A Review of Visible Light Responsive Photocatalysts for Arsenic Remediation in Water
Abstract
:1. Introduction
2. Conventional Remediation Techniques
2.1. Oxidation
2.2. Adsorption
2.3. Precipitation
2.4. Membrane Technologies
2.5. Other Techniques
3. Heterogeneous Photocatalysis for the Removal of Arsenic in Water
3.1. Photocatalytic Oxidation of As(III) Using Modified TiO2
Photocatalyst | pH | Light Source | As(III) (μM) | Catalyst (g/L) | As(III) Oxidized (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
(Ru″L3) dye-sensitized Pt-loaded TiO2 | 3 | Xe 300 W λ > 420 nm | 500 | 0.5 | ~80 | 60 | [73] |
4-chlorophenol/TiO2 system | 3 | Xe 300 W λ > 420 nm | 200 | 0.5 | ~90 | 300 | [72] |
Pt-loaded TiO2 nanotube | 7 | 300 W halogen λ > 420 nm | 45.4 | foil | 83 | 280 | [74] |
N-doped TiO2 fiber | 7 | Xe 300 W λ > 420 nm | 133 | 0.5 | 100 | 90 | [69] |
Fe-doped TiO2 | n.a. | LED 400–600 nm | 80 | 3 | 100 | 30 | [68] |
N–S co-doped TiO2 | 9 | LED 650 W/m2 430–650 nm | 46 (p-ASA) | 1 | 98 | 300 | [70] |
2 mol% Er-doped TiO2 | n.a. | Xe 500 W λ > 400 nm | 23 (p-ASA) | 0.1 | ~70 | 90 | [71] |
Er3+–rGO co-doped TiO2 | n.a. | Xe 500 W λ > 400 nm | 23 (p-ASA) | 0.1 | 100 | 50 | [71] |
3.2. Photocatalytic Oxidation of As(III) Using TiO2-Based Nanocomposites
3.3. Photocatalytic Oxidation of As(III) Using WO3, ZnO, and Bismuth Oxides
3.4. Photocatalytic Oxidation of As(III) Using Graphitic Carbon Nitride Based Photocatalysts
3.5. Photocatalytic Oxidation of As(III) Using Core–Shell Structure Photocatalysts
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, V.K.; Sohn, M. Aquatic Arsenic: Toxicity, Speciation, Transformations, and Remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.D.; Rene, E.R.; Giri, B.S.; Pandey, A.; Singh, H. Adsorptive and Photocatalytic Properties of Metal Oxides towards Arsenic Remediation from Water: A Review. J. Environ. Chem. Eng. 2021, 9, 106376. [Google Scholar] [CrossRef]
- Sarkar, A.; Paul, B. The Global Menace of Arsenic and Its Conventional Remediation—A Critical Review. Chemosphere 2016, 158, 37–49. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Exposure to Arsenic: A Major Public Health Concern; Preventing Disease through Healthy Environments; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic Contamination, Consequences and Remediation Techniques: A Review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Marinho, B.A.; Cristóvão, R.O.; Boaventura, R.A.R.; Vilar, V.J.P. As(III) and Cr(VI) Oxyanion Removal from Water by Advanced Oxidation/Reduction Processes—A Review. Environ. Sci. Pollut. Res. 2019, 26, 2203–2227. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Naushad, M.; Chaudhry, S.A. Promising Prospects of Nanomaterials for Arsenic Water Remediation: A Comprehensive Review. Process Saf. Environ. Prot. 2019, 126, 60–97. [Google Scholar] [CrossRef]
- Kuroda, K.; Lu, B.; Hama, Y.; Yang, Y. Recent Progress in Photocatalysts for Oxidation of As(III) and Photocatalyst-Impregnated Adsorbents for Removing Aqueous Arsenic. Curr. Opin. Environ. Sci. Health 2023, 35, 100498. [Google Scholar] [CrossRef]
- Issa, N.B.; Rajaković-Ognjanović, V.N.; Marinković, A.D.; Rajaković, L.V. Separation and Determination of Arsenic Species in Water by Selective Exchange and Hybrid Resins. Anal. Chim. Acta 2011, 706, 191–198. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, Y.; Wang, L. Abiotic Oxidation of Arsenite in Natural and Engineered Systems: Mechanisms and Related Controversies over the Last Two Decades (1999–2020). J. Hazard. Mater. 2021, 414, 125488. [Google Scholar] [CrossRef]
