 | 0.753 | 0.897 |
2022 [68] | MobileNetV2 | Kaggle | 7327 | 0.7/0.2/0.1 | 0.918 | 0.91 | 0.913 |
2022 [70] | MobileNet, Xception, ResNet50/50V2, DenseNet12 | ISIC 2018 | 3297 | 0.8/0.2/- | 0.92 | 0.92 | 0.9 |
2022 [71] | CNN | ISIC archives | 23,906 | 0.72/0.19/0.09 | 0.844 | 0.928 | 0.746 |
2022 [126] | CNN | ISIC-2017 | 2750 | 0.75/0.15/0.15 | 0.962 | 0.941 | 0.972 |
2022 [107] | AlexNet | PH2 | 200 | 0.8/0.2/- | 0.98 | 0.93 | 0.98 |
2022 [83] | CNN | ISIC-2016 | 1000 | 0.75/0.25/- | 0.994 | 0.986 | 0.992 |
2022 [67] | VGG-16 | ISIC archives | 21,804 | 0.870.2/- | - | - | - |
2023 [74] | CNN | ISIC archives | 655 | 0.8/0.2/- | 0.938 | 0.925 | 0.955 |
2023 [31] | CNN | Multiple databases | 36,703 | - | - | - | - |
2023 [109] | VGG-13 | ISIC 2019 | 1400 | 0.7/0.15/0.15 | 0.896 | 0.894 | 0.897 |
2023 [84] | CNN | ISIC archives | 3562 | 0.8/0.2/- | 0.977 | 0.956 | 0.998 |
2023 [86] | ResNet50 | ISIC 2020 | 2805 | 0.85/0.15/- | 0.967 | - | - |
2023 [28] | Xception, MobileNetV2 | Private database | 408 | 0.75/0.15/0.1 | 0.975 | 1 | - |
2023 [54] | CNN | ISIC-2017 | 2000 | - | 0.993 | 0.99 | 0.993 |
2024 [91] | Ensemble | HAM10000 | 10,015 | - | 0.932 | - | - |
2024 [89] | DenseNet | ISIC-2019 | 25,000 | - | 0.97 | 0.904 | - |
2024 [90] | CNN | HAM10000 | 10,015 | - | 0.95 | - | - |
Year [Ref.] | Network | Database | Dataset Size | Training/ Testing/ Validation Split | ACC | SN | SP |
---|---|---|---|---|---|---|---|
2018 [17] | Google-, VGG- Alex-and Res-Net | ISIC 2017 | 2600 | 0.77/0.23/- | 0.866 | 0.556 | 0.785 |
2018 [165] | ResNet-152 | Asan, MED-NODE and atlas site | 19,398 | - | - | - | - |
2018 [125] | CNN | ISIC 2017 | 2000 | - | 0.912 | - | - |
2018 [145] | LeNet | ISIC 2018 | - | - | 0.9586 | - | - |
2018 [133] | DenseNet_201, ResNet-152, Inception_V3, InceptionResNet_V2 | HAM10000, PH2 | 10,135 | - | - | - | - |
2019 [168] | ResNet-50, Inception_V3 | ISIC 2018 | 10,015 | 0.8/0.2/- | 0.899 | - | - |
2019 [65] | VGG-16, DenseNet, Xception and InceptionResNet_V2 | HAM10000 | 8917 | 0.6/0.2/0.2 | 0.856 | - | - |
2019 [134] | ResNeXt-101 | HAM10000 | 10,015 | 0.88/0.12/- | 0.932 | - | - |
2019 [162] | DenseNet-161 | ISIC 2017 | 2750 | 0.72/0.22/0.06 | 0.7 | ||
2019 [142] | Inception_V4 | HAM10000 | 10,015 | 0.9/0.1/- | 0.947 | - | - |
2019 [139] | ResNet-50 | HAM1000, ISIC archives | 12,336 | - | - | 0.89 | 0.84 |
2019 [121] | CNN | HAM10000 | 10,015 | - | 0.877 | - | - |
