Improving the Individual Tree Parameters Estimation of a Complex Mixed Conifer—Broadleaf Forest Using a Combination of Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle RGB and Multispectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Collection of Field Data
2.3. Collection of UAV Imagery
2.4. Data Analysis
2.4.1. Processing UAV Images
2.4.2. Tree Crown Delineation
2.4.3. Extraction of Metrics from CHM and Orthomosaics
2.4.4. Random Forest Estimation and Accuracy Assessment
3. Results
3.1. The Tree Crown Delineation and CHM Extraction
3.2. Variable Selection for Individual Tree Parameters
3.3. Accuracy of Individual Tree Parameters
4. Discussion
4.1. Tree Crown Delineation and CHM Extraction
4.2. Variable Selection for Estimating Individual Tree Parameters
4.3. Accuracy of Individual Tree Parameter Estimations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhou, X.; Zhang, X. Individual Tree Parameters Estimation for Plantation Forests Based on UAV Oblique Photography. IEEE Access 2020, 8, 96184–96198. [Google Scholar] [CrossRef]
- Moe, K.T.; Owari, T. Predicting Individual Tree Growth of High-Value Timber Species in Mixed Conifer-Broadleaf Forests in Northern Japan Using Long-Term Forest Measurement Data. J. For. Res. 2020, 25, 242–249. [Google Scholar] [CrossRef]
- Owari, T.; Okamura, K.; Fukushi, K.; Kasahara, H.; Tatsumi, S. Single-Tree Management for High-Value Timber Species in a Cool-Temperate Mixed Forest in Northern Japan. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 74–82. [Google Scholar] [CrossRef]
- Moe, K.; Owari, T.; Furuya, N.; Hiroshima, T. Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests 2020, 11, 223. [Google Scholar] [CrossRef]
- Zhou, Y.; Singh, J.; Butnor, J.R.; Coetsee, C.; Boucher, P.B.; Case, M.F.; Hockridge, E.G.; Davies, A.B.; Staver, A.C. Limited Increases in Savanna Carbon Stocks over Decades of Fire Suppression. Nature 2022, 603, 445–449. [Google Scholar] [CrossRef]
- Bornand, A.; Rehush, N.; Morsdorf, F.; Thürig, E.; Abegg, M. Individual Tree Volume Estimation with Terrestrial Laser Scanning: Evaluating Reconstructive and Allometric Approaches. Agric. For. Meteorol. 2023, 341, 109654. [Google Scholar] [CrossRef]
- Gao, B.; Yu, L.; Ren, L.; Zhan, Z.; Luo, Y. Early Detection of Dendroctonus Valens Infestation at Tree Level with a Hyperspectral UAV Image. Remote Sens. 2023, 15, 407. [Google Scholar] [CrossRef]
- Dobbertin, M. Tree Growth as Indicator of Tree Vitality and of Tree Reaction to Environmental Stress: A Review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing-Part II—A Review of Approaches and Data Models. Remote Sens. 2017, 9, 129. [Google Scholar] [CrossRef]
- Girona, M.M.; Aakala, T.; Aquilué, N.; Bélisle, A.-C.; Chaste, E.; Danneyrolles, V.; Díaz-Yáñez, O.; D’Orangeville, L.; Grosbois, G.; Hester, A.; et al. Challenges for the Sustainable Management of the Boreal Forest Under Climate Change. In Boreal Forests in the Face of Climate Change: Sustainable Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 773–837. [Google Scholar]
- Zhao, Y.; Im, J.; Zhen, Z.; Zhao, Y. Towards Accurate Individual Tree Parameters Estimation in Dense Forest: Optimized Coarse-to-Fine Algorithms for Registering UAV and Terrestrial LiDAR Data. Gisci. Remote Sens. 2023, 60, 2197281. [Google Scholar] [CrossRef]
