Simultaneous Photocatalytic CO2 Reduction and Methylene Blue Degradation over TiO2@(Pt, Au, or Pd)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Metal Deposition
2.2.2. Activity Tests
3. Results and Discussion
3.1. Effect of pH
3.2. Effect of Catalyst Load
3.3. Effect of Platinum Load
3.4. Effect of Methylene Blue (MB) Concentration
3.5. Effect of the Nature of the Deposited Metal
3.6. TiO2 Aeroxide P90
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singla, Y.; Thakur, A.; Sud, D. A comprehensive review on carbon capturing materials and processes for sustainable development. Mater. Today Energy 2025, 48, 101783. [Google Scholar] [CrossRef]
- Park, J.H.; Yang, J.; Kim, D.; Gim, H.; Choi, W.Y.; Lee, J.W. Review of recent technologies for transforming carbon dioxide to carbon materials. Chem. Eng. J. 2022, 427, 130980. [Google Scholar] [CrossRef]
- Halmann, M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275, 115–116. [Google Scholar] [CrossRef]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638. [Google Scholar] [CrossRef]
- Lin, C.; Rohilla, J.; Kuo, H.; Chen, C.; Mark Chang, T.; Sone, M.; Ingole, P.P.; Lo, Y.; Hsu, Y. Density-Functional Theory Studies on Photocatalysis and Photoelectrocatalysis: Challenges and Opportunities. Sol. RRL 2024, 8, 2300948. [Google Scholar] [CrossRef]
- Chen, C.; Wu, M.; Xu, Y.; Ma, C.; Song, M.; Jiang, G. Efficient Photoreduction of CO 2 to CO with 100% Selectivity by Slowing Down Electron Transport. J. Am. Chem. Soc. 2024, 146, 9163–9171. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Pi, Y.; Song, Y.; Brzezinski, C.; Xu, Z.; Li, Z.; Lin, W. Metal–Organic Frameworks Significantly Enhance Photocatalytic Hydrogen Evolution and CO2 Reduction with Earth-Abundant Copper Photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695. [Google Scholar] [CrossRef]
- Xue, J.; Jia, X.; Sun, Z.; Li, H.; Shen, Q.; Liu, X.; Jia, H.; Zhu, Y. Selective CO2 photoreduction to C2 hydrocarbon via synergy between metastable ordered oxygen vacancies and hydrogen spillover over TiO2 nanobelts. Appl. Catal. B Environ. 2024, 342, 123372. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, W.; Li, H.; Zhao, J.; Tang, X. Carbon Nitride and Its Hybrid Photocatalysts for CO2 Reduction C1 Product Selectivity. Catalysts 2025, 15, 408. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhu, X.; Gao, X.; An, C.; Wang, Z.; Zuo, C.; Dionysiou, D.D.; He, H.; Jiang, Z. Enhancing photocatalytic CO2 reduction with TiO2-based materials: Strategies, mechanisms, challenges, and perspectives. Environ. Sci. Ecotechnol. 2024, 20, 100368. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Han, W.D.; Hong, Y.J.; Yu, J.G. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today 2009, 148, 335–340. [Google Scholar] [CrossRef]
- Nabil, S.; Shalaby, E.A.; Elkady, M.F.; Matsushita, Y.; El-Shazly, A.H. Optimizing the Performance of the Meso-Scale Continuous-Flow Photoreactor for Efficient Photocatalytic CO2 Reduction with Water Over Pt/TiO2/RGO Composites. Catal. Lett. 2022, 152, 3243–3258. [Google Scholar] [CrossRef]
- Pougin, A.; Dodekatos, G.; Dilla, M.; Tüysüz, H.; Strunk, J. Au@TiO2 Core–Shell Composites for the Photocatalytic Reduction of CO2. Chem.—A Eur. J. 2018, 24, 12416–12425. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wilson, A.J.; Heo, J.; Jain, P.K. Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Lett. 2018, 18, 2189–2194. [Google Scholar] [CrossRef]
- Su, K.Y.; Chen, C.Y.; Wu, R.J. Preparation of Pd/TiO2 nanowires for the photoreduction of CO2 into renewable hydrocarbon fuels. J. Taiwan Inst. Chem. Eng. 2019, 96, 409–418. [Google Scholar] [CrossRef]
