Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. RTK-GNSS Positioning and Topographic Survey
2.2.2. UAV Platforms and the DJI Phantom 4 UAV Drone Characteristics
2.2.3. Flight Planning and Drone Image Acquisition
2.2.4. SfM Photogrammetric Processing for Orthomosaic and 3D Terrain Data Generation
2.2.5. Direct Georeferencing of UAV Drone Imagery Using RTK-GNSS Base Station
2.3. Accuracy Assessment
3. Results
3.1. Topographic Mapping Using RTK-GNSS and UAV Drone Surveys
3.2. Geometric Accuracy Assessment
3.2.1. 2D and 3D Positional Accuracy
3.2.2. Areal Geometric Accuracy
4. Discussion
4.1. Performance of RTK-GNSS and UAV Drone for Topographic Mapping
4.2. Integrated Direct Drone Image Georeferencing for Accuracy Improvement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolf, P.R.; Dewitt, B.A.; Wilkinson, B.E. Elements of Photogrammetry with Applications in GIS, 4th ed.; McGraw Hill Education: New York, NY, USA, 2014; ISBN 978-0-07-176112-3. [Google Scholar]
- Zolkepli, M.F.; Ishak, M.F.; Abu Talib, Z. Unmanned aerial vehicle (UAV)-based for slope mapping and the determination of potential slope hazard. Int. J. Integr. Eng. 2022, 14, 232–239. [Google Scholar] [CrossRef]
- Bondarchuk, A.S. System of technical vision for autonomous unmanned aerial vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 363, 012027. [Google Scholar] [CrossRef]
- Tang, P.; Vick, S.; Chen, J.; Paal, S.G. Chapter 2: Surveying, geomatics, and 3D reconstruction. In Frastructure Computer Vision; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–64. [Google Scholar] [CrossRef]
- Brunier, G.; Fleury, J.; Anthony, E.; Gardel, A.; Philippe, D. Closerange airborne structure-from-motion photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach. Geomorphology 2016, 261, 76–88. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Marcial-Pablo, M.D.J.; Enciso, J. Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS Int. J. Geo-Inf. 2021, 10, 285. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Kopačková-Strnadová, V.; Koucká, L.; Jelének, J.; Lhotáková, Z.; Oulehle, F. Canopy top, height and photosynthetic pigment estimation using parrot sequoia multispectral imagery and the unmanned aerial vehicle (UAV). Remote Sens. 2021, 13, 705. [Google Scholar] [CrossRef]
- Nwilag, B.D.; Eyoh, A.E.; Ndehedehe, C.E. Digital topographic mapping and modelling using low altitude unmanned aerial vehicle. Model. Earth Syst. Environ. 2023, 9, 1463–1476. [Google Scholar] [CrossRef]
- Perera, G.S.N.; Nalani, H.A. UAVs for complete topographic survey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2, 441–447. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–35. [Google Scholar] [CrossRef]
- Chi, Y.-Y.; Lee, Y.-F.; Tsai, S.-E. Study on high accuracy topographic mapping via UAV-based images. IOP Conf. Ser. 2016, 44, 32006. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef]
- Iheaturu, C.; Okolie, C.; Ayodele, E.; Egogo-Stanley, A.; Musa, S.; Speranza, C.I. A simplified structure-from-motion photogrammetry approach for urban development analysis. Remote Sens. Appl. Soc. Environ. 2022, 28, 100850. [Google Scholar] [CrossRef]
- Jumaat, N.F.H.; Ahmad, B.; Dutsenwai, H.S. Land cover change mapping using high resolution satellites and unmanned aerial vehicle. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012076. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Jiang, D. Application of Unmanned Aerial Vehicles in Logistics: A Literature Review. Sustainability 2022, 14, 14473. [Google Scholar] [CrossRef]
- Elmeseiry, N.; Alshaer, N.; Ismail, T. A Detailed Survey and Future Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications. Aerospace 2021, 8, 363. [Google Scholar] [CrossRef]
- Quaye-Ballard, N.L.; Asenso-Gyambibi, D.; Quaye-Ballard, J. Unmanned Aerial Vehicle for Topographical Mapping of Inaccessible Land Areas in Ghana: A Cost-Effective Approach; International Federation of Surveyors: Copenhagen, Denmark, 2020. [Google Scholar]
- Fitzpatrick, B.P. Unmanned Aerial Systems for Surveying and Mapping: Cost Comparison of UAS Versus Traditional Methods of Data Acquisition. Master’s Thesis, University of Southern California, Los Angeles, CA, USA, 2015. Available online: https://spatial.usc.edu/wp-content/uploads/formidable/12/ (accessed on 25 February 2025).