- Yun, T.; Jiang, K.; Li, G.; Eichhorn, M.P.; Fan, J.; Liu, F.; Chen, B.; An, F.; Cao, L. Individual Tree Crown Segmentation from Airborne LiDAR Data Using a Novel Gaussian Filter and Energy Function Minimization-Based Approach. Remote Sens. Environ. 2021, 256, 112307. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L. How to Assess the Accuracy of the Individual Tree-Based Forest Inventory Derived from Remotely Sensed Data: A Review. Int. J. Remote. Sens. 2016, 37, 4521–4553. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Z.; Tang, Y.; Qu, Y. Individual Tree Crown Detection from High Spatial Resolution Imagery Using a Revised Local Maximum Filtering. Remote Sens. Environ. 2021, 258, 112397. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial Laser Scanning in Forest Inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Liu, K.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Estimating Forest Structural Attributes Using UAV-LiDAR Data in Ginkgo Plantations. ISPRS J. Photogramm. Remote Sens. 2018, 146, 465–482. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote Sensing in Forestry: Current Challenges, Considerations and Directions. For. Int. J. For. Res. 2024, 97, 11–37. [Google Scholar] [CrossRef]
- Poley, L.G.; McDermid, G.J. A Systematic Review of the Factors Influencing the Estimation of Vegetation Aboveground Biomass Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Yel, S.G.; Tunc Gormus, E. Exploiting Hyperspectral and Multispectral Images in the Detection of Tree Species: A Review. Front. Remote Sens. 2023, 4, 1136289. [Google Scholar] [CrossRef]
- Wallner, A.; Elatawneh, A.; Schneider, T.; Knoke, T. Estimation of Forest Structural Information Using RapidEye Satellite Data. Forestry 2015, 88, 96–107. [Google Scholar] [CrossRef]
- Morin, D.; Planells, M.; Guyon, D.; Villard, L.; Mermoz, S.; Bouvet, A.; Thevenon, H.; Dejoux, J.-F.; Le Toan, T.; Dedieu, G. Estimation and Mapping of Forest Structure Parameters from Open Access Satellite Images: Development of a Generic Method with a Study Case on Coniferous Plantation. Remote Sens. 2019, 11, 1275. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Queinnec, M.; Luther, J.E.; Bolton, D.K.; White, J.C.; Wulder, M.A.; van Lier, O.R.; Hermosilla, T. Modelling Lidar-Derived Estimates of Forest Attributes over Space and Time: A Review of Approaches and Future Trends. Remote Sens. Environ. 2021, 260, 112477. [Google Scholar] [CrossRef]
- Xu, C.; Morgenroth, J.; Manley, B. Integrating Data from Discrete Return Airborne LiDAR and Optical Sensors to Enhance the Accuracy of Forest Description: A Review. Curr. For. Rep. 2015, 1, 206–219. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Jayathunga, S.; Owari, T.; Tsuyuki, S. The Use of Fixed–Wing UAV Photogrammetry with LiDAR DTM to Estimate Merchantable Volume and Carbon Stock in Living Biomass over a Mixed Conifer–Broadleaf Forest. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 767–777. [Google Scholar] [CrossRef]
- Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Improving the Estimation of Structural Parameters of a Mixed Conifer–Broadleaf Forest Using Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle Red Green Blue (RGB) Imagery. Remote Sens. 2024, 16, 1783. [Google Scholar] [CrossRef]
