Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Validation Methods
2.3. Models
2.4. Performance Metrics
2.5. External Evaluation
2.6. Software
3. Results
3.1. Basic Patient Characteristics
3.2. Model Performance
3.3. Feature Analysis
3.4. Predictions of Tacrolimus Plasma Concentration over Time
3.5. External Validation
3.6. Clinical Significance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAFE | Absolute Average-Fold Error |
ABR | AdaBoost Regressor |
AFE | Average-Fold Error |
AGE | Age |
AI | Artificial Intelligence |
ANN | Artificial Neuronal Networks |
AUC | Area Under the Concentration–Time Curve |
BMI | Body Mass Index |
AAFE | Absolute Average-Fold Error |
ABR | AdaBoost Regressor |
AFE | Average-Fold Error |
AGE | Age |
AI | Artificial Intelligence |
ANN | Artificial Neuronal Networks |
AUC | Area Under the Concentration–time Curve |
BMI | Body Mass Index |
BR | Bagging Regressor |
BSA | Body Surface Area |
CNI | Immunosuppressant Calcineurin Inhibitor |
Drug | Dosage Formulation |
ETR | Extra-Trees Regressor |
EVS | Explained Variance Score |
GNR | Gender |
HgBasal | Baseline Hematocrit |
HT | Height |
KDE | Kernel Density Estimate |
KNN | K Neighbors Regressor |
LASSO | Linear Regression Models |
LGMB | LGBM Regressor |
MAE | Mean Absolute Error |
ML | Machine Learning |
MPE | Mean Percentage Prediction Error |
MSE | Mean Squared Error |
NCA | Non-Compartmental Analysis |
PE | Percentage Prediction Error |
PK | Pharmacokinetic |
PKPD | Pharmacokinetic/Pharmacodynamic |
PM | Personalized Medicine |
popPKPD | Population PK/PD models |
R2 | Coefficient of determination |
RFR | Random Forest Regressor |
SVR | Support Vector Regression |
TAC | Tacrolimus |
TDM | Therapeutic Drug Monitoring |
XGB | XGBRegressor |
WT | Body Weight |
References
- Stone, J.A.; Banfield, C.; Pfister, M.; Tannenbaum, S.; Allerheiligen, S.; Wetherington, J.D.; Krishna, R.; Grasela, D.M. Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry. J. Clin. Pharmacol. 2010, 50, 20S–30S. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Madabushi, R.; Liu, Q.; Huang, S.M.; Zineh, I. Model-informed drug development: Current US regulatory practice and future considerations. Clin. Pharmacol. Ther. 2019, 105, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Chen, Y.; Xu, L.; Chen, W.; Chen, B.; Fang, Z.; Qin, W.; Zhong, M. Applying machine learning to the pharmacokinetic modeling of cyclosporine in adult renal transplant recipients: A multi-method comparison. Front. Pharmacol. 2022, 13, 1016399. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Pfister, M.; Daunhawer, I.; Wilbaux, M.; Wellmann, S.; Vogt, J.E. Pharmacometrics and machine learning partner to advance clinical data analysis. Clin. Pharmacol. Ther. 2020, 107, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Danishuddin; Kumar, V.; Faheem, M.; Lee, K.W. A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug Discov. Today 2022, 27, 529–537. [Google Scholar] [CrossRef]
- McComb, M.; Bies, R.; Ramanathan, M. Machine learning in pharmacometrics: Opportunities and challenges. Br. J. Clin. Pharmacol. 2022, 88, 1482–1499. [Google Scholar] [CrossRef]
