Index Measuring Land Use Intensity—A Gradient-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The LUI Theory
2.2. Overview of Examples and Calculations
3. Results
3.1. Patterns of Variation in Human Land Use Intensity across Norway
3.2. Relationships between LUI Agricultural Fields
3.3. Exploring Properties of the Extended LUI Index
3.4. Comparison between the LUI Index and Two ‘Wilderness Indices’
3.5. Applicability of the LUI Index in Studies of Landscape Change
3.6. LUI and Red-Listed Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brook, B.W.; Sodhi, N.S.; Bradshaw, C. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008, 23, 453–460. [Google Scholar] [CrossRef]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, S.; Hilmo, O. (Eds.) Norwegian Red List of Species 2015—Methods and Results; Norwegian Biodiversity Information Centre: Trondheim, Norway, 2015; ISBN 978-82-92838-44-0. Available online: https://www.artsdatabanken.no/Pages/230699/Norwegian_red_list_of_species (accessed on 10 January 2023).
- Norwegian Biodiversity Information Centre. Red List for Ecosystems and Habitat Types. Artsdatabanken (Artsdatabanken, ed.), Artsdatabanken, Trondheim. 2018. Available online: https://artsdatabanken.no/Pages/135568/Red_List_for_Ecosystems_ (accessed on 10 January 2023).
- Fletcher, R.; Fortin, M.-J. Land-Cover Pattern and Change. In Spatial Ecology and Conservation Modeling: Applications with R; Springer International Publishing: Cham, Switzerland, 2018; pp. 55–100. [Google Scholar]
- Dramstad, W.; Fjellstad, W.J.; Strand, G.-H.; Mathiesen, H.; Engan, G.; Stokland, J. Development and implementation of the Norwegian monitoring programme for agricultural landscapes. J. Environ. Manag. 2002, 64, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Statistics Norway. 2021. Available online: https://www.ssb.no/natur-og-miljo/areal/statistikk/arealbruk-og-arealressurser (accessed on 10 January 2023).
- Norwegian Environment Agency. Inngrepsfrie Naturområder i Norge. [Interference-Free Areas in Norway]. 2019. Available online: https://miljostatus.miljodirektoratet.no/tema/naturomrader-pa-land/inngrepsfri-natur/ (accessed on 1 February 2023).
- Tingstad, L.; Evju, M.; Sickel, H.; Töpper, J.; Utvikling av Nasjonal Arealrepresentativ Naturovervåking (ANO). Forslag til Gjennomføring, Protokoller og Kostnadsvurderinger med Utgangspunkt i Erfaringer fra Uttesting i Trøndelag NINA Rapport 1642. Norsk Institutt for Naturforskning. 2019. Available online: https://brage.nina.no/nina-xmlui/handle/11250/2590252 (accessed on 10 January 2023).
- Nybø, S.; Arneberg, P.; Framstad, E.; Ims, R.A.; Lyngstad, A.; Schartau, A.K.; Sickel, H.K.; Sverdrup-Thygeson, A.; Vandvik, V. Fagsystem for Fastsetting av God Økologisk Tilstand—Forslag Fra et Ekspertråd—Expert Committee for Assessment of Ecological Condition, Trondheim. 2017. Available online: https://www.regjeringen.no/no/dokumenter/fagsystem-for-fastsetting-av-god-okologisk-tilstand/id2558481/ (accessed on 10 January 2023).
- Curtis, J.T. The Modification of Mid-latitude Grasslands and Forests by Man. In Man’s Role in Changing the Face of the Earth; Thomas, W.L., Ed.; University of Chicago Press: Chicago, IL, USA, 1956; pp. 721–736. [Google Scholar]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice: Pattern and Process; Springer: New York, NY, USA, 2015. [Google Scholar]
- Cushman, S.A.; Gutzweiler, K.; Evans, J.S.; McGarigal, K. The Gradient Paradigm: A Conceptual and Analytical Framework for Landscape Ecology. In Spatial Complexity, Informatics, and Wildlife Conservation; Cushman, S.A., Huettmann, F., Eds.; Springer: Tokyo, Japan, 2010; pp. 83–108. [Google Scholar] [CrossRef]
- McCloskey, J.M.; Heather, S. A Reconnaissance-Level Inventory of the Amount of Wilderness Remaining in the World. Ambio 1989, 18, 221–227. [Google Scholar]
- Watson, J.E.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.W.; Mackey, B.; Venter, O. Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Directorate for Nature Management. Environmental Regions without Human Encroachments [Inngrepsfrie Naturområder i Norge]. DN-Report 6–1995. Trondheim. 1995. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/dirnat2/attachment/747/dn-rapport-1995-6.pdf (accessed on 10 January 2023).
