Titanium Nanostructures: Advancing Photocatalysis in Complex Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology and Crystallography Composition of TiO2
3.2. Photocatalytic Degradation of AM, MO, and QY
3.3. Photocatalytic Degradation of the Multicomponent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, S.; Tiwari, K.S.; Gupta, C.; Tiwari, M.K.; Khan, A.; Sonkar, S.P. A brief review on natural dyes, pigments: Recent advances and future perspectives. Results Chem. 2023, 5, 100733. [Google Scholar] [CrossRef]
- Benkhaya, S.; Rabet, S.M.; Harfi, A.E. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Aromatic Amines, Organic Dyes, and Related Exposures. Lyon (FR): International Agency for Research on Cancer. 2010; (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 99). General Introduction to the Chemistry of Dyes. Available online: https://www.ncbi.nlm.nih.gov/books/NBK385442 (accessed on 10 December 2023).
- Kagathara, M.; Dalal, D.J.; Solanki, H.A. Revealing Explanation on Organic Dyes: A Review. Int. J. Res. Advent Technol. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Slama, H.B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Affat, S. Classifications, Advantages, Disadvantages, Toxicity Effects of Natural and Synthetic Dyes: A review. UTJsci. 2021, 8, 130–135. [Google Scholar]
- Fobiri, G.K. Synthetic Dye Application in Textiles: A Review on the Efficacies and Toxicities Involved. Text. Leather Rev. 2022, 5, 180–198. [Google Scholar] [CrossRef]
- Islam, M.T.; Islam, T.; Islam, T.; Repon, M.R. Synthetic Dyes for Textile Colouration: Process, Factors and Environmental Impact. Text. Leather Rev. 2022, 5, 327–373. [Google Scholar] [CrossRef]
- Amaranth Dye Content 85-95 915-67-3. Available online: https://www.sigmaaldrich.com/US/en/product/sigma/a1016 (accessed on 23 February 2024).
- PubChem. Amaranth. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Amaranth (accessed on 23 February 2024).
- Methyl Orange ACS Reagent, Dye Content 85 547-58-0. Available online: https://www.sigmaaldrich.com/US/en/product/sial/114510 (accessed on 23 February 2024).
- PubChem. Methyl Orange. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-orange (accessed on 23 February 2024).
- Quinoline Yellow Mixture of the Mono- and Disulfonic Acids of Quinoline Yellow 8004-92-0. Available online: https://www.sigmaaldrich.com/US/en/product/sial/309052 (accessed on 23 February 2024).
- PubChem. Acid Yellow 3. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Acid-yellow-3 (accessed on 23 February 2024).
- Chandanshive, V.V.; Kadam, S.K.; Rane, N.R.; Jeon, B.; Jadhav, J.P.; Govindwar, S.P. In situ textile wastewater treatment in high-rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 2020, 252, 126513. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.; Mahmoud, Y.A.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026. [Google Scholar] [CrossRef]
- Moncada-Sánchez, C.; Salazar-Hernández, M.; Baltazar-Vera, J.C.; Caudillo-González, M. Degradation of AMARANTH with TiO2 Synthesized by Sol-Gel Process. ECORFAN J. Boliv. 2022, 9, 9–14. [Google Scholar] [CrossRef]
- Razali, M.H.; Dris, M.M.; Rudin, N.M. Photodegradation of methyl orange dye using titanium dioxide photocatalyst. J. Sustain. Sci. Manag. 2009, 4, 49–55. [Google Scholar]
- Gupta, D.; Chauhan, R.; Kumar, N.; Singh, V.; Srivastava, V.C.; Mohanty, P.; Mandal, T.K. Enhancing photocatalytic degradation of quinoline by ZnO: TiO2 mixed oxide: Optimization of operating parameters and mechanistic study. J. Environ. Manag. 2020, 258, 110032. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Ruiz, A.A.; Paz-Ruiz, M.J.; Bailón-Ruiz, S.J. Degradation of organic dyes in the presence of titanium-based nanoparticles. MRS Adv. 2022, 7, 289–294. [Google Scholar] [CrossRef]
- Nawawi, W.I.; Zaharudin, R.; Zuliahani, A.; Shukri, D.S.; Azis, T.F.; Razali, Z. Immobilized TiO2-Polyethylene Glycol: Effects of Aeration and pH of Methylene Blue Dye. Appl. Sci. 2017, 7, 508. [Google Scholar] [CrossRef]
- Ćurković, L.; Ljubas, D.; Šegota, S.; Bačić, I. Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol-gel TiO2 films. J. Alloys Compd. 2014, 604, 309–316. [Google Scholar] [CrossRef]
- Ngoh, Y.S.; Nawi, M.A. Fabrication and properties of an immobilized P25 TiO2-montmorillonite bilayer system for the synergistic photocatalytic-adsorption removal of methylene blue. Mater. Res. Bull. 2016, 76, 8–21. [Google Scholar] [CrossRef]
- Ljubas, D.; Juretić, H.; Badrov, A.; Biošić, M.; Babić, S. Photocatalytic Degradation of Pharmaceutical Trimethoprim in Aqueous Solution over Nanostructured TiO2 Film Irradiated with Simulated Solar Radiation. Appl. Sci. 2023, 13, 5681. [Google Scholar] [CrossRef]
- Krakowiak, R.; Musial, J.; Bakun, P.; Spychała, M.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Koczorowski, T.; Sobotta, L.; Stanisz, B.; Goslinski, T. Titanium Dioxide-Based Photocatalysts for Degradation of Emerging Contaminants including Pharmaceutical Pollutants. Appl. Sci. 2021, 11, 8674. [Google Scholar] [CrossRef]
- Fattahi, A.; Jaciw-Zurakowsky, I.; Srikanthan, N.; Bragg, L.; Liang, R.; Zhou, N.; Servos, M.; Arlos, M. Effect of Background Water Matrices on Pharmaceutical and Personal Care Product Removal by UV-LED/TiO2. Catalysts 2021, 11, 576. [Google Scholar] [CrossRef]
- Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. Water 2023, 15, 175. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugo-Ruiz, A.A.; Bailón-Ruiz, S.J. Titanium Nanostructures: Advancing Photocatalysis in Complex Systems. Photochem 2024, 4, 222-232. https://doi.org/10.3390/photochem4020014
Lugo-Ruiz AA, Bailón-Ruiz SJ. Titanium Nanostructures: Advancing Photocatalysis in Complex Systems. Photochem. 2024; 4(2):222-232. https://doi.org/10.3390/photochem4020014
Chicago/Turabian StyleLugo-Ruiz, Alondra A., and Sonia J. Bailón-Ruiz. 2024. "Titanium Nanostructures: Advancing Photocatalysis in Complex Systems" Photochem 4, no. 2: 222-232. https://doi.org/10.3390/photochem4020014
APA StyleLugo-Ruiz, A. A., & Bailón-Ruiz, S. J. (2024). Titanium Nanostructures: Advancing Photocatalysis in Complex Systems. Photochem, 4(2), 222-232. https://doi.org/10.3390/photochem4020014