- Liao, G.; Ding, G.; Yang, B.; Li, C. Challenges in Photocatalytic Carbon Dioxide Reduction. Precis. Chem. 2024, 2, 49–56. [Google Scholar] [CrossRef]
- Das, R.; Chakraborty, S.; Peter, S.C. Systematic Assessment of Solvent Selection in Photocatalytic CO2 Reduction. ACS Energy Lett. 2021, 6, 3270–3274. [Google Scholar] [CrossRef]
- Yoshino, S.; Iwase, A.; Yamaguchi, Y.; Suzuki, T.M.; Morikawa, T.; Kudo, A. Photocatalytic CO2 Reduction Using Water as an Electron Donor under Visible Light Irradiation by Z-Scheme and Photoelectrochemical Systems over (CuGa)0.5ZnS2 in the Presence of Basic Additives. J. Am. Chem. Soc. 2022, 144, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xiao, T.; Edwards, P.P. The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting. Int. J. Hydrogen Energy 2011, 36, 6546–6552. [Google Scholar] [CrossRef]
- Wang, W.; Deng, C.; Xie, S.; Li, Y.; Zhang, W.; Sheng, H.; Chen, C.; Zhao, J. Photocatalytic C–C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993. [Google Scholar] [CrossRef]
- Neamsung, W.; Kitjanukit, N.; Karawek, A.; Chongkol, N.; Lertthanaphol, N.; Chotngamkhum, P.; Khumsupa, K.; Phadungbut, P.; Jonglertjunya, W.; Kim-Lohsoontorn, P.; et al. Effects of alkanolamines on photocatalytic reduction of carbon dioxide to liquid fuels using a copper-doped dititanate/graphene photocatalyst. RSC Sustain. 2025, 3, 3520–3529. [Google Scholar] [CrossRef]
- Bratovčić, A.; Tomašić, V. Design and Development of Photocatalytic Systems for Reduction of CO2 into Valuable Chemicals and Fuels. Processes 2023, 11, 1433. [Google Scholar] [CrossRef]
- Chávez-Caiza, J.; Fernández-Catalá, J.; Navlani-García, M.; Lousada, C.M.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. Unveiling the effect of sacrificial agent amount in the CO2 photoreduction performed in a flow reactor. J. CO2 Util. 2024, 83, 102818. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M.; Wu, J.; Tang, L.; Huang, W.; Li, Q.; Lei, J.; Zhang, X.; Wang, L. Boosting Visible-Light Photocatalytic Performance for CO2 Reduction via Hydroxylated Graphene Quantum Dots Sensitized MIL-101(Fe). Adv. Mater. Interfaces 2020, 7, 2000468. [Google Scholar] [CrossRef]
- Chen, Y.X.; Xu, Y.F.; Wang, X.D.; Chen, H.Y.; Kuang, D.B. Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals. Sustain. Energy Fuels 2020, 4, 2249–2255. [Google Scholar] [CrossRef]
- Park, H.; Ou, H.H.; Kang, U.; Choi, J.; Hoffmann, M.R. Photocatalytic conversion of carbon dioxide to methane on TiO2/CdS in aqueous isopropanol solution. Catal. Today 2016, 266, 153–159. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Chen, Z.; Li, M.; Wang, L.; Wu, S.; Zhang, J. Photocatalytic conversion of carbon dioxide on triethanolamine: Unheeded catalytic performance of sacrificial agent. Appl. Catal. B Environ. 2023, 326, 122338. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Li, X.; Cui, R.; Ma, J.; Sun, R. Simultaneous photocatalytic biomass conversion and CO2 reduction over high crystalline oxygen-doped carbon nitride. IScience 2023, 26, 107416. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Khalid, R.; Najeeb, J.; Hussain, Z. Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies- a critical review. J. Clean. Prod. 2021, 298, 126567. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- ISO 10678; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Photocatalytic Activity of Surfaces in an Aqueous Medium by Degradation of Methylene Blue. ISO: Geneva, Switzerland, 2010.