- Deliry, S.I.; Avdan, U. Accuracy of unmanned aerial systems photogrammetry and structure from motion in surveying and mapping: A review. J. Indian Soc. Remote Sens. 2021, 49, 1997–2017. [Google Scholar] [CrossRef]
- Saadatseresht, M.; Hashempour, A.H.; Hasanlou, M. UAV photogrammetry: A practical solution for challenging mapping projects. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W5, 619–623. [Google Scholar] [CrossRef]
- Room, M.H.M.; Ahmad, A. Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012061. [Google Scholar] [CrossRef]
- Tampubolon, W.; Reinhardt, W. UAV data processing for large scale topographical mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-5, 565–572. [Google Scholar] [CrossRef]
- Aleshin, M.; Gavrilova, L.; Melnikov, A. Use of unmanned aerial vehicles on example of Phantom 4 (standard) for creating digital terrain models. Eng. Rural Dev. 2019, 22, 1686–1692. [Google Scholar]
- Wang, G.; Lan, Y.; Qi, H.; Chen, P.; Hewitt, A.; Han, Y. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Syetiawan, A.; Gularso, H.; Kusnadi, G.I.; Pramudita, G.N. Precise topographic mapping using direct georeferencing in UAV. IOP Conf. Ser. Earth Environ. Sci. 2020, 500, 012029. [Google Scholar] [CrossRef]
- Brent, J.; Daniel, B.; Hussein, A. Examining the practicality and accuracy of unmanned aerial system topographic mapping (drones) compared to traditional topographic mapping. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Belle Mare, Mauritius, 7–8 October 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Lu, R.S. Research on the mapping of large-scale topographic maps based on low-altitude drone aerial photography system. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2020, 42, 623–628. [Google Scholar] [CrossRef]
- Chaudhry, M.H.; Ahmad, A.; Gulzar, Q. A comparative study of modern UAV platform for topographic mapping. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012019. [Google Scholar] [CrossRef]
- Anguiano-Morales, M.; Corral-Martínez, L.F.; Trujillo-Schiaffino, G.; Salas-Peimbert, D.P.; García-Guevara, A.E. Topographic investigation from a low altitude unmanned aerial vehicle. Opt. Lasers Eng. 2018, 110, 63–71. [Google Scholar] [CrossRef]
- Kim, D.; Back, K.; Kim, S. Production and accuracy analysis of topographic status map using drone images. J. Korean GEO-Environ. Soc. 2020, 22, 35–39. [Google Scholar]
- Yu, H.; Wang, J.; Bai, Y.; Yang, W.; Xia, G.-S. Analysis of large-scale UAV images using a multi-scale hierarchical representation. Geo-Spat. Inf. Sci. 2018, 21, 33–44. [Google Scholar] [CrossRef]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Using DJI Phantom 4 RTK drone for topographic mapping of coastal areas. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2019, 42, 625–630. [Google Scholar]
- ASPRS. ASPRS Positional Accuracy Standards for Digital Geospatial Data, 1st ed.; American Society for Photogrammetry and Remote Sensing: Denver, CO, USA, 2014. [Google Scholar]
- FGDC. Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy; Federal Geographical Data Committee: Reston, VA, USA, 1998. [Google Scholar]
- Szypuła, B. Accuracy of UAV-based DEMs without ground control points. GeoInformatica 2024, 28, 1–28. [Google Scholar] [CrossRef]
- Ahmed, R.; Mahmud, K.H. Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh. Remote Sens. Appl. Soc. Environ. 2022, 26, 100729. [Google Scholar] [CrossRef]
- DJI. 2018. Phantom 4 RTK User Manual v1.4 and v2.2. Available online: https://www.dji.com/it/phantom-4-rtk/info#downloads (accessed on 29 January 2025).
- Pix4D SA. 2025. Pix4Dmapper. Lausanne: Pix4D SA. Available online: https://www.pix4d.com/ (accessed on 29 January 2025).
- ESRI, A.D. 2024. Environmental Systems Research Institute (ESRI). ArcGIS 10.0. Available online: https://www.esri.com/en-us/home (accessed on 10 February 2025).