2019 [32] | MobileNet | HAM10000 | 10,015 | 0.85/0.10/0.05 | 0.927 | - | 0.97 |
2019 [33] | Inception-ResNet | HAM10000 | 10,015 | 0.85/0.13/0.02 | 0.839 | - | - |
2019 [164] | CNN | HAM10000 | 10,015 | - | 0.85 | - | - |
2019 [146] | CNN | HAM10000 | 10,015 | 0.8/0.2/- | 0.795 | - | - |
2019 [156] | ResNet-50 | ISIC 2019 | 8473 | 0.83/0.17/- | 0.87 | 0.85 | 0.9 |
2019 [66] | ResNet-50 | EDRA, ISIC 2017, Private database | 20,329 | 0.8/0.2/- | 0.768 | - | - |
2020 [128] | ResNet, Inception_V3, InceptionResNet_V2 | ISIC archives, DermNetNZ, Hellenic Dermatological Atlas, Danderm | 4000 | - | 0.799 | 0.799 | 0.933 |
2020 [129] | ResNet-50 | ISIC 2016, 2017, 2018 | 10,015 | 0.72/0.2/0.08 | 0.893 | 0.81 | 0.872 |
2020 [161] | Xception, InceptionResNet_V2 and NasNetLarge | ISIC 2019 | 25,331 | - | 0.937 | - | - |
2020 [140] | VGG-16 | HAM10000 | 7182 | 0.8/0.16/0.02 of training data | 0.99 | - | - |
2020 [153] | CNN | PH2 | 200 | 0.72/0.2/0.08 | 0.95 | 0.94 | 0.97 |
2020 [160] | GoogleNet | ISIC 2019 | 25,331 | 0.8/0.1/0.1 | 0.949 | 0.798 | 0.97 |
2020 [104] | CNN | - | 1266 | 0.68/0.19/0.13 | 0.932 | - | - |
2020 [63] | AlexNet | HAM10000 | 3400 | 0.9/0.1/- | 0.84 | 0.81 | 0.88 |
2020 [93] | ResNet-50 | ISIC 2018 | 21,659 | 0.8/0.1/0.1 | 0.785 | - | - |
2020 [130] | VGG-16 | ISIC 2018 | 3091 | 0.8/0.2/- | 0.77 | - | - |
2020 [105] | ResNet-34 | ISIC 2019 | 25,331 | - | 0.92 | - | - |
2020 [143] | Dense121 | HAM10000 | 10,015 | - | - | 0.757 | 0.96 |
2020 [23] | VGG-19 | HAM10000 | 10,015 | - | 0.99 | - | - |
2020 [123] | SkNet | Private dataset and online images | 4800 | 0.8/0.2/- | 0.952 | - | - |
2020 [144] | ResNet-50 | HAM10000 | 10,015 | - | 0.9 | - | - |
2020 [42] | ResNet-50 | ISIC 2018 | 10,015 | - | 0.952 | 0.832 | 0.743 |
2020 [158] | CNN | ISIC 2017 | 2750 | - | - | 0.93 | 0.91 |
2020 [34] | CNN | ISIC archives | - | - | 0.794 | - | - |
2020 [35] | DenseNet-121 | HAM10000 | 10,015 | 0.9/0.1/- | 0.92 | - | - |
2020 [45] | CNN | HAM10000 | 10,015 | - | 0.884 | 0.767 | 0.963 |
2020 [64] | Inception | Online images | 3150 | 0.75/0.25/- | 0.988 | - | - |
2020 [44] | DenseNet | ISIC 2016, 2017, 2018 | 2750 | 0.72/0.28/- | 0.857 | - | - |
2021 [132] | CNN | HAM10000 | 10,015 | 0.8/0.1/0.1 | 0.915 | - | - |
2021 [92] | ResNetX | HAM10000 | 10,015 | 0.81/0.08/0.11 | - | 0.83 | 0.9 |
2021 [166] | Inception_V3, ResNet_V2, DenseNet-201 | HAM10000 | 10,015 | - | 0.972 | 0.901 | 0.977 |
2021 [141] | ResNet-50 | HAM10000 | 10,015 | 0.7/0.3/- | 0.9 | - | - |