- Jayathunga, S.; Owari, T.; Tsuyuki, S. Evaluating the Performance of Photogrammetric Products Using Fixed-Wing UAV Imagery over a Mixed Conifer–Broadleaf Forest: Comparison with Airborne Laser Scanning. Remote Sens. 2018, 10, 187. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual Tree Segmentation and Tree Species Classification in Subtropical Broadleaf Forests Using UAV-Based LiDAR, Hyperspectral, and Ultrahigh-Resolution RGB Data. Remote Sens. Environ. 2022, 280, 113143. [Google Scholar] [CrossRef]
- Xia, J.; Wang, Y.; Dong, P.; He, S.; Zhao, F.; Luan, G. Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge Enhancement. Remote Sens. 2022, 14, 4762. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Chai, G.; Zheng, Y.; Lei, L.; Yao, Z.; Chen, M.; Zhang, X. A Novel Solution for Extracting Individual Tree Crown Parameters in High-Density Plantation Considering Inter-Tree Growth Competition Using Terrestrial Close-Range Scanning and Photogrammetry Technology. Comput. Electron. Agric. 2023, 209, 107849. [Google Scholar] [CrossRef]
- Gallardo-Salazar, J.L.; Pompa-García, M. Detecting Individual Tree Attributes and Multispectral Indices Using Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard. Remote Sens. 2020, 12, 4144. [Google Scholar] [CrossRef]
- Ozdemir, I.; Karnieli, A. Predicting Forest Structural Parameters Using the Image Texture Derived from WorldView-2 Multispectral Imagery in a Dryland Forest, Israel. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 701–710. [Google Scholar] [CrossRef]
- Ventura, J.; Pawlak, C.; Honsberger, M.; Gonsalves, C.; Rice, J.; Love, N.L.R.; Han, S.; Nguyen, V.; Sugano, K.; Doremus, J.; et al. Individual Tree Detection in Large-Scale Urban Environments Using High-Resolution Multispectral Imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103848. [Google Scholar] [CrossRef]
- Sivanandam, P.; Lucieer, A. Tree Detection and Species Classification in a Mixed Species Forest Using Unoccupied Aircraft System (UAS) RGB and Multispectral Imagery. Remote Sens. 2022, 14, 4963. [Google Scholar] [CrossRef]
- Htun, N.M.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Mapping the Distribution of High-Value Broadleaf Tree Crowns through Unmanned Aerial Vehicle Image Analysis Using Deep Learning. Algorithms 2024, 17, 84. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Valbuena, R.; Cardil, A.; Mohan, M.; de Almeida, D.R.A.; Broadbent, E.N.; Almeyda Zambrano, A.M.; Wilkinson, B.; et al. Treetop: A Shiny-based Application and R Package for Extracting Forest Information from LiDAR Data for Ecologists and Conservationists. Methods Ecol. Evol. 2022, 13, 1164–1176. [Google Scholar] [CrossRef]
- Chenge, I.B. Height–Diameter Relationship of Trees in Omo Strict Nature Forest Reserve, Nigeria. Trees For. People 2021, 3, 100051. [Google Scholar] [CrossRef]
- Hulshof, C.M.; Swenson, N.G.; Weiser, M.D. Tree Height-Diameter Allometry across the United States. Ecol. Evol. 2015, 5, 1193–1204. [Google Scholar] [CrossRef]
- Moe, K.T.; Owari, T.; Furuya, N.; Hiroshima, T.; Morimoto, J. Application of UAV Photogrammetry with LiDAR Data to Facilitate the Estimation of Tree Locations and DBH Values for High-Value Timber Species in Northern Japanese Mixed-Wood Forests. Remote Sens. 2020, 12, 2865. [Google Scholar] [CrossRef]
- Stage, A.R. Prediction of Height Increment for Models of Forest Growth; Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Ogden, Utah, 1975. [Google Scholar]
