Urban Planning with Rational Green Infrastructure Placement Using a Critical Area Detection Method
Abstract
:1. Introduction
- (i)
- The assessment of the potential distribution of GI elements in the current urban environment;
- (ii)
- Identification of areas where future efforts should be focused to improve and/or maintain urban GI assets.
2. Materials and Methods
2.1. The Research Concept
2.2. Study Area
2.3. Methodology
2.3.1. Preparation Steps of the CADM
2.3.2. Procedure of Priority Zonation
2.4. Conceptual Diagram
3. Results
4. Discussion
4.1. GI Priority Zones and Prospects of Rational GI Placement
4.2. Facilitation towards Promoting GI Adoption in Saitama City
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.K.; Song, Y. Special issue: Urban green infrastructure and the ecological functions. Landsc. Ecol. Eng. 2019, 15, 241–243. [Google Scholar] [CrossRef]
- Azouz, M.; Salem, D. Urban resilience and stormwater management: Lessons learnt from New Cairo, Egypt. Ain Shams Eng. J. 2023, 14, 102117. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhang, C.; Zhai, J. Development of a cross-scale landscape infrastructure network guided by the new Jiangnan watertown urbanism: A case study of the ecological green integration demonstration zone in the Yangtze River Delta, China. Ecol. Indic. 2022, 143, 109317. [Google Scholar] [CrossRef]
- Lourdes, K.T.; Hamel, P.; Gibbins, C.N.; Sanusi, R.; Azhar, B.; Lechner, A.M. Planning for green infrastructure using multiple urban ecosystem service models and multicriteria analysis. Landsc. Urban Plan. 2022, 226, 104500. [Google Scholar] [CrossRef]
- Guan, J.; Wang, R.; Van Berkel, D.; Liang, Z. How spatial patterns affect urban green space equity at different equity levels: A Bayesian quantile regression approach. Landsc. Urban Plan. 2023, 233, 104709. [Google Scholar] [CrossRef]
- Ruan, T.; Xu, Y.; Jones, L.; Boeing, W.J.; Calfapietra, C. Green infrastructure sustains the food-energy-water-habitat nexus. Sustain Cities Soc. 2023, 98, 104845. [Google Scholar] [CrossRef]
- Lampinen, J.; García-Antúnez, O.; Lechner, A.M.; Stahl Olafsson, A.; Gulsrud, N.M.; Raymond, C.M. Mapping public support for urban green infrastructure policies across the biodiversity-climate-society-nexus. Landsc. Urban Plan. 2023, 239, 104856. [Google Scholar] [CrossRef]
- Herath, H.M.M.S.D.; Fujino, T.; Senavirathna, M.D.H.J. A Review of Emerging Scientific Discussions on Green Infrastructure (GI)-Prospects towards Effective Use of Urban Flood Plains. Sustainability 2023, 15, 1227. [Google Scholar] [CrossRef]
- Grabowski, Z.J.; McPhearson, T.; Pickett, S.T.A. Transforming US urban green infrastructure planning to address equity. Landsc. Urban Plan. 2023, 229, 104591. [Google Scholar] [CrossRef]
- Štrbac, S.; Kašanin-Grubin, M.; Pezo, L.; Stojić, N.; Lončar, B.; Ćurčić, L.; Pucarević, M. Green Infrastructure Designed through Nature-Based Solutions for Sustainable Urban Development. Int. J. Environ. Res. Public Health 2023, 20, 1102. [Google Scholar] [CrossRef]
- Bajić, L.; Vasiljević, N.; Čavlović, D.; Radić, B.; Gavrilović, S. A Green Infrastructure Planning Approach: Improving Territorial Cohesion through Urban-Rural Landscape in Vojvodina, Serbia. Land 2022, 11, 1550. [Google Scholar] [CrossRef]
- Starczewski, T.; Rogatka, K.; Kukulska-Kozieł, A.; Noszczyk, T.; Cegielska, K. Urban green resilience: Experience from post-industrial cities in Poland. Geosci. Front. 2023, 14, 101560. [Google Scholar] [CrossRef]
- Parton, L.C. Measuring the effects of public land use change: An analysis of greenways in Raleigh, North Carolina. Land Use Policy 2023, 131, 106689. [Google Scholar] [CrossRef]