- Karaim, M.; Elsheikh, M.; Noureldin, A. GNSS error sources. In Multifunctional Operation and Application of GPS; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Ouma, Y.O. Evaluation of multiresolution digital elevation model (DEM) from real-time kinematic GPS and ancillary data for reservoir storage capacity estimation. Hydrology 2016, 3, 16. [Google Scholar] [CrossRef]
- De Angelis, G.; Baruffa, G.; Cacopardi, S. GNSS/cellular hybrid positioning system for mobile users in urban scenarios. IEEE Trans. Intell. Transp. Syst. 2012, 14, 313–321. [Google Scholar] [CrossRef]
- GSA. European GNSS Agency. PPP-RTK Market and Technology Report; European GNSS Agency: Prague, Czech Republic, 2019. [Google Scholar]
- Casella, V.; Franzini, M.; Manzino, A.M. GNSS and Photogrammetry by the same Tool: A First Evaluation of the Leica GS18I Receiver. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 709–716. [Google Scholar] [CrossRef]
- da Silva, T.V.D.W.; Gomes Pereira, L.; Oliveira, B.R. Assessing Geometric and Radiometric Accuracy of DJI P4 MS Imagery Processed with Agisoft Metashape for Shrubland Mapping. Remote Sens. 2024, 16, 4633. [Google Scholar] [CrossRef]
- Burdziakowski, P. Increasing the geometrical and interpretation quality of unmanned aerial vehicle photogrammetry products using super-resolution algorithms. Remote Sens. 2020, 12, 810. [Google Scholar] [CrossRef]
- Elkhrachy, I. Accuracy assessment of low-cost unmanned aerial vehicle (UAV) photogrammetry. Alex. Eng. J. 2020, 60, 5579–5590. [Google Scholar] [CrossRef]
- Koeva, M.; Muneza, M.; Gevaert, C.; Gerke, M.; Nex, F. Using UAVs for map creation and updating. A case study in Rwanda. Surv. Rev. 2018, 50, 312–325. [Google Scholar] [CrossRef]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf. Process. Landf. 2015, 40, 473–486. [Google Scholar] [CrossRef]
- Rabah, M.; Basiouny, M.; Ghanem, E.; Elhadary, A. Using RTK and VRS in direct geo-referencing of the UAV imagery. NRIAG J. Astron. Geophys. 2018, 7, 220–226. [Google Scholar] [CrossRef]
- Smith, D.; Heidemann, H.K. New standard for new era: Overview of the 2015 ASPRS positional accuracy standards for digital geospatial data. Photogramm. Eng. Remote Sens. 2015, 81, 173–176. [Google Scholar]
- Whitehead, K.; Hugenholtz, C.H. Applying ASPRS accuracy standards to surveys from small unmanned aircraft systems (UAS). Photogramm. Eng. Remote Sens. 2015, 81, 787–793. [Google Scholar] [CrossRef]
- Yu, J.J.; Kim, D.W.; Lee, E.J.; Son, S.W. Determining the optimal number of ground control points for varying study sites through accuracy evaluation of unmanned aerial system based 3D point clouds and digital surface models. Drones 2020, 4, 49. [Google Scholar] [CrossRef]
- Gil, M.; Corbelle, E.; Ortiz, J. Orthorectification of Quickbird Ortho-Ready Imagery: A Case Study Over Montainous Terrain. Surv. Rev. 2011, 43, 199–209. [Google Scholar] [CrossRef]
- Li, Z.; Yu, S.; Ye, Q.; Zhang, M.; Yin, D.; Zhao, Z. Tree Species Classification Using UAV-Based RGB Images and Spectral Information on the Loess Plateau, China. Drones 2025, 9, 296. [Google Scholar] [CrossRef]
- Nogueira, P.; Silva, M.; Roseiro, J.; Potes, M.; Rodrigues, G. Mapping the Mine: Combining Portable X-ray Fluorescence, Spectroradiometry, UAV, and Sentinel-2 Images to Identify Contaminated Soils—Application to the Mostardeira Mine (Portugal). Remote Sens. 2023, 15, 5295. [Google Scholar] [CrossRef]