- Maezawa, K.; Kawahara, S. A Preparation of the Volume Table for Saghalian Fir (Abies sachalinensis) Trees of the University Forest in Hokkaido. Bull. Tokyo Univ. For. 1985, 74, 17–37. (In Japanese) [Google Scholar]
- Maezawa, K.; Fukushima, Y.; Ichiro, N.; Kawahara, S. A Report on Volume Table for Broad-Leaved Trees of Tokyo University Forest in Hokkaido. Misc. Inf. Univ. Tokyo For. 1968, 17, 77–100. (In Japanese) [Google Scholar]
- Greenhouse Gas Inventory Office of Japan and Ministry of Environment, Japan (Ed.) National Greenhouse Gas Inventory Report of JAPAN 2023; Center for Global Environmental Research, Earth System Division, National Institute for Environmental Studies: Tsukuba, Japan, 2023. [Google Scholar]
- Yang, J.; Zhang, Y.; Du, L.; Liu, X.; Shi, S.; Chen, B. Improving the Selection of Vegetation Index Characteristic Wavelengths by Using the PROSPECT Model for Leaf Water Content Estimation. Remote Sens. 2021, 13, 821. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Yang, B.; Xu, Z.; Wang, G. Estimation of Forest Structural Attributes Using Spectral Indices and Point Clouds from UAS-Based Multispectral and RGB Imageries. Remote Sens. 2019, 11, 800. [Google Scholar] [CrossRef]
- Meng, J.; Li, S.; Wang, W.; Liu, Q.; Xie, S.; Ma, W. Estimation of Forest Structural Diversity Using the Spectral and Textural Information Derived from SPOT-5 Satellite Images. Remote Sens. 2016, 8, 125. [Google Scholar] [CrossRef]
- Ota, T.; Mizoue, N.; Yoshida, S. Influence of Using Texture Information in Remote Sensed Data on the Accuracy of Forest Type Classification at Different Levels of Spatial Resolution. J. For. Res. 2011, 16, 432–437. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. UAV Photogrammetry for Estimating Stand Parameters of an Old Japanese Larch Plantation Using Different Filtering Methods at Two Flight Altitudes. Sensors 2023, 23, 9907. [Google Scholar] [CrossRef]
- Jayathunga, S.; Owari, T.; Tsuyuki, S.; Hirata, Y. Potential of UAV Photogrammetry for Characterization of Forest Canopy Structure in Uneven-Aged Mixed Conifer–Broadleaf Forests. Int. J. Remote. Sens. 2020, 41, 53–73. [Google Scholar] [CrossRef]
- Fraser, R.; Van der Sluijs, J.; Hall, R. Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada. Remote Sens. 2017, 9, 279. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Wei, Q.; Li, L.; Ren, T.; Wang, Z.; Wang, S.; Li, X.; Cong, R.; Lu, J. Diagnosing Nitrogen Nutrition Status of Winter Rapeseed via Digital Image Processing Technique. Sci. Agric. Sin. 2020, 48, 3877–3886. [Google Scholar]
- Sellaro, R.; Crepy, M.; Trupkin, S.A.; Karayekov, E.; Buchovsky, A.S.; Rossi, C.; Casal, J.J. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant. Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance Indices Associated with Physiological Changes in Nitrogen- and Water-Limited Sunflower Leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Xiaoqin, W.; Miaomiao, W.; Shaoqiang, W.; Yundong, W. Extraction of Vegetation Information from Visible Unmanned Aerial Vehicle Images. Trans. CSAE 2015, 31, 152. [Google Scholar]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chai, W.; Saidi, A.; Zine, A.; Droz, C.; You, W.; Ichchou, M. Comparison of Uncertainty Quantification Process Using Statistical and Data Mining Algorithms. Struct. Multidiscip. Optim. 2020, 61, 587–598. [Google Scholar] [CrossRef]