- Conley, G.; McDonald, R.I.; Nodine, T.; Chapman, T.; Holland, C.; Hawkins, C.; Beck, N. Assessing the influence of urban greenness and green stormwater infrastructure on hydrology from satellite remote sensing. Sci. Total Environ. 2022, 817, 152723. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lee, D. Urban green space arrangement for an optimal landscape planning strategy for runoff reduction. Land 2021, 10, 897. [Google Scholar] [CrossRef]
- Xiu, N.; Ignatieva, M.; van den Bosch, C.K.; Zhang, S. Applying a socio-ecological green network framework to Xi’an City, China. Landsc. Ecol. Eng. 2020, 16, 135–150. [Google Scholar] [CrossRef]
- Goodspeed, R.; Liu, R.; Gounaridis, D.; Lizundia, C.; Newell, J. A regional spatial planning model for multifunctional green infrastructure. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 815–833. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.-F.; Mark, O. A multi-objective decision-making framework for implementing green-grey infrastructures to enhance urban drainage system resilience. J. Hydrol. 2023, 620, 129381. [Google Scholar] [CrossRef]
- Marsoner, T.; Vigl, L.E.; Vigl, E. Tools for Developing Green Infrastructure Networks; Eurac Research: Bozen, Italy, 2020; pp. 1–50. [Google Scholar]
- Long, X.; Lin, H.; An, X.; Chen, S.; Qi, S.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Naboureh, A.; Bian, J.; Lei, G.; Li, A. A review of land use/land cover change mapping in the China-Central Asia-West Asia economic corridor countries. Big Earth Data 2021, 5, 237–257. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Zhang, H.; Yan, W.; Zhao, C. Trade-offs and synergies in ecosystem service values of inland lake wetlands in Central Asia under land use/cover change: A case study on Ebinur Lake, China. Glob. Ecol. Conserv. 2020, 24, e01253. [Google Scholar] [CrossRef]
- Inkoom, J.N.; Frank, S.; Fürst, C. Challenges and opportunities of ecosystem service integration into land use planning in West Africa—An implementation framework. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 67–81. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y. Current and future characteristics of land use based on intensity analysis and PLUS model: A case study of Foshan city, China. SN Appl. Sci. 2023, 5, 83. [Google Scholar] [CrossRef]
- Natuhara, Y. Green infrastructure: Innovative use of indigenous ecosystems and knowledge. Landsc. Ecol. Eng. 2018, 14, 187–192. [Google Scholar] [CrossRef]
- Wagner, M.; Wentz, E.A.; Stuhlmacher, M. Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach. J. Land Use Sci. 2022, 17, 26–46. [Google Scholar] [CrossRef]
- Yujie, R.; Tang, X.; Fan, T.; Kang, D. Does the spatial pattern of urban blue–green space at city-level affects its cooling efficiency? Evidence from Yangtze River Economic Belt, China. Landsc. Ecol. Eng. 2023, 19, 363–379. [Google Scholar] [CrossRef]
- Caparrós Martínez, J.L.; Milán García, J.; Rueda López, N.; de Pablo Valenciano, J. Mapping green infrastructure and socioeconomic indicators as a public management tool: The case of the municipalities of Andalusia (Spain). Environ. Sci. Eur. 2020, 32, 144. [Google Scholar] [CrossRef]
- Chen, X.; Xu, L.; Zhu, R.; Ma, Q.; Shi, Y.; Lu, Z. Changes and Characteristics of Green Infrastructure Network Based on Spatio-Temporal Priority. Land 2022, 11, 901. [Google Scholar] [CrossRef]