2021 [176] | ResNet-50 | ISIC 2019, PAD-UFES-20 | 27,629 | - | 0.909 | - | - |
2021 [131] | DenseNet-201 | ISIC 2018 | 3091 | 0.8/0.2/- | 0.77 | - | - |
2021 [122] | VGG-16 | HAM10000 | 10,015 | - | 0.975 | - | - |
2021 [73] | EfficientNet-B3 | HAM10000 | 10,015 | - | - | - | - |
2021 [102] | VGG-16 | ISIC archives | 3216 | 0.8/0.2/- | 0.796 | - | - |
2021 [148] | CNN | HAM10000 | 10,015 | - | 0.83 | - | - |
2021 [124] | CNN | HAM10000 | 10,015 | - | 0.902 | - | - |
2021 [149] | MobileNetV2, GoogleNet | HAM10000 | 10,015 | - | 0.835 | 0.656 | 0.954 |
2021 [152] | ResNet | HAM10000 | 10,015 | - | 0.95 | - | - |
2021 [57] | Inception-ResNet | ISIC 2016, 2017, 2018, PH2 | 6394 | 0.75/0.25/- | 0.981 | 0.981 | 0.981 |
2021 [37] | CNN | HAM10000 | 10,015 | - | 0.904 | - | - |
2022 [19] | VGG-16 | ISIC archive | 3297 | 0.85/0.10/0.05 | 0.890 | - | - |
2022 [20] | AlexNet | ISIC archive | 2400 | 0.8/0.2/- | 0.871 | 0.80 | 0.942 |
2022 [38] | RegNetY-320 | HAM10000 | 10,015 | - | 0.91 | - | - |
2022 [39] | SCNN_12 | ISIC archive | 16,485 | - | 0.988 | 0.980 | 0.989 |
2022 [61] | ResNet-50 | PH2 | 200 | - | 0.954 | - | - |
2022 [30] | CNN | ISIC-2019 | 5635 | - | 0.688 | - | - |
2022 [62] | DenseNet201 | ISIC 2019 | 25,331 | - | 0.923 | 0.852 | 0.963 |
2022 [52] | GC-SCNN | ISIC 2018 | 11,527 | 0.8/0.2/- | 0.997 | 1 | 1 |
2022 [53] | XceptionNet | HAM10000 | 10,015 | 0.8/0.2/- | 1 | 0.94 | 0.97 |
2022 [69] | BayesianDenseNet-169 | ISIC 2018 | 10,015 | - | 0.873 | - | - |
2022 [72] | CNN | HAM10000 | 10,015 | - | 0.951 | 0.835 | 0.932 |
2022 [100] | DNN | ISIC 2018 | 12,500 | - | 0.943 | - | - |
2022 [177] | DNN | Private database | 2298 | - | 0.768 | - | - |
2022 [174] | EfficientNet | ISIC-2019, 2020 | 58,457 | - | - | - | - |
2022 [85] | CNN | ISIC-2019 | 11,527 | - | 0.871 | 0.842 | 0.889 |
2022 [82] | Resnet-50 | HAM10000 | 10,015 | - | 0.86 | 0.86 | - |
2022 [81] | CNN | Private database | 268 | - | 0.858 | 0.886 | 0.902 |
2022 [175] | Inception-ResNet-v2 | ISIC archives | 66,735 | - | 0.893 | - | - |
2022 [173] | InceptionResNetV2 | HAM10000 | 10,015 | - | 0.9 | 0.81 | - |
2022 [150] | DenseNet201 | HAM10000 | 10,015 | 0.9/0.1/- | 0.829 | 0.736 | 0.96 |
2022 [151] | VGG-16 | ISIC-2019 | 25,331 | 0.7/0.2/0.1 | 0.969 | 0.921 | - |
2022 [127] | InSiNet | ISIC-2018 | 10,015 | 0.9/0.05/0.05 | 0.945 | 0.975 | 0.912 |
2022 [43] | CNN | HAM10015 | 10,015 | 0.9/0.1/- | 0.97 | - | - |