- Lee, S.K.; Mills, A.; Wells, N. Assessing photocatalytic activity using methylene blue without dye sensitisation. Catal. Today 2018, 313, 211–217. [Google Scholar] [CrossRef]
- Hernández Rodríguez, M.J.; Pulido Melián, E.; González Díaz, O.; Araña, J.; Macías, M.; González Orive, A.; Doña Rodríguez, J.M. Comparison of supported TiO2 catalysts in the photocatalytic degradation of NOx. J. Mol. Catal. A Chem. 2016, 413, 56–66. [Google Scholar] [CrossRef]
- Hernández Rodríguez, M.J.; Pulido Melián, E.; Araña, J.; Navío, J.A.; González Díaz, O.M.; Santiago, D.E.; Doña Rodríguez, J.M. Influence of Water on the Oxidation of NO on Pd/TiO2 Photocatalysts. Nanomaterials 2020, 10, 2354. [Google Scholar] [CrossRef]
- Melián, E.P.; López, C.R.; Méndez, A.O.; Díaz, O.G.; Suárez, M.N.; Doña Rodríguez, J.M.; Navío, J.A.; Fernández Hevia, D. Hydrogen production using Pt-loaded TiO2 photocatalysts. Int. J. Hydrogen Energy 2013, 38, 11737–11748. [Google Scholar] [CrossRef]
- Ortega Méndez, J.A.; López, C.R.; Pulido Melián, E.; González Díaz, O.; Doña Rodríguez, J.M.; Fernández Hevia, D.; Macías, M. Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts. Appl. Catal. B Environ. 2014, 147, 439–452. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Ismail, A.A.; Kadi, M.W.; Bahnemann, D.W. A comparative study on mesoporous and commercial TiO2 photocatalysts for photodegradation of organic pollutants. J. Photochem. Photobiol. 2018, 367, 66–73. [Google Scholar] [CrossRef]
- Thirunavukkarasu, G.K.; Bacova, J.; Monfort, O.; Dworniczek, E.; Paluch, E.; Hanif, M.B.; Rauf, S.; Motlochova, M.; Capek, J.; Hensel, K.; et al. Critical comparison of aerogel TiO2 and P25 nanopowders: Cytotoxic properties, photocatalytic activity and photoinduced antimicrobial/antibiofilm performance. Appl. Surf. Sci. 2022, 579, 152145. [Google Scholar] [CrossRef]
- Sangchay, W.; Sikong, L.; Kooptarnond, K. Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Procedia Eng. 2012, 32, 590–596. [Google Scholar] [CrossRef]
- Soleimani, M.; Boorboor Azimi, E.; Mousavi, M.; Ghasemi, J.B.; Badiei, A. The first study of adsorption of methylene blue by Black Titania nanoparticle in aqueous solution. Sci. Iran. 2022, 30, 2001–2010. [Google Scholar] [CrossRef]
- Zeng, M. Influence of TiO2 Surface Properties on Water Pollution Treatment and Photocatalytic Activity. Bull. Korean Chem. Soc. 2013, 34, 953–956. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, X.; Tang, Z.; Lv, H.; Wu, F.; Wang, X.; Zhao, T.; Wang, J.; Wu, A.; Giesy, J.P. Difference in performance and mechanism for methylene blue when TiO2 nanoparticles are converted to nanotubes. J. Clean. Prod. 2021, 297, 126498. [Google Scholar] [CrossRef]
- Ovchinnikov, O.V.; Evtukhova, A.V.; Kondratenko, T.S.; Smirnov, M.S.; Khokhlov, V.Y.; Erina, O.V. Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib. Spectrosc. 2016, 86, 181–189. [Google Scholar] [CrossRef]
