Two Decades Mangroves Loss Monitoring Using Random Forest and Landsat Data in East Luwu, Indonesia (2000–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Data Pre-Processing
2.3.2. Random Forest
2.3.3. Evaluation Assessment
3. Results
3.1. Classification Results
3.2. Mangroves Loss Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring Mangrove Forest Dynamics of the Sundarbans in Bangladesh and India Using Multi-Temporal Satellite Data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Sahu, S.C.; Kumar, M.; Ravindranath, N.H. Carbon Stocks in Natural and Planted Mangrove Forests of Mahanadi Mangrove Wetland, East Coast of India. Curr. Sci. 2016, 110, 2253–2260. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Shahbudin, S.; Zuhairi, A.; Kamaruzzaman, B.Y. Impact of Coastal Development on Mangrove Cover in Kilim river, Langkawi Island, Malaysia. J. For. Res. 2012, 23, 185–190. [Google Scholar] [CrossRef]
- Barua, P.; Rahman, S. Sustainable Livelihood of Vulnerable Communities in Southern Coast of Bangladesh through the Utilization of Mangroves. Asian J. Water Environ. Pollut. 2019, 16, 59–67. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Martire, M.L.; Coral, C.; Greco, S.; Danovaro, R. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, C.E.; McAllister, R.R. ‘Blue Carbon’ Projects for The Collective Good. Carbon Manag. 2013, 4, 477–479. [Google Scholar] [CrossRef]
- Sanders, C.J.; Maher, D.T.; Tait, D.R.; Williams, D.; Holloway, C.; Sippo, J.Z.; Santos, I.R. Are Global Mangrove Carbon Stocks Driven by Rainfall? J. Geophys. Res. Biogeosci. 2016, 121, 2600–2609. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- Gillanders, S.N.; Coops, N.C.; Wulder, M.A.; Gergel, S.E.; Nelson, T. Multitemporal Remote Sensing of Landscape Dynamics and Pattern Change: Describing Natural and Anthropogenic Trends. Prog. Phys. Geogr. 2008, 32, 503–528. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010. [Google Scholar]
- Primavera, J.H. Development and conservation of Philippine mangroves: Institutional issues. Ecol. Econ. 2000, 35, 91–106. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and Drivers of Mangrove Deforestation in Southeast Asia, 2000-2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Heumann, B.W. Satellite Remote Sensing of Mangrove Forests: Recent Advances and Future Opportunities. Prog. Phys. Geogr. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Kamal, M.; Farda, N.M.; Jamaluddin, I.; Parela, A. A Preliminary Study on Machine learning and Google Earth Engine for Mangrove Mapping. IOP Conf. Ser. Earth Environ. Sci. 2019, 500, 012038. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza-Filho, P.W.M. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Liu, X.; Fatoyinbo, T.E.; Lagomasino, D. Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Waluyo, W.; Arifin, T.; Yonvitner, Y.; Riani, E. Rumput Laut; Potensi Perairan Kabupaten Luwu Dan Kota Palopo, Teluk. Bone, Sulawesi Selatan; Plantaxia: Yogyakarta, Indonesia, 2017. [Google Scholar]
- Pariwono, J.I. Australian Co-Operative Programmes in Marine Sciences: Tides and Tidal Phenomena in the ASEAN Region; Flinders University of South Australia: Queensland, Australia, 1985. [Google Scholar]
- Worthington, T.A.; zu Ermgassen, P.S.E.; Friess, D.A.; Krauss, K.W.; Lovelock, C.E.; Thorley, J.; Tingey, R.; Woodroffe, C.D.; Bunting, P.; Cormier, N.; et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 2020, 10, 14652. [Google Scholar] [CrossRef]
- Kusmana, C. Distribution and Current Status of Mangrove Forests in Indonesia. In Mangrove Ecosystems of Asia; Faridah-Hanum, I.A.L., Hakeem, K.R., Munir, O., Eds.; Springer: New York, NY, USA, 2014; pp. 37–60. ISBN 9781461485827. [Google Scholar]
- Sribianti, I. Valuasi Ekonomi Hutan Mangrove: Studi Kasus Valuasi Ekonomi Kawasan Hutan Mangrove Malili Kabupaten Luwu Timur. J. Sains. Teknol. 2008, 8, 186–192. [Google Scholar]