- Pan, H.; Page, J.; Shi, R.; Cong, C.; Cai, Z.; Barthel, S.; Thollander, P.; Colding, J.; Kalantari, Z. Contribution of prioritized urban nature-based solutions allocation to carbon neutrality. Nat. Clim. Chang. 2023, 13, 862–870. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.O. Morphological analysis of green infrastructure in the Seoul metropolitan area, South Korea. Landsc. Ecol. Eng. 2015, 11, 259–268. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, T.; Zhang, G.; Zhu, Y.; Zeng, Z.; Ye, H. Spatial patterns of urban green space and its actual utilization status in China based on big data analysis. Big Earth Data 2021, 5, 391–409. [Google Scholar] [CrossRef]
- Kuller, M.; Bach, P.M.; Roberts, S.; Browne, D.; Deletic, A. A planning-support tool for spatial suitability assessment of green urban stormwater infrastructure. Science of the Total Environment 2019, 686, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Neupane, D.; Kwon, Y.; Risch, T.S.; Johnson, R.L. Changes in habitat suitability over a two decade period before and after Asian elephant recolonization. Glob. Ecol. Conserv. 2020, 22, e01023. [Google Scholar] [CrossRef]
- Llobera, M. Extending GIS-based visual analysis: The concept of visualscapes. Int. J. Geogr. Inf. Sci. 2003, 17, 25–48. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, H.; Liang, Q.; Xia, X.; Xu, J.; Hoey, T.; Barrett, B.; Renaud, F.G.; Bosher, L.; Zhou, X. Large-scale flood risk assessment under different development strategies: The Luanhe River Basin in China. Sustain. Sci. 2021, 17, 1365–1384. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Kopeva, A.; Ivanova, O.; Khrapko, O. Green infrastructure in high-rise residential development on steep slopes in city of Vladivostok. E3S Web Conf. 2018, 33, 01004. [Google Scholar] [CrossRef]
- Wang, F.; Chen, J.; Tong, S.; Zheng, X.; Ji, X. Construction and Optimization of Green Infrastructure Network Based on Space Syntax: A Case Study of Suining County, Jiangsu Province. Sustainability 2022, 14, 7732. [Google Scholar] [CrossRef]
- Wang, R.; Derdouri, A.; Murayama, Y. Spatiotemporal simulation of future land use/cover change scenarios in the Tokyo metropolitan area. Sustainability 2018, 10, 2056. [Google Scholar] [CrossRef]
- Ma, J.; Weng, B.; Bi, W.; Yan, D.; Li, M.; Xu, T.; Wang, L.; Wang, L. The Characteristics of Climate Change and Adaptability Assessment of Migratory Bird Habitats in Wolonghu Wetlands. Wetlands 2019, 39, 415–427. [Google Scholar] [CrossRef]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Theory and Practice of Urban Sustainability Transitions Natureebased Solutions to Climate Change Adaptation in Urban Areas; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Deely, J.; Hynes, S.; Barquín, J.; Burgess, D.; Finney, G.; Silió, A.; Álvarez-Martínez, J.M.; Bailly, D.; Ballé-Béganton, J. Barrier identification framework for the implementation of blue and green infrastructures. Land Use Policy 2020, 99, 105108. [Google Scholar] [CrossRef]
- Phillips, A.; da Schio, N.; Canters, F.; Khan, A.Z. “A living street and not just green”: Exploring public preferences and concerns regarding nature-based solution implementation in urban streetscapes. Urban For. Urban Green. 2023, 86, 128034. [Google Scholar] [CrossRef]
- Hassan, I.; Javed, M.A.; Asif, M.; Luqman, M.; Ahmad, S.R.; Ahmad, A.; Akhtar, S.; Hussain, B. Weighted overlay based land suitability analysis of agriculture land in Azad Jammu and Kashmir using GIS and AHP. Pak. J. Agric. Sci. 2020, 57, 1509–1519. [Google Scholar]
- Dano, U.L.; Abubakar, I.R.; AlShihri, F.S.; Ahmed, S.M.S.; Alrawaf, T.I.; Alshammari, M.S. A multi-criteria assessment of climate change impacts on urban sustainability in Dammam Metropolitan Area, Saudi Arabia. Ain Shams Eng. J. 2023, 14, 102062. [Google Scholar] [CrossRef]