- Alver, E.; Metin, A.Ü.; Brouers, F. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int. J. Biol. Macromol. 2020, 154, 104–113. [Google Scholar] [CrossRef]
- Khnifira, M.; El Hamidi, S.; Mahsoune, A.; Sadiq, M.; Serdaroğlu, G.; Kaya, S.; Qourzal, S.; Barka, N.; Abdennouri, M. Adsorption of methylene blue cationic dye onto brookite and rutile phases of titanium dioxide: Quantum chemical and molecular dynamic simulation studies. Inorg. Chem. Commun. 2021, 129, 108659. [Google Scholar] [CrossRef]
- Sabnis, R.W. Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 293–297. [Google Scholar] [CrossRef]
- Saleem, M.; Choi, N.G.; Lee, K.H. Facile synthesis of an optical sensor for CO32− and HCO3− detection. Int. J. Environ. Anal. Chem. 2015, 95, 592–608. [Google Scholar] [CrossRef]
- Bouziani, M.; Bouziani, A.; Hsini, A.; Bianchi, C.L.; Falletta, E.; Di Michele, A.; Çelik, G.; Hausler, R. Synergistic photocatalytic degradation of methylene blue and ibuprofen using Co3O4-Decorated hexagonal boron nitride (hBN) composites under Sun-like irradiation. Chemosphere 2025, 371, 144061. [Google Scholar] [CrossRef]
- Minamoto, C.; Fujiwara, N.; Shigekawa, Y.; Tada, K.; Yano, J.; Yokoyama, T.; Minamoto, Y.; Nakayama, S. Effect of acidic conditions on decomposition of methylene blue in aqueous solution by air microbubbles. Chemosphere 2021, 263, 128141. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zahraa, O.; Bouchy, M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol. A Chem. 1997, 108, 37–44. [Google Scholar] [CrossRef]
- Gao, X.; Guo, Q.; Tang, G.; Peng, W.; Luo, Y.; He, D. Effects of inorganic ions on the photocatalytic degradation of carbamazepine. J. Water Reuse Desalin. 2019, 9, 301–309. [Google Scholar] [CrossRef]
- Ghosh, S.; Sahu, M. Insights on the influence of natural co-contaminants on the photocatalytic performance of biochar supported p-n heterojunction photocatalyst in an aqueous media. Clean. Water 2025, 4, 100089. [Google Scholar] [CrossRef]
- Li, X.; Raza, S.; Liu, C. Directly electrospinning synthesized Z-scheme heterojunction TiO2@Ag@Cu2O nanofibers with enhanced photocatalytic degradation activity under solar light irradiation. J. Environ. Chem. Eng. 2021, 9, 106133. [Google Scholar] [CrossRef]
- Kalaycioglu, Z.; Uysal, B.Ö.; Pekcan, Ö.; Erim, F.B. Efficient photocatalytic degradation of methylene blue dye from aqueous solution with cerium oxide nanoparticles and graphene oxide-doped polyacrylamide. ACS Omega 2023, 8, 13004–13015. [Google Scholar] [CrossRef]
- Baran, T.; Caringella, D.; Dibenedetto, A.; Aresta, M. Pitfalls in Photochemical and Photoelectrochemical Reduction of CO2 to Energy Products. Molecules 2024, 29, 4758. [Google Scholar] [CrossRef]
- Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core–Shell Structure. Angew. Chem. Int. Ed. 2013, 52, 5776–5779. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wu, C.; Feng, H.; Liu, H. Sacrificial agent-free photocatalytic CO2 reduction using a 2D cobalt porphyrin-based MOF/graphene heterojunction. Catal. Sci. Technol. 2022, 12, 7057–7064. [Google Scholar] [CrossRef]