- Bruun, M. Inngrepsfrie Naturområder-Formål og Metodeopplegg for Kartfesting-I. In Landskapet vi Lever i: Festskrift til Magne Bruun; Eggen, M., Geelmuyden, A.K., Jørgensen, K., Eds.; Norsk Arkitekturforlag: Oslo, Norway, 1999; p. 294. [Google Scholar]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild: The Human Footprint Is a Global Map of Human Influence on the Land Surface, which Suggests that Human Beings Are Stewards of Nature, whether We Like it or not. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Bobbink, R.; Hettelingh, J.P. (Eds.) Review and Revision of Empirical Critical Loads and Dose-Response Relationships. In Proceedings of the Expert Workshop, Noordwijkerhout, The Netherlands, 23–25 June 2010; RIVM: Utrecht, The Netherlands, 2011. Available online: http://www.rivm.nl/bibliotheek/rapporten/680359002.pdf (accessed on 10 January 2023).
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.A.; Böhning-Gaese, K.; Fagan, W.F.; Fryxell, J.M.; Van Moorter, B.; Alberts, S.C.; Ali, A.H.; Allen, A.M.; Attias, N.; Avgar, T.; et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 2018, 359, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.; Filho, E.I.F. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Guevara, M.; Arroyo, C.; Brunsell, N.; Cruz, C.O.; Domke, G.; Equihua, J.; Etchevers, J.; Hayes, D.; Hengl, T.; Ibelles, A.; et al. Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010). Glob. Biogeochem. Cycles 2020, 34, e2019GB006219. [Google Scholar] [CrossRef]
- Aplet, G.; Thomson, J.; Wilbert, M. Indicators of Wildness: Using Attributes of the Land to Assess the Context of Wilderness. In Wilderness Science in a Time of Change Conference—Volume 2: Wilderness within the Context of Larger Systems, Missoula, MT, USA, 23–27 May 1999; McCool, S.F., Cole, D.N., Borrie, W.T., O’Loughlin, J., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; pp. 89–98. Available online: https://www.researchgate.net/publication/255637287_Indicators_of_Wildness_Using_Attributes_of_the_Land_to_Assess_the_Context_of_Wilderness (accessed on 10 January 2023).
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Panzacchi, M.; Van Moorter, B.; Strand, O.; Saerens, M.; Kivimäki, I.; St Clair, C.C.; Herfindal, I.; Boitani, L. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. J. Anim. Ecol. 2016, 85, 32–42. [Google Scholar] [CrossRef]
- Venter, Z.S.; Shackleton, C.M.; Van Staden, F.; Selomane, O.; Masterson, V.A. Green Apartheid: Urban green infrastructure remains unequally distributed across income and race geographies in South Africa. Landsc. Urban Plan. 2020, 203, 103889. [Google Scholar] [CrossRef]
- Lovelace, R.; Nowosad, J.; Muenchow, J. Geocomputation with R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Burrough, P.A.; McDonnell, R.; Loyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19823-366-4. [Google Scholar]
- Erikstad, L.; Halvorsen, R.; Simensen, T. Natur i Norge (NiN) Versjon 2.2. Inndelingen i Landskapstyper. Artsdatabanken, Trondheim. 2019. Available online: https://artsdatabanken.no/nin/landskap (accessed on 10 January 2023).
- Erikstad, L.; Blumentrath, S.; Bakkestuen, V.; Halvorsen, R. Landskapstypekartlegging som Verktøy til Overvåking av Areal-bruksendringer. NINA Rapport 1006: 41 s. 2013. Available online: https://brage.nina.no/nina-xmlui/handle/11250/2385383 (accessed on 10 January 2023).
- Norwegian Ministry of Local Government and Regional Development. Everything Happens Somewhere. National Geospatial Strategy towards 2025; Kommunal-Og Moderniseringsdepartementet: Oslo, Norway, 2018; pp. 1–34. Available online: https://www.regjeringen.no/contentassets/6e470654c95d411e8b1925849ec4918d/en-gb/pdfs/en_nasjonal_geodatastrategi.pdf (accessed on 10 January 2023).
- Norwegian Mapping Authority. SOSI Produktspesifikasjon Produktnavn: N50 Kartdata—Versjon 20170401 0 Produktspesifikasjon for N50 Kartdata 1–330. 2017. Available online: https://register.geonorge.no/register/versjoner/produktspesifikasjoner/kartverket/n50-kartdata (accessed on 10 January 2023).
- Simensen, T.; Halvorsen, R.; Erikstad, L. Gradient analysis of landscape variation in Norway. Sommerfeltia 2022, 40, 1–193. [Google Scholar] [CrossRef]
- Simensen, T.; Erikstad, L.; Halvorsen, R. Diversity and distribution of landscape types in Norway. Nor. J. Geogr. 2021, 75, 79–100. [Google Scholar] [CrossRef]
- Halvorsen, R.; Skarpaas, O.; Bryn, A.; Bratli, H.; Erikstad, L.; Simensen, T.; Lieungh, E. Towards a systematics of ecodiversity: The EcoSyst framework. Glob. Ecol. Biogeogr. 2020, 29, 1887–1906. [Google Scholar] [CrossRef]
- Norwegian Biodiversity Information Centre. 2020. Available online: http://kart.artsdatabanken.no/WMS/kartdata/artskart/artskart.zip (accessed on 10 January 2023).