- Lima, S.; Kux, H.; Shiguemori, E. Accuracy of autonomy navigation of unmanned aircraft systems through imagery. Int. J. Mech. Mechatron. Eng. 2018, 12, 466–470. [Google Scholar]
- Zhang, J.; Hu, J.; Lian, J.; Fan, Z.; Ouyang, X.; Ye, W. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biol. Conserv. 2016, 198, 60–69. [Google Scholar] [CrossRef]
- Hung, I.K.; Unger, D.; Kulhavy, D.; Zhang, Y. Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery. Drones 2019, 3, 46. [Google Scholar] [CrossRef]
- Iqbal, A.; Mondal, M.S.; Veerbeek, W.; Khan, M.S.A.; Hakvoort, H. Effectiveness of UAV-based DTM and satellite-based DEMs for local-level flood modeling in Jamuna floodplain. J. Flood Risk Manag. 2023, 16, e12937. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Govedarica, M.; Alvarez-Taboada, F.; Pajic, V. Accuracy assessment of deep learning based classification of LiDAR and UAV points clouds for DTM creation and flood risk mapping. Geosciences 2019, 9, 323. [Google Scholar] [CrossRef]
- Kardasz, P.; Doskocz, J. Drones and possibilities of their using. J. Civ. Environ. Eng. 2016, 6, 233. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Jones, J.; Thompson, G.; Johnson, C.; Gebrehiwot, A. Challenges and opportunities for UAV-based digital elevation model generation for flood-risk management: A case of Princeville, North Carolina. Sensors 2018, 18, 3843. [Google Scholar] [CrossRef]
- Westerveld, S. Comparing Two Drone Based Remote Sensing Approaches to Create High Resolution DEMs. Master’s Thesis, Geo-information Science and Remote Sensing, Wageningen University, Wageningen, The Netherlands, 2020. [Google Scholar]
- Coveney, S.; Roberts, K. Lightweight UAV digital elevation models and ortho imagery for environmental applications: Data accuracy evaluation and potential for river flood risk modeling. Int. J. Remote Sens. 2017, 38, 3159–3180. [Google Scholar] [CrossRef]
- Ekaso, D.; Nex, F.; Kerle, N. Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing. Geo-Spat. Inf. Sci. 2020, 23, 165–181. [Google Scholar] [CrossRef]
- Veeravalli, S.G.; Balaganesh, S.; Silamban, D.; Alluri, S.K.R.; Ramanathan, V.; Panda, U.S. UAV based Topographic Survey of Inaccessible Remote Terrains. In Proceedings of the 2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Bengaluru, India, 10–13 December 2013; pp. 1–4. [Google Scholar]
- Famiglietti, N.A.; Cecere, G.; Grasso, C.; Memmolo, A.; Vicari, A. A test on the potential of a low cost unmanned aerial vehicle RTK/PPK solution for precision positioning. Sensors 2021, 21, 3882. [Google Scholar] [CrossRef]
- Teppati Losè, L.; Chiabrando, F.; Giulio Tonolo, F.; Lingua, A. UAV photogrammetry and VHR satellite imagery for emergency mapping. The October 2020 flood in Limone Piemonte (Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 727–734. [Google Scholar] [CrossRef]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef]
- Przybilla, H.J.; Bäumker, M.; Luhmann, T.; Hastedt, H.; Eilers, M. Interaction between direct georeferencing, control point configuration and camera self-calibration for RTK-based UAV photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B1-2020, 485–492. [Google Scholar] [CrossRef]