- Coenen, K.; Gallucci, F.; Mezari, B.; Hensen, E.; van Sint Annaland, M. An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J. CO2 Util. 2018, 24, 228–239. [Google Scholar] [CrossRef]
- Prescott, H.; Li, Z.; Kemnitz, E.; Trunschke, A.; Deutsch, J.; Lieske, H.; Auroux, A. Application of calcined Mg–Al hydrotalcites for Michael additions: An investigation of catalytic activity and acid–base properties. J. Catal. 2005, 234, 119–130. [Google Scholar] [CrossRef]
- Venkatesvaran, H.; Balu, S.; Yang, W.; Chiu, P.W.; Juodkazytė, J.; Yang, T.C.K.; Lee, Y.C. Operando DRIFTS investigation of CO2 hydrogenation over Pd nanoparticle-deposited P90-TiO2–x. J. Environ. Chem. Eng. 2025, 13, 117312. [Google Scholar] [CrossRef]
- AlMohamadi, H.; Awad, S.A.; Sharma, A.K.; Fayzullaev, N.; Távara-Aponte, A.; Chiguala-Contreras, L.; Amari, A.; Rodriguez-Benites, C.; Tahoon, M.A.; Esmaeili, H. Photocatalytic Activity of Metal- and Non-Metal-Anchored ZnO and TiO2 Nanocatalysts for Advanced Photocatalysis: Comparative Study. Catalysts 2024, 14, 420. [Google Scholar] [CrossRef]
- Paul, D.R.; Sharma, R.; Nehra, S.P.; Sharma, A. Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Adv. 2019, 9, 15381–15391. [Google Scholar] [CrossRef]
- Pellegrino, F.; Pellutiè, L.; Sordello, F.; Minero, C.; Ortel, E.; Hodoroaba, V.D.; Maurino, V. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B Environ. 2017, 216, 80–87. [Google Scholar] [CrossRef]
- Dou, Y.; Zhou, A.; Yao, Y.; Lim, S.Y.; Li, J.R.; Zhang, W. Suppressing hydrogen evolution for high selective CO2 reduction through surface-reconstructed heterojunction photocatalyst. Appl. Catal. B Environ. 2021, 286, 119876. [Google Scholar] [CrossRef]
- Katsumata, K.; Sakai, K.; Ikeda, K.; Carja, G.; Matsushita, N.; Okada, K. Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides. Mater. Lett. 2013, 107, 138–140. [Google Scholar] [CrossRef]
- Pulido Melián, E.; Henríquez-Cárdenes, E.; González Díaz, O.; Doña Rodríguez, J.M. Study of adsorption and degradation of dimethylphthalate on TiO2-based photocatalysts. Chem. Phys. 2016, 475, 112–118. [Google Scholar] [CrossRef]
- Mondal, S.; De Anda Reyes, M.E.; Pal, U. Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv. 2017, 7, 8633–8645. [Google Scholar] [CrossRef]
- Wang, X.; Han, S.; Zhang, Q.; Zhang, N.; Zhao, D. Photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/iTO 2. MATEC Web Conf. 2018, 238, 03006. [Google Scholar] [CrossRef]
- Conte, F.; Rossetti, I.; Ramis, G.; Vaulot, C.; Hajjar-Garreau, S.; Bennici, S. Low Metal Loading (Au, Ag, Pt, Pd) Photo-Catalysts Supported on TiO2 for Renewable Processes. Materials 2022, 15, 2915. [Google Scholar] [CrossRef]
- Zuo, C.; Su, Q.; Yan, X. Research Progress of Co-Catalysts in Photocatalytic CO2 Reduction: A Review of Developments, Opportunities, and Directions. Processes 2023, 11, 867. [Google Scholar] [CrossRef]