- Keutzer, L.; You, H.; Farnoud, A.; Nyberg, J.; Wicha, S.G.; Maher-Edwards, G.; Vlasakakis, G.; Moghaddam, G.K.; Svensson, E.M.; Menden, M.P.; et al. Machine learning and pharmacometrics for prediction of pharmacokinetic data: Differences, similarities and challenges illustrated with rifampicin. Pharmaceutics 2022, 14, 1530. [Google Scholar] [CrossRef]
- Yuan, W.; Sui, L.; Xin, H.; Liu, M.; Shi, H. Discussion on machine learning technology to predict tacrolimus blood concentration in patients with nephrotic syndrome and membranous nephropathy in real-world settings. BMC Med. Inform. Decis. Mak. 2022, 22, 336. [Google Scholar] [CrossRef]
- Lu, J.; Bender, B.; Jin, J.Y.; Guan, Y. Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/pharmacodynamic modelling. Nat. Mach. Intell. 2021, 3, 696–704. [Google Scholar] [CrossRef]
- Tang, B.H.; Guan, Z.; Allegaert, K.; Wu, Y.E.; Manolis, E.; Leroux, S.; Yao, B.F.; Shi, H.Y.; Li, X.; Huang, X.; et al. Drug clearance in neonates: A combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction. Clin. Pharmacokinet. 2021, 60, 1435–1448. [Google Scholar] [CrossRef]
- Woillard, J.B.; Labriffe, M.; Debord, J.; Marquet, P. Tacrolimus exposure prediction using machine learning. Clin. Pharmacol. Ther. 2021, 110, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Woillard, J.B.; Labriffe, M.; Debord, J.; Marquet, P. Mycophenolic acid exposure prediction using machine learning. Clin. Pharmacol. Ther. 2021, 110, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine learning in drug discovery: A review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef] [PubMed]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef]
- Rai, A. Explainable AI: From black box to glass box. J. Acad. Mark. Sci. 2020, 48, 137–141. [Google Scholar] [CrossRef]
- Thervet, E.; Loriot, M.; Barbier, S.; Buchler, M.; Ficheux, M.; Choukroun, G.; Toupance, O.; Touchard, G.; Alberti, C.; Le Pogamp, P.; et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 2010, 87, 721–726. [Google Scholar] [CrossRef]
- Budde, K.; Bunnapradist, S.; Grinyo, J.; Ciechanowski, K.; Denny, J.; Silva, H.; Rostaing, L.; Envarsus Study Group. Novel once-daily extended-release tacrolimus (LCPT) versus twice-daily tacrolimus in de novo kidney transplants: One-year results of Phase III, double-blind, randomized trial. Am. J. Transplant. 2014, 14, 2796–2806. [Google Scholar] [CrossRef]
- Shuker, N.; Bouamar, R.; van Schaik, R.H.; Clahsen-van Groningen, M.C.; Damman, J.; Baan, C.C.; van de Wetering, J.; Rowshani, A.T.; Weimar, W.; van Gelder, T.; et al. A randomized controlled trial comparing the efficacy of Cyp3a5 genotype-based with body-weight-based tacrolimus dosing after living donor kidney transplantation. Am. J. Transplant. 2016, 16, 2085–2096. [Google Scholar] [CrossRef]
- Fu, Q.; Jing, Y.; Liu, G.; Jiang, X.; Liu, H.; Kong, Y.; Hou, X.; Cao, L.; Deng, P.; Xiao, P.; et al. Machine learning-based method for tacrolimus dose predictions in Chinese kidney transplant perioperative patients. J. Clin. Pharm. Ther. 2022, 47, 600–608. [Google Scholar] [CrossRef]
- Iwasaki, K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab. Pharmacokinet. 2007, 22, 328–335. [Google Scholar] [CrossRef]