2022 [110] | CNN | ISIC-2017 | 2750 | 0.72/0.21/0.07 | 0.907 | 0.708 | |
2023 [21] | GoogleNet, DarkNet | ISIC-2019 | 25,331 | - | 0.824 | - | - |
2023 [147] | CNN | ||||||
2023 [111] | CNN | ISIC archives | - | - | 0.972 | - | - |
2023 [106] | MobileNetV3 | PH2 | 200 | - | 0.964 | 0.974 | - |
2023 [108] | CNN | ISIC 2020, HAM10000DermIS | 8012 | - | 0.941 | 0.937 | - |
2023 [169] | InceptionV3 | ISIC-2019 | 25,331 | - | 0.963 | 0.911 | 0.986 |
2023 [170] | CNN | ISIC archives | 308 | - | 0.995 | 0.977 | 0.997 |
2023 [112] | CNN | Private database | 463 | - | 0.85 | 0.82 | 0.93 |
2023 [171] | CNN | ISIC2018 | 10,015 | - | 0.961 | 0.969 | - |
2023 [113] | CNN | HAM10000 | 10,015 | 0.8/0.2/- | 0.958 | 0.965 | - |
2023 [27] | MobileNetV3 | PH2 | 200 | 0.85/0.15/- | 0.967 | - | - |
2023 [114] | Xception | HAM10000 | 10,015 | 0.8/0.2/- | 0.969 | 0.954 | - |
2023 [40] | CNN | PH2, HAM10000, ISBI-2017 | 24,000 | - | 0.956 | 0.967 | 0.95 |
2023 [48] | CNN | Private database | 10,015 | 0.8/0.15/0.05 | 0.799 | 0.704 | - |
2023 [115] | CNN | ISIC-2019 | 25,331 | 0.7/0.2/0.1 | 0.987 | 0.984 | - |
2024 [41] | CNN | PAD-UFES-20 | 1314 | - | 0.96 | - | - |
2024 [120] | CNN | ISIC2018 | 10,015 | - | 0.975 | - | - |
2024 [117] | EfficientNet-B7 | ISIC2016 | 379 | - | 0.971 | - | - |
2024 [118] | ResNet, DenseNet201, GoogLeNet, and Xception | HAM10000 | 10,015 | - | 0.97 | - | - |
2024 [119] | Xception | ISIC-2019 | 25,331 | - | 0.942 | 0.971 | - |
2024 [172] | MobileNet-V3 | HAM10000 | 10,015 | - | 0.989 | 0.964 | 0.973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhaes, C.; Mendes, J.; Vardasca, R. Systematic Review of Deep Learning Techniques in Skin Cancer Detection. BioMedInformatics 2024, 4, 2251-2270. https://doi.org/10.3390/biomedinformatics4040121
Magalhaes C, Mendes J, Vardasca R. Systematic Review of Deep Learning Techniques in Skin Cancer Detection. BioMedInformatics. 2024; 4(4):2251-2270. https://doi.org/10.3390/biomedinformatics4040121
Chicago/Turabian StyleMagalhaes, Carolina, Joaquim Mendes, and Ricardo Vardasca. 2024. "Systematic Review of Deep Learning Techniques in Skin Cancer Detection" BioMedInformatics 4, no. 4: 2251-2270. https://doi.org/10.3390/biomedinformatics4040121
APA StyleMagalhaes, C., Mendes, J., & Vardasca, R. (2024). Systematic Review of Deep Learning Techniques in Skin Cancer Detection. BioMedInformatics, 4(4), 2251-2270. https://doi.org/10.3390/biomedinformatics4040121