- Krause, S.; Sanders, T.G.M.; Mund, J.-P.; Greve, K. UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring. Remote Sens. 2019, 11, 758. [Google Scholar] [CrossRef]
- Jin, X.-L.; Liu, Y.; Yu, X.-B. UAV-RGB-Image-Based Aboveground Biomass Equation for Planted Forest in Semi-Arid Inner Mongolia, China. Ecol. Inform. 2024, 81, 102574. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, T.; Zhu, J.; Wu, F.; Li, X.; Lu, D.; Yu, F. Individual Tree Segmentation and Tree Height Estimation Using Leaf-Off and Leaf-On UAV-LiDAR Data in Dense Deciduous Forests. Remote Sens. 2022, 14, 2787. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial Color Infrared Photography for Determining Late-Season Nitrogen Requirements in Corn. Agron. J. 2005, 97, 1443–1451. [Google Scholar] [CrossRef]
- Moya, I.; Guyot, G.; Goulas, Y. Remotely Sensed Blue and Red Fluorescence Emission for Monitoring Vegetation. ISPRS J. Photogramm. Remote Sens. 1992, 47, 205–231. [Google Scholar] [CrossRef]
- Wu, B.-S.; Mansoori, M.; Schwalb, M.; Islam, S.; Naznin, M.T.; Addo, P.W.; MacPherson, S.; Orsat, V.; Lefsrud, M. Light Emitting Diode Effect of Red, Blue, and Amber Light on Photosynthesis and Plant Growth Parameters. J. Photochem. Photobiol. B 2024, 256, 112939. [Google Scholar] [CrossRef]
- Noguchi, M.; Hoshizaki, K.; Matsushita, M.; Sugiura, D.; Yagihashi, T.; Saitoh, T.; Itabashi, T.; Kazuhide, O.; Shibata, M.; Hoshino, D.; et al. Aboveground Biomass Increments over 26 Years (1993–2019) in an Old-Growth Cool-Temperate Forest in Northern Japan. J. Plant. Res. 2022, 135, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Forrester, D.I. Does Individual-Tree Biomass Growth Increase Continuously with Tree Size? For. Ecol. Manag. 2021, 481, 118717. [Google Scholar] [CrossRef]
- Diószegi, G.; Molnár, V.É.; Nagy, L.A.; Enyedi, P.; Török, P.; Szabó, S. A New Method for Individual Treetop Detection with Low-Resolution Aerial Laser Scanned Data. Model Earth Syst. Environ. 2024, 10, 5225–5240. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Cook, B.D.; Hurtt, G.C.; Dubayah, R.O. An Efficient, Multi-Layered Crown Delineation Algorithm for Mapping Individual Tree Structure across Multiple Ecosystems. Remote Sens. Environ. 2014, 154, 378–386. [Google Scholar] [CrossRef]
- Lu, X.; Guo, Q.; Li, W.; Flanagan, J. A Bottom-up Approach to Segment Individual Deciduous Trees Using Leaf-off Lidar Point Cloud Data. ISPRS J. Photogramm. Remote Sens. 2014, 94, 1–12. [Google Scholar] [CrossRef]
- Jurjević, L.; Liang, X.; Gašparović, M.; Balenović, I. Is Field-Measured Tree Height as Reliable as Believed—Part II, A Comparison Study of Tree Height Estimates from Conventional Field Measurement and Low-Cost Close-Range Remote Sensing in a Deciduous Forest. ISPRS J. Photogramm. Remote Sens. 2020, 169, 227–241. [Google Scholar] [CrossRef]
- Shrestha, R.; Wynne, R.H. Estimating Biophysical Parameters of Individual Trees in an Urban Environment Using Small Footprint Discrete-Return Imaging Lidar. Remote Sens. 2012, 4, 484–508. [Google Scholar] [CrossRef]
- Seidel, D.; Ehbrecht, M.; Puettmann, K. Assessing Different Components of Three-Dimensional Forest Structure with Single-Scan Terrestrial Laser Scanning: A Case Study. For. Ecol. Manag. 2016, 381, 196–208. [Google Scholar] [CrossRef]