- Andersen, O.; Erikstad, L.; Bakkestuen, V. Sumvirkninger ved Bygging av Vannkraft i Nordland. En Analyse av Virkninger på Reindrift, Friluftsliv, Landskap og Berørte Naturtyper. NINA Rapport 1404. 135 s. 2017. Available online: https://brage.nina.no/nina-xmlui/handle/11250/2469474 (accessed on 4 April 2021).
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Theobald, D.M. A general model to quantify ecological integrity for landscape assessments and US application. Landsc. Ecol. 2013, 28, 1859–1874. [Google Scholar] [CrossRef]
- Erikstad, L.; Hagen, D.; Stange, E.; Bakkestuen, V. Evaluating cumulative effects of small scale hydropower development using GIS modelling and representativeness assessments. Environ. Impact Assess. Rev. 2020, 85, 106458. [Google Scholar] [CrossRef]
- Kremen, C.; Merenlender, A.M. Landscapes that work for biodiversity and people. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef] [PubMed]
- Ramberg, I.B.; Bryhni, I.; Nottvedt, A.; Rangnes, K. (Eds.) The Making of a Land: Geology of Norway; Norsk Geologisk Forening: Trondheim, Norway, 2008. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Potapov, P.; Yaroshenko, A.; Turubanova, S.; Dubinin, M.; Laestadius, L.; Thies, C.; Aksenov, D.; Egorov, A.; Yesipova, Y.; Glushkov, I.; et al. Mapping the World’s Intact Forest Landscapes by Remote Sensing. Ecol. Soc. 2008, 13. Available online: http://www.ecologyandsociety.org/vol13/iss2/art51/ (accessed on 10 January 2023). [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
Component | Landscape-Elements Category | LUI Weight | LUIext Weight |
---|---|---|---|
Building component | Buildings of any kind | 2 | 4/7 |
(Bl) | Linear elements from N50 ‘constructions’ (power lines) | ||
Linear elements from N50 ‘transportation’ (main roads and railways) | |||
Built-up technical facilities, ski-jump towers, communication towers, wind turbines, etc. | |||
Land cover, i.e., built-up areas | Urban fabric (physical urban environment) | 1 | 2/7 |
(LCI) | Industry areas | ||
Airports | |||
Mine, dump, and construction sites | |||
Graveyards | |||
Sport and leisure facilities (including golf courses, ski-jump facilities, resorts, etc.) | |||
Other built-up areas | |||
Other human impacts (ALI) | Regulated lakes | NA | 1/7 |
Agricultural fields | |||
Tractor roads and footpaths |
Main Landscape Type | Number of Polygons | Frequency (%) in LUI Intervals | |||||
---|---|---|---|---|---|---|---|
=0 | <0.5 | 0.5–3 | 3–6 | 6–9 | >9 | ||
Inland hills and mountains | 21,781 | 25.8 | 57.4 | 30.4 | 9.2 | 2.6 | 0.4 |
Inland valleys | 11,119 | 15.9 | 33.5 | 37.8 | 22.9 | 5.3 | 0.5 |
Inland plains | 3434 | 32.3 | 55.0 | 24.1 | 10.0 | 9.3 | 1.6 |
Coastal hills | 77 | 31.2 | 48,1 | 18.2 | 16.9 | 11.7 | 5.2 |
Coastal fjords | 3748 | 4.9 | 13.3 | 27.0 | 38.7 | 16.8 | 4.2 |
Coastal plains | 4476 | 26.0 | 30.8 | 35.1 | 27.2 | 20.5 | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erikstad, L.; Simensen, T.; Bakkestuen, V.; Halvorsen, R. Index Measuring Land Use Intensity—A Gradient-Based Approach. Geomatics 2023, 3, 188-204. https://doi.org/10.3390/geomatics3010010
Erikstad L, Simensen T, Bakkestuen V, Halvorsen R. Index Measuring Land Use Intensity—A Gradient-Based Approach. Geomatics. 2023; 3(1):188-204. https://doi.org/10.3390/geomatics3010010
Chicago/Turabian StyleErikstad, Lars, Trond Simensen, Vegar Bakkestuen, and Rune Halvorsen. 2023. "Index Measuring Land Use Intensity—A Gradient-Based Approach" Geomatics 3, no. 1: 188-204. https://doi.org/10.3390/geomatics3010010
APA StyleErikstad, L., Simensen, T., Bakkestuen, V., & Halvorsen, R. (2023). Index Measuring Land Use Intensity—A Gradient-Based Approach. Geomatics, 3(1), 188-204. https://doi.org/10.3390/geomatics3010010