- Brom, P.; Engemann, K.; Breed, C.; Pasgaard, M.; Onaolapo, T.; Svenning, J.C. A Decision Support Tool for Green Infrastructure Planning in the Face of Rapid Urbanization. Land 2023, 12, 415. [Google Scholar] [CrossRef]
- De Vito, L.; Staddon, C.; Zuniga-Teran, A.A.; Gerlak, A.K.; Schoeman, Y.; Hart, A.; Booth, G. Aligning green infrastructure to sustainable development: A geographical contribution to an ongoing debate. Area 2022, 54, 242–251. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Niyogi, D.; LeMone, M.A.; Chen, F.; Fall, S. A simple reclassification method for correcting uncertainty in land use/land cover data sets used with land surface models. In Atmospheric and Oceanic: Mesoscale Processes; Birkhäuser: Basel, Switzerland, 2007. [Google Scholar]
- Okolie, C.J.; Smit, J.L. A systematic review and meta-analysis of Digital elevation model (DEM) fusion: Pre-processing, methods and applications. ISPRS J. Photogramm. Remote Sens. 2022, 188, 1–29. [Google Scholar] [CrossRef]
- Konadu, D.D.; Fosu, C.; Yanful, E.K. Digital Elevation Models and GIS for Watershed Modelling and Flood Prediction-A Case Study of Accra Ghana. In Appropriate Technologies for Environmental Protection in the Developing World: Selected Papers from ERTEP 2007, July 17–19 2007, Ghana, Africa; Springer: Dordrecht, The Netherland, 2009; pp. 325–332. [Google Scholar]
- Lebrasseur, R. Mapping Green Infrastructure Based on Multifunctional Ecosystem Services: A Sustainable Planning Framework for Utah’s Wasatch Front. Sustainability 2022, 14, 825. [Google Scholar] [CrossRef]
- Gelata, F.T.; Jiqin, H.; Gemeda, S.C.; Asefa, B.W. Application of GIS using NDVI and LST estimation to measure climate variability-induced drought risk assessment in Ethiopia. J. Water Clim. Change 2023, 14, 2479–2489. [Google Scholar] [CrossRef]
- Esri. “Landsat Explorer”. ArcGIS Living Atlas. Available online: https://livingatlas2.arcgis.com/landsatexplorer/ (accessed on 6 June 2023).
- Aryal, J.; Sitaula, C.; Aryal, S. NDVI Threshold-Based Urban Green Space Mapping from Sentinel-2A at the Local Governmental Area (LGA) Level of Victoria, Australia. Land 2022, 11, 351. [Google Scholar] [CrossRef]
- Amiot, C.; Santos, C.C.; Arvor, D.; Bellón, B.; Fritz, H.; Harmange, C.; Holland, J.D.; Melo, I.; Metzger, J.P.; Renaud, P.C.; et al. The scale of effect depends on operational definition of forest cover—Evidence from terrestrial mammals of the Brazilian savanna. Landsc. Ecol. 2021, 36, 973–987. [Google Scholar] [CrossRef]
- Lwin, K.K.; Ota, T.; Shimizu, K.; Mizoue, N. Assessing the Importance of Tree Cover Threshold for Forest Cover Mapping Derived from Global Forest Cover in Myanmar. Forests 2019, 10, 1062. [Google Scholar] [CrossRef]
- Navarrete-Hernandez, P.; Laffan, K. The impact of small-scale green infrastructure on the affective wellbeing associated with urban sites. Sci Rep. 2023, 13, 9687. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M.; Morrison, T.H.; McAlpine, C. Power, politics and policy in the appropriation of urban wetlands: The critical case of Sri Lanka. J. Peasant. Stud. 2019, 46, 729–746. [Google Scholar] [CrossRef]
- Kvamsås, H. Co-benefits and conflicts in alternative stormwater planning: Blue versus green infrastructure? Environ. Policy Gov. 2023, 33, 232–244. [Google Scholar] [CrossRef]
Method | Description | Limitations | Reference |
---|---|---|---|
Urban Morphological Analysis | Examines the configuration and organization of urban areas to pinpoint locations with potential for implementing GI | May not encompass all ecological functions; can be intricate to interpret | [31] |