- Aalto, I.; Aalto, J.; Hancock, S.; Valkonen, S.; Maeda, E.E. Quantifying the Impact of Management on the Three-Dimensional Structure of Boreal Forests. For. Ecol. Manag. 2023, 535, 120885. [Google Scholar] [CrossRef]
- Zhao, H.; Morgenroth, J.; Pearse, G.; Schindler, J. A Systematic Review of Individual Tree Crown Detection and Delineation with Convolutional Neural Networks (CNN). Curr. For. Rep. 2023, 9, 149–170. [Google Scholar] [CrossRef]
Parameter | Unit | Conifer | Oak | OBL |
---|---|---|---|---|
H | m | 28.05 ± 2.20 (22.57–32.87) | 27.74 ± 1.74 (23.71–31.70) | 25.12 ± 2.39 (19.82–30.66) |
DBH | cm | 52.60 ± 11.03 (29.70–84.90) | 69.20 ± 13.82 (41.40–104.20) | 51.32 ± 15.92 (23.20–93.80) |
BA | m2 tree−1 | 0.23 ± 0.10 (0.07–0.57) | 0.39 ± 0.16 (0.13–0.85) | 0.23 ± 0.15 (0.04–0.69) |
V | m3 tree−1 | 1.53 ± 0.34 (0.84–2.55) | 2.92 ± 2.70 (1.14–11.18) | 1.44 ± 0.46 (0.62–2.68) |
CST | MgC tree−1 | 0.47 ± 0.13 (0.23–0.84) | 1.39 ± 1.28 (0.54–5.32) | 0.47 ± 0.18 (0.21–1.02) |
UAV Platform * | DJI Matrice 300 RTK | DJI Mavic 3 Multispectral (3M) RTK | |
---|---|---|---|
Imagery | RGB imagery | RGB imagery | MS imagery |
Season | Leaf-on | Leaf-on | Leaf-on |
UAV battery | TB60, 6.3 kg | Li-ion battery, 651 g | Li-ion battery, 651 g |
Sensor type | DJI Zenmuse P1 | 4/3 CMOS | 1/2.8-inch CMOS |
Sensor focal length | 35 mm | 12.29 mm | 4.34 mm |
Sensor pixel | 45 megapixels | 20 megapixels | 5 megapixels |
Date of collection | 7 October 2022 | 27 October 2023 | 27 October 2023 |
Flight height | 80 m | 80 m | 80 m |
Flight speed | 8–8.5 m/s | 5 m/s | 5 m/s |
Front overlap | 90% | 90% | 90% |
Side overlap | 85% | 86% | 86% |
Image resolution | 8192 × 5490 pixels | 5280 × 3956 pixels | 2592 × 1944 pixels |
Ground resolution | 0.8 cm/pixel | 1.61 cm/pixel | 2.8 cm/pixel |
Sources (UAV Imagery) | Derived Metrics | Description | References |
---|---|---|---|
CA | Crown area of individual tree | [42,52] | |
CHM structural metrics (RGB October 2022) | CHM mean | Average value of a crown pixel | [27] |
CHM max | Maximum value of a crown pixel | [53] | |
CHM std | Standard deviation of the pixel per crown | ||
CHM textural metrics (RGB October 2022) | Angular second moment (ASM) | Homogeneity measurement of a crown | [51] |
Contrast (Cont) | Contrast of a crown image | ||
Entropy (Entr), sum of entropy (SE), and difference entropy (DE) | Randomness of a crown pixels | ||
Variance (Var), sum of variance (SV), and difference variance (DV) | Gray tone variance of a crown | ||
Correlation (Corr) | Linear dependency of a crown pixels | ||
Sum of average (SA) | Distribution of sum values of a crwon pixels | ||
Information measures of correlation (MOC1 or MOC2) | A measure to evaluate the complexity, MOC1 differs from MOC2 based on different normalization or weighting | ||
Inverse Difference Moment (IDM) | Local homogeneity of a crown image | ||
MS spectral metrics (MS October 2023) | Normalized difference vegetation index (NDVI) | (NIR − R)/(NIR + R) | |
Normalized difference red edge (NDRE) | (NIR − RE)/(NIR + RE) | [34] | |
Leaf Chlorophyll Index (LCI) | NIR/(Green − 1) | ||
Green NDVI (GNDVI) | (NIR − Green)/(NIR + Green) | ||
RGB spectral metrics (RGB October 2023) | Red, Green, Blue | R, G, B | [54] |