- Mika, A.; Stepnowski, P. Current methods of the analysis of immunosuppressive agents in clinical materials: A review. J. Pharm. Biomed. Anal. 2016, 127, 207–231. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.M.; Li, Y.; De Winter, B.C.; Shi, Y.Y.; Baan, C.C.; Van Gelder, T.; Hesselink, D.A. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Zidan, A.; Khan, M.A. Tacrolimus properties and formulations: Potential impact of product quality on safety and efficacy. In Tacrolimus: Effectiveness, Safety and Drug Interactions; Nova Science Publishers Inc.: New York, NY, USA, 2013; pp. 1–39. [Google Scholar]
- Ogden, J. The British National Formulary: Past, present and future. Prescriber 2017, 28, 20–24. [Google Scholar] [CrossRef]
- De Gregori, S.; De Silvestri, A.; Cattadori, B.; Rapagnani, A.; Albertini, R.; Novello, E.; Concardi, M.; Arbustini, E.; Pellegrini, C. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy in Heart Transplantation: New Strategies and Preliminary Results in Endomyocardial Biopsies. Pharmaceutics 2022, 14, 1247. [Google Scholar] [CrossRef]
- Prado-Velasco, M.; Borobia, A.; Carcas-Sansuan, A. Predictive engines based on pharmacokinetics modelling for tacrolimus personalized dosage in paediatric renal transplant patients. Sci. Rep. 2020, 10, 7542. [Google Scholar] [CrossRef]
- Chen, Y.C. A tutorial on kernel density estimation and recent advances. Biostat. Epidemiol. 2017, 1, 161–187. [Google Scholar] [CrossRef]
- Benedetto, U.; Head, S.J.; Angelini, G.D.; Blackstone, E.H. Statistical primer: Propensity score matching and its alternatives. Eur. J. Cardio-Thorac. Surg. 2018, 53, 1112–1117. [Google Scholar] [CrossRef]
- Yu, C.H. Resampling methods: Concepts, applications, and justification. Pract. Assessment, Res. Eval. 2002, 8, 19. [Google Scholar]
- Sarker, I. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Zhang, Z. A gentle introduction to artificial neural networks. Ann. Transl. Med. 2016, 4, 370. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Yu, Z.; Li, L.; Liu, S.; Lou, Y.; Hao, X.; Yu, P.; Lei, M.; Qi, Q.; Wang, Z.; et al. Predicting blood concentration of tacrolimus in patients with autoimmune diseases using machine learning techniques based on real-world evidence. Front. Pharmacol. 2021, 12, 727245. [Google Scholar] [CrossRef] [PubMed]
- Solomatine, D.P.; Shrestha, D.L. AdaBoost. RT: A boosting algorithm for regression problems. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 1163–1168. [Google Scholar]
- Kadiyala, A.; Kumar, A. Applications of python to evaluate the performance of bagging methods. Environ. Prog. Sustain. Energy 2018, 37, 1555–1559. [Google Scholar] [CrossRef]
- Takač, M.J.M.; Žuntar, I.; Takač, T. In silico prediction of the fate and toxic effects of IARC Group I anticancer drugs in the environment. Arh. Hig. Rada Toksikol. 2021, 72, 76. [Google Scholar]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–80. [Google Scholar]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Puttrevu, S.K.; Arora, S.; Polak, S.; Patel, N.K. Physiologically based pharmacokinetic modeling of transdermal selegiline and its metabolites for the evaluation of disposition differences between healthy and special populations. Pharmaceutics 2020, 12, 942. [Google Scholar] [CrossRef]