Hotspot Analysis | Detects concentrations of elevated values (such as pollution or temperature) in order to identify areas for targeted intervention | scale and resolution related limitations of input data can restrict the analysis, potentially causing the oversight of broader patterns | [32] |
Geospatial Suitability Analysis | Utilizes spatial data layers to evaluate and prioritize the appropriateness of various sites | data-intensive and may requires high-resolution data, which may not be accessible for all regions | [33,34] |
Network Analysis | Assesses the connectivity and accessibility of green spaces in order to identify any deficiencies in the urban green network | Demands comprehensive data regarding the distribution of green spaces and urban infrastructure | [35] |
Flood Risk Mapping | Utilizes hydrological and topographical data to identify areas prone to flooding and strategically implements GI to mitigate flood risks | Mainly concentrated on the risk of flooding; may not take into account other environmental or social requirements | [36,37] |
Slope Analysis | Detects regions characterized by significant inclines that could be improved with erosion prevention measures using GI | Restricted to topographical aspects; may not take into account additional factors such as land utilization | [38] |
Land Use Change Detection | Utilizes temporal geographic information system (GIS) data to detect regions experiencing rapid alterations in land use, which could potentially be enhanced through the implementation of GI | Depends on reliable and continuous data; can be influenced by problems with data accuracy | [39,40] |
Habitat Suitability Index (HSI) | Utilizes GIS to assess the suitability of habitats and determine the most important locations for implementing GI which promotes biodiversity | May vary depending on the species and necessitates a substantial amount of ecological data | [6,41] |
Submodel Selection | ||
---|---|---|
Submodel 1: Digital Elevation Model (DEM) | ||
Original purpose of the index | A DEM is a 3D representation of land surface elevation used to determine terrain attributes like elevation, slope, and aspect; it is widely used in hydrologic and geologic analyses, hazard monitoring, natural resources exploration, and agricultural management for identifying drainage basins and channel networks | [50,51] |
Assigned purpose | DEMs are valuable tools for assessing and optimizing urban GI, providing essential information about topography, water flow, visibility, and the suitability of sites | |
Data source/Equation | Skinner, G.W.; Henderson, Mark; Berman, Lex, 2015, “Japan Digital Elevation Model [DEM]”, https://doi.org/10.7910/DVN/28762 (accessed on 23 July 2023), Harvard Dataverse, V1 | |
Data Quality | Cell size in decimal degrees is 0.010215556 (distributed WGS-84 version) | |
Submodel 2: Land use/land cover (LULC) | ||
Original purpose of the index | LULC data, categorized by physical and man-made features, is crucial for urban planning, environmental monitoring, and natural resource management | [52] |
Assigned purpose | The environment is constantly influenced by multiple factors, with cumulative effects accumulating over time; assessing the impact of GI in urban planning requires consideration of both ongoing and future effects. | |
Data source/Equation | https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc/lulc_v2111_e.htm (accessed on 2 August 2023) | |
Data Quality | Overall accuracy for classification categories is 88.85%, and kappa coefficient 0.878 | |
Submodel 3: Normalized Difference Vegetation Index (NDVI) | ||