- Stott, E.; Williams, R.D.; Hoey, T.B. Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones 2020, 4, 55. [Google Scholar] [CrossRef]
- Memmolo, A.; Famiglietti, N.A.; Moschillo, R.; Grasso, C.; Vicari, A. UAS-LC-GNSS: Precision Surveying with a Low-Cost GNSS System for Commercial Drones. Rend. Online Della Soc. Geol. Ital. 2023, 60, 134–139. [Google Scholar] [CrossRef]
RTK-GNSS Receiver | Category | Dimension Specifications | Accuracy |
Single baseline | Horizontal | 8 mm ± 1 ppm | |
Vertical | 15 mm ± 1 ppm | ||
Static and rapid static | Horizontal | 3 mm ± 0.5 ppm | |
Vertical | 5 mm ± 0.5 ppm |
UAV Drone Characteristic | Specifications | |
---|---|---|
Drone aircraft | Take-off Weight | 1391 g |
Diagonal Distance | 350 mm | |
Max Ascent Speed | 6 m/s (automatic flight); 5 m/s (manual control) | |
Max Descent Speed | 3 m/s | |
Max Speed | 31 mph (50 kph) (P-mode) 36 mph (58 kph) (A-mode) | |
Max Flight Time | Approx. 30 min | |
Drone sensor | Sensor | 1″ CMOS; Effective pixels: 20 M FOV 84°; 8.8 mm/24 mm |
Lens | (35 mm format equivalent: 24 mm); f/2.8–f/11, auto focus at 1 m–∞ | |
ISO Range | Photo: 100–3200 (Auto) 100–12,800 (Manual) | |
Mechanical Shutter Speed | 8–1/2000 s | |
Electronic Shutter Speed | 8–1/8000 s | |
Max Image Size | 4864 × 3648 (4:3); 5472 × 3648 (3:2) | |
Sensor | JPEG | |
GNSS capability | Single-Frequency High-Sensitivity GNSS Module | GPS + BeiDou + Galileo (Asia) GPS + GLONASS + Galileo (other regions) Frequencies: GPS: L1/L2; GLONASS: L1/L2; BeiDou: B1/B2; Galileo: E1/E5a |
Multi-Frequency Multisystem High-Precision RTK-GNSS | First-Fixed Time: <50 s Positioning Accuracy: Vertical: 1.5 cm ± 1 ppm (RMS) Horizontal: 1 cm ± 1 ppm (RMS) (1 ppm means the error has a 1 mm increase for every 1 km of movement from the aircraft) |
Point ID | GCP Coordinates (WGS 1984 UTM Zone 35S) | GCP Positional Errors | |||||||
---|---|---|---|---|---|---|---|---|---|
GNSS-GCP Coordinates | UAV-GCP Coordinates | ||||||||
X (m) | Y (m) | Z (m) | X (m) | Y (m) | Z (m) | ΔX (m) | ΔY (m) | ΔZ (m) | |
GCP1 | 392,667.1140 | 7,272,195.887 | 979.582 | 392,667.1140 | 7,272,195.877 | 979.574 | 0.0000 | 0.010 | 0.008 |
GCP2 | 392,785.4825 | 7,272,335.611 | 978.777 | 392,785.4830 | 7,272,335.611 | 978.785 | −0.0005 | 0.000 | −0.008 |
GCP3 | 392,709.3373 | 7,272,321.224 | 979.640 | 392,709.3370 | 7,272,321.224 | 979.611 | 0.0003 | 0.000 | 0.029 |
GCP4 | 392,589.5358 | 7,272,321.876 | 982.193 | 392,589.5360 | 7,272,321.876 | 982.220 | −0.0002 | 0.000 | −0.027 |
UBL12 | 392,641.6361 | 7,272,343.487 | 980.538 | 392,641.6360 | 7,272,343.487 | 980.536 | 0.0001 | 0.000 | 0.002 |
GCP Coordinate | GCPs Accuracy Measure (mm) | ||
---|---|---|---|
RMSE (GCP) | MAE (GCP) | Accuracy (GCP) | |
X | 0.279 | 0.220 | 0.483 |
Y | 4.472 | 2.000 | 7.740 |
Z | 18.45 | 14.849 | 31.933 |
2D (X, Y) | 4.481 | 2.012 | 7.756 |
3D (X, Y, Z) | 18.984 | 14.985 | 32.858 |
Point ID | GCP Coordinates (WGS 1984 UTM Zone 35S) | Ground Level Independent Check Point Errors | |||||||
---|---|---|---|---|---|---|---|---|---|
GNSS Survey | UAV Drone Survey | ||||||||
X (m) | Y (m) | Z (m) | X (m) | Y (m) | Z (m) | ΔX (m) | ΔY (m) | ΔZ (m) | |
MH1 | 392,702.8635 | 7,272,260.598 | 980.445 | 392,702.864 | 7,272,260.598 | 980.420 | −0.0005 | 0.000 | 0.025 |
MH2 | 392,681.6536 | 7,272,254.115 | 980.302 | 392,681.654 | 7,272,254.115 | 980.400 | −0.0004 | 0.000 | −0.098 |