- Corral Alaejos, Á.; Zarzuelo Castañeda, A.; Jiménez Cabrera, S.; Sánchez-Guijo, F.; Otero, M.J.; Pérez-Blanco, J.S. External evaluation of population pharmacokinetic models of imatinib in adults diagnosed with chronic myeloid leukaemia. Br. J. Clin. Pharmacol. 2022, 88, 1913–1924. [Google Scholar] [CrossRef]
- Korstanje, J. Regression. In Machine Learning on Geographical Data Using Python: Introduction into Geodata with Applications and Use Cases; Springer: Berlin/Heidelberg, Germany, 2022; pp. 251–273. [Google Scholar]
- Min, S.I.; Ha, J.; Kang, H.; Ahn, S.; Park, T.; Park, D.; Kim, S.; Hong, H.; Min, S.; Ha, I.; et al. Conversion of twice-daily tacrolimus to once-daily tacrolimus formulation in stable pediatric kidney transplant recipients: Pharmacokinetics and efficacy. Am. J. Transplant. 2013, 13, 2191–2197. [Google Scholar] [CrossRef]
- Carcas-Sansuán, A.J.; Espinosa-Román, L.; Almeida-Paulo, G.N.; Alonso-Melgar, A.; García-Meseguer, C.; Fernández-Camblor, C.; Medrano, N.; Ramirez, E. Conversion from Prograf to Advagraf in stable paediatric renal transplant patients and 1-year follow-up. Pediatr. Nephrol. 2014, 29, 117–123. [Google Scholar] [CrossRef]
- Rubik, J.; Debray, D.; Iserin, F.; Vondrak, K.; Sellier-Leclerc, A.L.; Kelly, D.; Czubkowski, P.; Webb, N.J.; Riva, S.; D’Antiga, L.; et al. Comparative pharmacokinetics of tacrolimus in stable pediatric allograft recipients converted from immediate-release tacrolimus to prolonged-release tacrolimus formulation. Pediatr. Transplant. 2019, 23, e13391. [Google Scholar] [CrossRef]
- Aydin, O.; Yassikaya, M.Y. Validity and reliability analysis of the PlotDigitizer software program for data extraction from single-case graphs. Perspect. Behav. Sci. 2022, 45, 239–257. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Bisong, E.; Bisong, E. Matplotlib and seaborn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Springer: Berlin/Heidelberg, Germany, 2019; pp. 151–165. [Google Scholar]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, W.; Speck, E.; Leonard, V.G. Variation of the hemoglobin level with age and sex. Blood 1954, 9, 999–1007. [Google Scholar] [CrossRef]
- Gustavsen, M.T.; Midtvedt, K.; Vethe, N.T.; Robertsen, I.; Bergan, S.; Åsberg, A. Tacrolimus area under the concentration versus time curve monitoring, using home-based volumetric absorptive capillary microsampling. Ther. Drug Monit. 2020, 42, 407–414. [Google Scholar] [CrossRef]
- Marquet, P.; Albano, L.; Woillard, J.B.; Rostaing, L.; Kamar, N.; Sakarovitch, C.; Gatault, P.; Buchler, M.; Charpentier, B.; Thervet, E.; et al. Comparative clinical trial of the variability factors of the exposure indices used for the drug monitoring of two tacrolimus formulations in kidney transplant recipients. Pharmacol. Res. 2018, 129, 84–94. [Google Scholar] [CrossRef]
- Yan, X.; Liang, Y.; Feng, T.; Jin, G.; Wang, X. Clinical Effects of Tacrolimus Combined with Okra Capsule in Treatment of Refractory Membranous Nephropathy. Prog. Mod. Biomed. 2017, 17, 4880–4882. [Google Scholar]
- Coto, E.; Tavira, B.; Suárez-Álvarez, B.; Lopez-Larrea, C.; Díaz-Corte, C.; Ortega, F.; Alvarez, V. Pharmacogenetics of tacrolimus: Ready for clinical translation? Kidney Int. Suppl. 2011, 1, 58–62. [Google Scholar] [CrossRef]