- Jamaluddin, I.; Thaipisutikul, T.; Chen, Y.-N.; Chuang, C.-H.; Hu, C.-L. MDPrePost-Net: A Spatial-Spectral-Temporal Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using Sentinel-2 Data. Remote Sens. 2021, 13, 5042. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Datta Majumdar, S.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 2018, 5, 1129–1139. [Google Scholar] [CrossRef]
- Shi, T.; Liu, J.; Hu, Z.; Liu, H.; Wang, J.; Wu, G. New spectral metrics for mangrove forest identification. Remote Sens. Lett. 2016, 7, 885–894. [Google Scholar] [CrossRef]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2002, 177, 593–596. [Google Scholar] [CrossRef]
Landsat-7 | Landsat-8 OLI | ||||
---|---|---|---|---|---|
Bands | Wavelength (μm) | Resolution (m) | Bands | Wavelength (μm) | Resolution (m) |
Band 1—Aerosol | 0.43–0.45 | 30 | |||
Band 1—Blue | 0.45–0.52 | 30 | Band 2—Blue | 0.45–0.51 | 30 |
Band 2—Green | 0.52–0.60 | 30 | Band 3—Green | 0.53–0.59 | 30 |
Band 3—Red | 0.63–0.69 | 30 | Band 4—Red | 0.64–0.67 | 30 |
Band 4—NIR | 0.77–0.90 | 30 | Band 5—NIR | 0.85–0.88 | 30 |
Band 5—SWIR 1 | 1.55–1.75 | 30 | Band 6—SWIR 1 | 1.57–1.65 | 30 |
Band 6—Thermal | 10.40–12.50 | 60 (30) | Band 7—SWIR 2 | 2.11–2.29 | 30 |
Band 7—SWIR 2 | 2.09–2.35 | 30 | Band 8—Pan | 0.50–0.68 | 15 |
Band 8—Pan | 0.52–0.90 | 15 | Band—9 Cirrus | 1.36–1.38 | 30 |
Band 10—THERMAL 1 | 10.6–11.19 | 100 (30) | |||
Band 11—Thermal 2 | 11.50–12.51 | 100 (30) |
Year | Images | Year | Images |
---|---|---|---|
2000 | Landsat-7 | 2011 | Landsat-7 |
2001 | Landsat-7 | 2012 | Landsat-7 |
2002 | Landsat-7 | 2013 | Landsat-7 |
2003 | Landsat-7 | 2014 | Landsat-8 |
2004 | Landsat-7 | 2015 | Landsat-8 |
2005 | Landsat-7 | 2016 | Landsat-8 |
2006 | Landsat-7 | 2017 | Landsat-8 |
2007 | Landsat-7 | 2018 | Landsat-8 |
2008 | Landsat-7 | 2019 | Landsat-8 |
2009 | Landsat-7 | 2020 | Landsat-8 |
2010 | Landsat-7 |
Images | Year | Non-Mangrove | Mangrove | Total Pixels |
---|---|---|---|---|
Landsat-7 | 2000 | 4152 | 4022 | 8174 |
Landsat-8 | 2014 | 1306 | 1836 | 3142 |
Reference Data | |||
---|---|---|---|
Predicted Result | Mangrove | Non-Mangrove | |
Mangrove | True Positive (TP) | False Positive (FP) | |
Non-Mangrove | False Negative (FN) | True Negative (TN) |
Testing Data | OA Score | UA N-Mg | UA Mg | PA N-Mg | PA Mg |
---|---|---|---|---|---|
2000 | 0.982 | 0.984 | 0.980 | 0.980 | 0.984 |
2005 | 0.954 | 1.000 | 0.908 | 0.916 | 1.000 |
2010 | 0.970 | 0.996 | 0.944 | 0.947 | 0.996 |
2015 | 0.956 | 0.996 | 0.916 | 0.922 | 0.996 |
2020 | 0.966 | 1.000 | 0.932 | 0.936 | 1.000 |
Average Score | 0.966 | 0.995 | 0.936 | 0.940 | 0.995 |
Years | Total Changes Area (Ha) | Loss Rate (% per Year) |
---|---|---|
2000–2005 | ↓ 2477.39 | −14.11% ↓ |
2006–2010 | ↓ 201.51 | −2.24% ↓ |
2011–2015 | ↓ 362.40 | −4.75% ↓ |
2016–2020 | ↑ 87.96 | +1.04% ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaluddin, I.; Chen, Y.-N.; Ridha, S.M.; Mahyatar, P.; Ayudyanti, A.G. Two Decades Mangroves Loss Monitoring Using Random Forest and Landsat Data in East Luwu, Indonesia (2000–2020). Geomatics 2022, 2, 282-296. https://doi.org/10.3390/geomatics2030016
Jamaluddin I, Chen Y-N, Ridha SM, Mahyatar P, Ayudyanti AG. Two Decades Mangroves Loss Monitoring Using Random Forest and Landsat Data in East Luwu, Indonesia (2000–2020). Geomatics. 2022; 2(3):282-296. https://doi.org/10.3390/geomatics2030016
Chicago/Turabian StyleJamaluddin, Ilham, Ying-Nong Chen, Syafiq Muhammad Ridha, Panji Mahyatar, and Amalia Gita Ayudyanti. 2022. "Two Decades Mangroves Loss Monitoring Using Random Forest and Landsat Data in East Luwu, Indonesia (2000–2020)" Geomatics 2, no. 3: 282-296. https://doi.org/10.3390/geomatics2030016
APA StyleJamaluddin, I., Chen, Y. -N., Ridha, S. M., Mahyatar, P., & Ayudyanti, A. G. (2022). Two Decades Mangroves Loss Monitoring Using Random Forest and Landsat Data in East Luwu, Indonesia (2000–2020). Geomatics, 2(3), 282-296. https://doi.org/10.3390/geomatics2030016