- Han, Y.; Xu, H.; Su, Y.; Xu, Z.; Wang, K.; Wang, W. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78. [Google Scholar] [CrossRef]
- Tian, J.; Zhong, K.; Zhu, X.; Yang, J.; Mo, Z.; Liu, J.; Dai, J.; She, Y.; Song, Y.; Li, H.; et al. Highly exposed active sites of Au nanoclusters for photocatalytic CO2 reduction. Chem. Eng. J. 2023, 451, 138392. [Google Scholar] [CrossRef]
- Yadav, M.; Basheer, H.S.; Ágfalvi, Á.; Ábrahámné, K.B.; Kiss, J.; Halasi, G.; Sápi, A.; Kukovecz, Á.; Kónya, Z. Noble metals-deposited TiO2 photocatalysts for photoreduction of CO2: Exploration of surface chemistry and a reflection on the importance of wavelength dependence. Appl. Catal. A Gen. 2023, 668, 119434. [Google Scholar] [CrossRef]
- Liu, Q.; Bai, C.; Zhu, C.; Guo, W.; Li, G.; Guo, S.; Kripalani, D.; Zhou, K.; Chen, R. M/BiOCl-(M = Pt, Pd, and Au) Boosted Selective Photocatalytic CO2 Reduction to C2 Hydrocarbons via *CHO Intermediate Manipulation. Adv. Sci. 2024, 11, 2400934. [Google Scholar] [CrossRef]
- Tanaka, K.; White, J.M. Dissociative adsorption of carbon dioxide on oxidized and reduced platinum/titanium dioxide. J. Phys. Chem. 1982, 86, 3977–3980. [Google Scholar] [CrossRef]
- López, C.R.; Melián, E.P.; Ortega Méndez, J.A.; Santiago, D.E.; Doña Rodríguez, J.M.; González Díaz, O. Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. J. Photochem. Photobiol. A Chem. 2015, 312, 45–54. [Google Scholar] [CrossRef]
- Khan, N.; Sapi, A.; Arora, I.; Sagadevan, S.; Chandra, A.; Garg, S. Photocatalytic CO2 reduction using metal and nonmetal doped TiO2 and its mechanism. React. Kinet. Mech. Catal. 2024, 137, 629–655. [Google Scholar] [CrossRef]
- Kreft, S.; Schoch, R.; Schneidewind, J.; Rabeah, J.; Kondratenko, E.V.; Kondratenko, V.A.; Junge, H.; Bauer, M.; Wohlrab, S.; Beller, M. Improving Selectivity and Activity of CO2 Reduction Photocatalysts with Oxygen. Chem 2019, 5, 1818–1833. [Google Scholar] [CrossRef]
- Kharade, A.K.; Chang, S. Contributions of Abundant Hydroxyl Groups to Extraordinarily High Photocatalytic Activity of Amorphous Titania for CO2 Reduction. J. Phys. Chem. C 2020, 124, 10981–10992. [Google Scholar] [CrossRef]
- Han, C.; Lei, Y.; Wang, B.; Wu, C.; Zhang, X.; Shen, S.; Sun, L.; Tian, Q.; Feng, Q.; Wang, Y. The functionality of surface hydroxyls on selective CH4 generation from photoreduction of CO2 over SiC nanosheets. Chem. Commun. 2019, 55, 1572–1575. [Google Scholar] [CrossRef]
- Yu, H.; Yan, S.; Zhou, P.; Zou, Z. CO2 photoreduction on hydroxyl-group-rich mesoporous single crystal TiO2. Appl. Surf. Sci. 2018, 427, 603–607. [Google Scholar] [CrossRef]
- Banerjee, S.; Zangiabadi, A.; Mahdavi-Shakib, A.; Husremovic, S.; Frederick, B.G.; Barmak, K.; Austin, R.N.; Billinge, S.J.L. Quantitative Structural Characterization of Catalytically Active TiO2 Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 6268–6276. [Google Scholar] [CrossRef]