- Miura, M.; Satoh, S.; Kagaya, H.; Saito, M.; Numakura, K.; Tsuchiya, N.; Habuchi, T. Impact of the CYP3A4* 1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics 2011, 12, 977–984. [Google Scholar] [CrossRef]
- Venkataramanan, R.; Shaw, L.M.; Sarkozi, L.; Mullins, R.; Pirsch, J.; MacFarlane, G.; Scheller, D.; Ersfeld, D.; Frick, M.; Fitzsimmons, W.E.; et al. Clinical utility of monitoring tacrolimus blood concentrations in liver transplant patients. J. Clin. Pharmacol. 2001, 41, 542–551. [Google Scholar] [CrossRef]
- Tang, J.; Liu, R.; Zhang, Y.L.; Liu, M.Z.; Hu, Y.F.; Shao, M.J.; Zhu, L.J.; Xin, H.W.; Feng, G.W.; Shang, W.J.; et al. Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients. Sci. Rep. 2017, 7, 42192. [Google Scholar] [CrossRef] [PubMed]
- Storås, A.M.; Åsberg, A.; Halvorsen, P.; Riegler, M.A.; Strümke, I. Predicting tacrolimus exposure in kidney transplanted patients using machine learning. In Proceedings of the 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), Shenzhen, China, 21–23 July 2022; pp. 38–43. [Google Scholar]
- Zhang, Q.; Tian, X.; Chen, G.; Yu, Z.; Zhang, X.; Lu, J.; Zhang, J.; Wang, P.; Hao, X.; Huang, Y.; et al. A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients with Machine Learning and Deep Learning Techniques. Front. Med. 2022, 9, 813117. [Google Scholar] [CrossRef] [PubMed]
- Ponthier, L.; Marquet, P.; Moes, D.J.A.; Rostaing, L.; van Hoek, B.; Monchaud, C.; Labriffe, M.; Woillard, J.B. Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation. Eur. J. Clin. Pharmacol. 2023, 79, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Khusial, R.; Bies, R.R.; Akil, A. Deep Learning Methods Applied to Drug Concentration Prediction of Olanzapine. Pharmaceutics 2023, 15, 1139. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Li, Y.; Du, J.; Gao, X.; Li, Y.; Lai, L. A Combination of Machine Learning and PBPK Modeling Approach for Pharmacokinetics Prediction of Small Molecules in Humans. bioRxiv 2023. [Google Scholar] [CrossRef]
- Sibieude, E.; Khandelwal, A.; Girard, P.; Hesthaven, J.S.; Terranova, N. Population pharmacokinetic model selection assisted by machine learning. J. Pharmacokinet. Pharmacodyn. 2021, 49, 257–270. [Google Scholar] [CrossRef]
Model | Core Hyperparameters |
---|---|
ANN | epoch_nr = 5, batch_size = 64, dense = 256, optimizer = sgd, metrics = accuracy, binary_accuracy, activation = relu |
RFR | n_estimators = 1000, n_jobs = −1, random_state = 1, min_samples_split = 2, max_features = 10, min_samples_leaf = 1, max_depth = 16 |
LGMB | n_estimator = 1000 s, learning_rate = 0.1 |
XGB | n_estimators = 1000, subsample = 0.7 |
ABR | learning_rate = 0.1, max_depth = 16, subsample = 0.7, n_estimators = 1000, gamma = 0.0003 |
BR | n_estimators = 1000 |
ETR | none |
KNN | radius = 1.0, weights = uniform, algorithm = auto, leaf_size = 100, p = 2, metric = minkowski, metric_params = None, n_jobs = None |
SVR | C = 20, epsilon = 0.008, gamma = 0.0003 |
Variable | The Derivation Cohort (N = 536) | The Validating Cohort (N = 135) | p Value * |
---|---|---|---|
Continuous variable mean (sd) | |||
Tacrolimus stable dose (mg/day) | 1.99 (1.21) | 2.29 (1.37) | 0.95 |
Age (year) | 12.14 (4.07) | 12.85 (4.11) | 0.98 |
Weight (cm) | 41.96 (15.17) | 44.79 (15.39) | 0.8 |
Height (cm) | 142.88 (17.76) | 145.27 (17.63) | 0.92 |