SS1 | 392,707.0619 | 7,272,366.050 | 979.367 | 392,707.062 | 7,272,366.050 | 979.200 | −0.0001 | 0.000 | 0.167 |
SS2 | 392,701.6220 | 7,272,360.035 | 979.404 | 392,701.622 | 7,272,360.035 | 979.129 | 0.0000 | 0.000 | 0.275 |
DR1 | 392,649.0349 | 7,272,275.414 | 980.373 | 392,649.035 | 7,272,275.415 | 980.508 | −0.0001 | −0.001 | −0.135 |
DR2 | 392,641.6839 | 7,272,275.344 | 980.451 | 392,641.689 | 7,272,275.346 | 980.492 | −0.0051 | −0.002 | −0.041 |
Point ID | GCP Coordinates (WGS 1984 UTM Zone 35S) | Elevated Check Point Coordinate Errors | |||||||
GNSS Survey | UAV Drone Survey | ||||||||
X (m) | Y (m) | Z (m) | X (m) | Y (m) | Z (m) | ΔX(m) | ΔY(m) | ΔZ(m) | |
LP2 | 392,628.7454 | 7,272,245.557 | 980.253 | 392,628.745 | 7,272,245.557 | 980.872 | 0.0004 | 0.000 | −0.619 |
LP4 | 392,664.5727 | 7,272,317.839 | 979.833 | 392,664.573 | 7,272,317.840 | 980.094 | −0.0003 | −0.001 | −0.261 |
LP5 | 392,582.0170 | 7,272,300.035 | 980.979 | 392,582.018 | 7,272,300.036 | 981.496 | −0.0006 | −0.001 | −0.517 |
CF1 | 392,741.4130 | 7,272,292.462 | 979.115 | 392,741.413 | 7,272,292.450 | 979.322 | 0.0000 | 0.012 | −0.207 |
CF2 | 392,747.8976 | 7,272,283.515 | 979.232 | 392,747.894 | 7,272,283.522 | 979.469 | 0.0036 | −0.007 | −0.237 |
CF3 | 392,728.8491 | 7,272,269.553 | 979.325 | 392,728.863 | 7,272,269.555 | 979.434 | −0.0139 | −0.002 | −0.109 |
CF4 | 392,722.9438 | 7,272,279.010 | 979.293 | 392,722.958 | 7,272,279.017 | 979.479 | −0.0142 | −0.007 | −0.186 |
ICP Coordinate | Ground Level ICP Accuracy (mm) | Elevated ICP Accuracy (mm) | ||||
---|---|---|---|---|---|---|
RMSE | MAE | Accuracy | RMSE | MAE | Accuracy | |
X | 2.099 | 1.033 | 3.633 | 7.638 | 4.714 | 13.220 |
Y | 0.913 | 0.500 | 1.580 | 5.952 | 4.286 | 10.302 |
Z | 149.248 | 123.500 | 258.318 | 351.337 | 305.43 | 608.094 |
2D (X, Y) | 2.289 | 1.148 | 3.962 | 9.683 | 6.371 | 16.759 |
3D (X, Y, Z) | 149.266 | 123.505 | 258.350 | 351.470 | 305.496 | 608.324 |
Feature Type/ID | GNSS Survey | UAV Drone Survey | Error (m) | Error % |
---|---|---|---|---|
Perimeter (m) | ||||
Foyer 1 | 54.2717 | 54.8735 | −0.6018 | −1.10% |
Foyer 2 | 53.5428 | 53.9358 | −0.3930 | −0.70% |
Computer Room | 54.6976 | 53.9358 | 0.7617 | +1.40% |
Block 480 C | 186.8355 | 187.2241 | −0.3886 | −0.20% |
Block 480 D | 378.8283 | 381.3813 | −2.5530 | −0.70% |
Area (m2) | Δ (m2) | Δ% | ||
Foyer 1 | 179.6758 | 179.6766 | −0.0007 | −0.55% |
Foyer 2 | 185.4693 | 185.4699 | −0.0006 | −0.53% |
Computer Room | 188.3322 | 188.3322 | 0.0000 | +0.53% |
Block 480 C | 868.5692 | 868.5709 | −0.0017 | −0.11% |
Block 480 D | 1917.9522 | 1917.9531 | −0.0009 | −0.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlamini, S.M.; Ouma, Y.O. Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results. Geomatics 2025, 5, 25. https://doi.org/10.3390/geomatics5020025
Dlamini SM, Ouma YO. Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results. Geomatics. 2025; 5(2):25. https://doi.org/10.3390/geomatics5020025
Chicago/Turabian StyleDlamini, Siyandza M., and Yashon O. Ouma. 2025. "Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results" Geomatics 5, no. 2: 25. https://doi.org/10.3390/geomatics5020025
APA StyleDlamini, S. M., & Ouma, Y. O. (2025). Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results. Geomatics, 5(2), 25. https://doi.org/10.3390/geomatics5020025