Brightness (Bright) | ((R2 + G2 + B2)/3)2 | [55] | |
Mean brightness (m_Bright) | (R + G + B)/3 | [54] | |
Green-to-Red Ratio (G_R) | G/R | [54] | |
Blue-to-Red Ratio (R_B) | B/R | [56] | |
Blue-to-Green Ratio (B_G) | B/G | [57] | |
Normalized Green (nG) | G/(R + G + B) | [54] | |
Normalized Red (nR) | R/(R + G + B) | [58] | |
Normalized Blue (nB) | B/(R + G + B) | [58] | |
Normalized G-B-VI (nGBVI) | (G − B)/(G + B) | [59] | |
Normalized G-R-VI (nGRVI) | (G − R)/(G + R) | [54] | |
Normalized R-B-VI (nRBVI) | (R − B)/(R + B) | [60] | |
Modified G-B VI (MGBI) | (GG − RR)/(GG + RR) | [61] | |
Visible-band Difference VI (VDVI) | (2G − R − B)/2G + R + B) | [62] | |
Excess Green Index (EGI) | 2G − R − B | [63] | |
Visible Atmospherically Resistant Index (VARI) | (G − R)/(G + R − B) | [64] |
Individual Tree Parameters (Unit) | Species | Structural | Textural | Spectral | Combined | ||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
H (m) | Conifer | 0.87 | 0.86 | 0.63 | 1.42 | 0.38 | 1.84 | 0.89 | 0.85 |
Oak | 0.43 | 1.90 | 0.33 | 2.01 | 0.06 | 2.23 | 0.47 | 1.54 | |
OBL | 0.38 | 1.89 | 0.32 | 1.96 | 0.18 | 2.26 | 0.46 | 1.71 | |
DBH (cm) | Conifer | 0.66 | 6.58 | 0.26 | 9.46 | 0.11 | 10.53 | 0.70 | 6.05 |
Oak | 0.29 | 12.91 | 0.29 | 12.95 | 0.04 | 13.99 | 0.49 | 11.12 | |
OBL | 0.36 | 12.25 | 0.21 | 13.63 | 0.22 | 13.57 | 0.38 | 12.48 | |
BA (m2 tree−1) | Conifer | 0.67 | 0.06 | 0.19 | 0.09 | 0.07 | 0.10 | 0.70 | 0.05 |
Oak | 0.39 | 0.15 | 0.31 | 0.16 | 0.04 | 0.16 | 0.44 | 0.14 | |
OBL | 0.41 | 0.09 | 0.18 | 0.11 | 0.14 | 0.12 | 0.57 | 0.08 | |
V (m3 tree−1) | Conifer | 0.66 | 0.21 | 0.25 | 0.30 | 0.09 | 0.33 | 0.72 | 0.07 |
Oak | 0.02 | 3.36 | 0.07 | 3.27 | 0.07 | 2.89 | 0.11 | 2.56 | |
OBL | 0.22 | 0.41 | 0.36 | 0.31 | 0.30 | 0.33 | 0.51 | 0.27 | |
CST (MgC tree−1) | Conifer | 0.53 | 0.09 | 0.38 | 0.10 | 0.23 | 0.11 | 0.79 | 0.06 |
Oak | 0.05 | 1.33 | 0.11 | 1.53 | 0.01 | 1.41 | 0.37 | 1.00 | |
OBL | 0.29 | 0.16 | 0.25 | 0.16 | 0.05 | 0.21 | 0.38 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Improving the Individual Tree Parameters Estimation of a Complex Mixed Conifer—Broadleaf Forest Using a Combination of Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle RGB and Multispectral Imagery. Geomatics 2025, 5, 12. https://doi.org/10.3390/geomatics5010012
Karthigesu J, Owari T, Tsuyuki S, Hiroshima T. Improving the Individual Tree Parameters Estimation of a Complex Mixed Conifer—Broadleaf Forest Using a Combination of Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle RGB and Multispectral Imagery. Geomatics. 2025; 5(1):12. https://doi.org/10.3390/geomatics5010012
Chicago/Turabian StyleKarthigesu, Jeyavanan, Toshiaki Owari, Satoshi Tsuyuki, and Takuya Hiroshima. 2025. "Improving the Individual Tree Parameters Estimation of a Complex Mixed Conifer—Broadleaf Forest Using a Combination of Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle RGB and Multispectral Imagery" Geomatics 5, no. 1: 12. https://doi.org/10.3390/geomatics5010012
APA StyleKarthigesu, J., Owari, T., Tsuyuki, S., & Hiroshima, T. (2025). Improving the Individual Tree Parameters Estimation of a Complex Mixed Conifer—Broadleaf Forest Using a Combination of Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle RGB and Multispectral Imagery. Geomatics, 5(1), 12. https://doi.org/10.3390/geomatics5010012