BMI (kg/m2) | 19.58 (3.29) | 20.29 (3.31) | 0.78 |
Hemoglobin (g/dL) | 12.26 (1.13) | 12.36 (1.37) | 0.46 |
BSA (m2) | 1.28 (0.31) | 1.33 (0.32) | 0.85 |
AUC (ng/mLh) | 180.1(33.26) | 185.42 (32.45) | 0.17 |
Categorical variable (%) | |||
Sex | Male (57) and Female (43) | Male (57) and Female (43) | 0.84 |
Race | White (81), Black (10), Asian (5) and Other (5) | White (79), Black (10), Asian (6) and Other (5) | 0.95 |
Dosage form | Prograf (64) and Advagraf (36) | Prograf (58) and Advagraf (42) | 0.17 |
Metrics Model | ANN | RFR | LGMB | XGB | ABR | BR | ETR | KNN | SVR |
---|---|---|---|---|---|---|---|---|---|
MPE | −0.404 | −0.378 | −0.703 | −0.886 | −0.097 | −0.605 | −0.161 | 1.214 | −0.394 |
AFE | 0.987 | 0.992 | 0.989 | 0.986 | 0.991 | 0.999 | 0.995 | 1.002 | 0.987 |
AAFE | 1.125 | 1.070 | 1.071 | 1.077 | 1.107 | 1.071 | 1.063 | 1.114 | 1.109 |
MSE | 0.1 | 0.03 | 0.043 | 0.048 | 0.074 | 0.04 | 0.035 | 0.089 | 0.087 |
MAE | 0.255 | 0.132 | 0.145 | 0.156 | 0.217 | 0.145 | 0.132 | 0.233 | 0.225 |
R2 | 0.41 | 0.8 | 0.74 | 0.71 | 0.56 | 0.77 | 0.8 | 0.89 | 0.48 |
EVS | 0.43 | 0.8 | 0.74 | 0.71 | 0.56 | 0.77 | 0.8 | 0.72 | 0.49 |
Reference | Carcas-Sansuán et al. [44] | Min et al. [43] | Rubik et al. [45] | |||
---|---|---|---|---|---|---|
Variable | Prograf | Advagraf | Prograf | Advagraf | Prograf | Advagraf |
Continuous variable mean (sd) | ||||||
Tacrolimus stable dose (mg/day) | 2.4 | 4.8 | 1.845 | 3.69 | 3.81 | 7.62 |
Age (year) | 12.29 | 12.29 | 12.3 | 12.3 | 10.8 | 10.8 |
Weight (cm) | 42.85 | 42.85 | 40.7 | 40.7 | 38.7 | 38.7 |
Height (cm) | 143.4 | 143.4 | 143.7 | 143.7 | 138.1 | 138.1 |
BMI (kg/m2) | 20.8 | 20.8 | 19 | 19 | 20.29 | 20.29 |
Hemoglobin (/dL) | 12 * | 12 * | 12 * | 12 * | 12 * | 12 * |
BSA (m2) | 1.44 | 1.44 | 1.27 | 1.27 | 1.2 | 1.2 |
AUC (ng/mLh) | 206.6 | 200.7 | 147.6 | 144.73 | 175.4 | 169.5 |
Reference | Carcas-Sansuán et al. [44] | Min et al. [43] | Rubik et al. [45] | |||
---|---|---|---|---|---|---|
Metrics Model | Prograf | Advagraf | Prograf | Advagraf | Prograf | Advagraf |
MPE | −4.32 | −7.387 | −5.72 | 0.68 | −12.519 | −2.01 |
AFE | 1.05 | 1.086 | 1.142 | 1.12 | 1.155 | 1.067 |
AAFE | 1.082 | 1.109 | 1.072 | 1.007 | 1.15 | 1.023 |
MSE | 0.851 | 1.567 | 1.193 | 1.07 | 1.439 | 0.24 |
MAE | 0.691 | 0.918 | 0.845 | 0.687 | 1.01 | 0.44 |
R2 | 0.86 | 0.68 | 0.83 | 0.79 | 0.67 | 0.94 |
EVS | 0.88 | 0.79 | 0.83 | 0.79 | 0.88 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Herrero, S.; Calvet, L.; Juan, A.A. Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients. BioMedInformatics 2023, 3, 926-947. https://doi.org/10.3390/biomedinformatics3040057
Sánchez-Herrero S, Calvet L, Juan AA. Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients. BioMedInformatics. 2023; 3(4):926-947. https://doi.org/10.3390/biomedinformatics3040057
Chicago/Turabian StyleSánchez-Herrero, Sergio, Laura Calvet, and Angel A. Juan. 2023. "Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients" BioMedInformatics 3, no. 4: 926-947. https://doi.org/10.3390/biomedinformatics3040057
APA StyleSánchez-Herrero, S., Calvet, L., & Juan, A. A. (2023). Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients. BioMedInformatics, 3(4), 926-947. https://doi.org/10.3390/biomedinformatics3040057