Original purpose of the index | NDVI is a widely used vegetation index in remote sensing research for monitoring vegetation, crop cover, drought, and agricultural drought; it is calculated as a ratio between measured canopy reflectance in the red and near infrared bands. NDVI helps examine the relationship between spectral variability and vegetation growth rate, determining green vegetation production and detecting vegetation changes. | [53] |
Assigned purpose | NDVI assists in spatially assessing the distribution of green elements within an urban landscape | |
Data source/Equation | Equation (1) Near infrared (NIR) = Landsat 8–9; Band 5 Red (R) = Landsat 8–9; Band 4 | |
Data Quality | 30 m multispectral spatial resolutions | |
Submodel 4: Urban Density Index (UDI) | ||
Original purpose of the index | The UDI measures the concentration of buildings in urban areas, providing insights for sustainable growth. Higher density indicates compact, vertical urban forms, while lower density suggests a spread-out development pattern. | [54] |
Assigned purpose | UDI helps to spatially evaluate the spatial distribution of gray elements in an urban environment. | |
Data source/Equation | Equation (2) NIR = Landsat 8–9; Band 5 Shortwave Infrared 1 (SWIR)_1 = Landsat 8–9; Band 6 | |
Data Quality | 30 m multispectral spatial resolutions |
Spatial Form (DEM) | Influence Weight = 20/100 | |
---|---|---|
Submodel output | Aa | |
Reclassification | Ab | |
Criteria categorization | Class category | Weight |
16–20 | 10 | |
11–15 | 9 | |
6–10 | 8 | |
1–5 | 7 |
Landuse/Land Cover (LU/LC) | Influence Weight = 30/100 | |
---|---|---|
Submodel output | Ba | |
Reclassification | Bb | |
Criteria categorization | Class category | Weight |
Water bodies | 5 | |
Built-up area | 1 | |
Paddy field | 6 | |
Crop land | 6 | |
Grass | 7 | |
Deciduous broad leaf green areas | 8 | |
Deciduous needle-leaf green areas | 8 | |
Evergreen broad-leaf green areas | 8 | |
Evergreen needle-leaf green areas | 8 | |
Bare land | 3 | |
Bamboo green areas | 8 |
Normalized Difference Vegetation Index (NDVI) | Influence Weight = 25/100 | |
---|---|---|
Submodel output (Summer 2021) | Ca | |
Reclassification | Cb | |
Criteria categorization | Class category | Weight |
1–3 | 10 | |
4–6 | 9 | |
7–9 | 8 | |
10–11 | 3 | |
12–14 | 1 |
Urban Density Index (UDI) | Influence Weight = 25/100 | |
---|---|---|
Submodel output (Summer 2021) | Da | |
Reclassification | Db | |
Criteria categorization | Class category | Weight |
1–6 | 10 | |
7–10 | 9 | |
11–16 | 5 | |
17–20 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herath, H.M.M.S.D.; Fujino, T.; Senavirathna, M.D.H.J. Urban Planning with Rational Green Infrastructure Placement Using a Critical Area Detection Method. Geomatics 2024, 4, 253-270. https://doi.org/10.3390/geomatics4030014
Herath HMMSD, Fujino T, Senavirathna MDHJ. Urban Planning with Rational Green Infrastructure Placement Using a Critical Area Detection Method. Geomatics. 2024; 4(3):253-270. https://doi.org/10.3390/geomatics4030014
Chicago/Turabian StyleHerath, Herath Mudiyanselage Malhamige Sonali Dinesha, Takeshi Fujino, and Mudalige Don Hiranya Jayasanka Senavirathna. 2024. "Urban Planning with Rational Green Infrastructure Placement Using a Critical Area Detection Method" Geomatics 4, no. 3: 253-270. https://doi.org/10.3390/geomatics4030014
APA StyleHerath, H. M. M. S. D., Fujino, T., & Senavirathna, M. D. H. J. (2024). Urban Planning with Rational Green Infrastructure Placement Using a Critical Area Detection Method. Geomatics, 4(3), 253-270. https://doi.org/10.3390/geomatics4030014