- Chen, Y.; Soler, L.; Armengol-Profitós, M.; Xie, C.; Crespo, D.; Llorca, J. Enhanced photoproduction of hydrogen on Pd/TiO2 prepared by mechanochemistry. Appl. Catal. B Environ. 2022, 309, 121275. [Google Scholar] [CrossRef]
- Dontsova, T.А.; Yanushevska, O.I.; Nahirniak, S.V.; Kutuzova, A.S.; Krymets, G.V.; Smertenko, P.S. Characterization of Commercial TiO2 P90 Modified with ZnO by the Impregnation Method. J. Chem. 2021, 2021, 9378490. [Google Scholar] [CrossRef]
- Collado, L.; García-Tecedor, M.; Gomez-Mendoza, M.; Pizarro, A.H.; Oropeza, F.E.; Liras, M.; de la Peña O’Shea, V.A. Unravelling charge dynamic effects in photocatalytic CO2 reduction over TiO2: Anatase vs P25. Catal. Today 2023, 423, 114279. [Google Scholar] [CrossRef]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
Catalyst | Anatase/% | Rutile/% | Crystal Size | Surface Area/m2·g−1 | Bandgap/eV | Pore Volume/cm3·g−1 | |
---|---|---|---|---|---|---|---|
Anatase/nm | Rutile/nm | ||||||
P25 | 82 | 18 | 23 | 44 | 48.6 ± 0.1 | 3.18 | 0.176 |
P90 | 86 | 14 | 13 | 19 | 79.2 ± 0.2 | 3.27 | 0.381 |
Catalyst/[MB]o/Metal | [MB] | % MBdegradated | TOC | % TOCremoved | [Phenol] | [Ethanol] | [Formic Acid] | [Acetic Acid] | [Oxalic Acid] | [IC] |
---|---|---|---|---|---|---|---|---|---|---|
P25/10 ppm/Pt | ND | 100 | 1.3 | 78.3 | ND | ND | 0.85 | 0.58 | ND | 0.3 |
P25/20 ppm/Pt | ND | 100 | 3.3 | 72.5 | 0.01 | ND | ND | ND | 0.19 | 0.8 |
P25/50 ppm/Pt | 0.3 | 99.0 | 9.2 | 69.3 | 0.07 | ND | 0.29 | 0.52 | 0.29 | 0.1 |
P25/100 ppm/Pt | 1.5 | 97.5 | 11.7 | 80.5 | 0.08 | 5.6 | 0.18 | ND | ND | 0.1 |
P25/20 ppm/Au | 0.3 | 97.5 | 6.1 | 49.2 | 0.04 | ND | ND | ND | 0.08 | 0.8 |
P25/20 ppm/Pd | ND | 100 | 3.4 | 66.0 | ND | ND | 0.81 | ND | 1.1 | 0.9 |
P90/20 ppm/Pt | ND | 100 | 1.2 | 90.0 | 0.04 | ND | 0.31 | 0.76 | ND | 4.8 |
P90/20 ppm/Au | ND | 100 | 5.9 | 50.8 | ND | ND | ND | 0.40 | ND | 8.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido-Melián, E.; Santana-Fleitas, C.V.; Araña, J.; González-Díaz, Ó.M. Simultaneous Photocatalytic CO2 Reduction and Methylene Blue Degradation over TiO2@(Pt, Au, or Pd). Photochem 2025, 5, 30. https://doi.org/10.3390/photochem5040030
Pulido-Melián E, Santana-Fleitas CV, Araña J, González-Díaz ÓM. Simultaneous Photocatalytic CO2 Reduction and Methylene Blue Degradation over TiO2@(Pt, Au, or Pd). Photochem. 2025; 5(4):30. https://doi.org/10.3390/photochem5040030
Chicago/Turabian StylePulido-Melián, Elisenda, Cristina Valeria Santana-Fleitas, Javier Araña, and Óscar Manuel González-Díaz. 2025. "Simultaneous Photocatalytic CO2 Reduction and Methylene Blue Degradation over TiO2@(Pt, Au, or Pd)" Photochem 5, no. 4: 30. https://doi.org/10.3390/photochem5040030
APA StylePulido-Melián, E., Santana-Fleitas, C. V., Araña, J., & González-Díaz, Ó. M. (2025). Simultaneous Photocatalytic CO2 Reduction and Methylene Blue Degradation over TiO2@(Pt, Au, or Pd). Photochem, 5(4), 30. https://doi.org/10.3390/photochem5040030