- Nicomel, N.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. Int. J. Environ. Res. Public Health 2015, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Qu, J. Review on Heterogeneous Oxidation and Adsorption for Arsenic Removal from Drinking Water. J. Environ. Sci. 2021, 110, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Mahamallik, P.; Swain, R. A Mini-Review on Arsenic Remediation Techniques from Water and Future Trends. Water Sci. Technol. 2023, 87, 3108–3123. [Google Scholar] [CrossRef] [PubMed]
- ALSamman, M.T.; Sotelo, S.; Sánchez, J.; Rivas, B.L. Arsenic Oxidation and Its Subsequent Removal from Water: An Overview. Sep. Purif. Technol. 2023, 309, 123055. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, C.; Zhang, L.; Lu, X.; Liu, Y.; Li, X.; Wang, Y.; Wang, S. Arsenic Oxidation and Removal from Water via Core–Shell MnO2@La(OH)3 Nanocomposite Adsorption. Int. J. Environ. Res. Public. Health 2022, 19, 10649. [Google Scholar] [CrossRef] [PubMed]
- Hug, S.J.; Leupin, O. Iron-Catalyzed Oxidation of Arsenic(III) by Oxygen and by Hydrogen Peroxide: pH-Dependent Formation of Oxidants in the Fenton Reaction. Environ. Sci. Technol. 2003, 37, 2734–2742. [Google Scholar] [CrossRef] [PubMed]
- Sen Gupta, B.; Chatterjee, S.; Rott, U.; Kauffman, H.; Bandopadhyay, A.; DeGroot, W.; Nag, N.K.; Carbonell-Barrachina, A.A.; Mukherjee, S. A Simple Chemical Free Arsenic Removal Method for Community Water Supply—A Case Study from West Bengal, India. Environ. Pollut. 2009, 157, 3351–3353. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lin, G.; Zeng, J.; Yang, Z.; Wang, L. Construction of Algal-Bacterial Consortia Using Green Microalgae Chlorella vulgaris and As(III)-Oxidizing Bacteria: As Tolerance and Metabolomic Profiling. J. Environ. Sci. 2024, 139, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Kraaijeveld, E.; Rijsdijk, S.; Van Der Poel, S.; Van Der Hoek, J.P.; Rabaey, K.; Van Halem, D. Electrochemical Arsenite Oxidation for Drinking Water Treatment: Mechanisms, by-Product Formation and Energy Consumption. Water Res. 2024, 253, 121227. [Google Scholar] [CrossRef]
- Syam Babu, D.; Nidheesh, P.V. A Review on Electrochemical Treatment of Arsenic from Aqueous Medium. Chem. Eng. Commun. 2021, 208, 389–410. [Google Scholar] [CrossRef]
- Miao, X.; Shen, J.; Ji, W.; Zhang, T.C.; Liang, Y.; Yuan, S. Boosting Electrochemical Oxidation of As(III) on Fe-Doped RuO2/PEDOT/SnO2 Nanocomposite Anode: Fabrication, Performance and Mechanism. J. Mater. Sci. Technol. 2024, 180, 243–258. [Google Scholar] [CrossRef]
- Litter, M.I.; Candal, R.J.; Meichtry, J.M. (Eds.) Reduction of Pentavalent and Trivalent Arsenic by TiO2-Photocatalysis: An Innovative Way of Arsenic Removal. In Advanced Oxidation Technologies; CRC Press: Boca Raton, FL, USA, 2014; pp. 61–80. ISBN 978-0-429-22744-8. [Google Scholar]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (Modified) Natural Adsorbents for Arsenic Remediation: A Review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Liu, M.; Wang, N.; Li, G. A Critical Review on Arsenic Removal from Water Using Iron-Based Adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Pittman, C.U. Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lin, J.; Luo, J.; Sun, S.; Zhang, X.; Ma, R.; Peng, J.; Ji, F.; Zheng, S.; Tian, Z.; et al. Rapid Immobilization of Arsenic in Contaminated Soils by Microwave Irradiation Combined with Magnetic Biochar: Microwave-Induced Electron Transfer for Oxidation and Immobilization of Arsenic (III). Sci. Total Environ. 2024, 919, 170916. [Google Scholar] [CrossRef]
- Siddiq, O.M.; Tawabini, B.S.; Soupios, P.; Ntarlagiannis, D. Removal of Arsenic from Contaminated Groundwater Using Biochar: A Technical Review. Int. J. Environ. Sci. Technol. 2022, 19, 651–664. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, R.; Singh, R.K.; Sharma, P.; Ghosh, A. Review on Arsenic Removal Using Biochar-Based Materials. Groundw. Sustain. Dev. 2022, 17, 100740. [Google Scholar] [CrossRef]
- Foti, C.; Mineo, P.G.; Nicosia, A.; Scala, A.; Neri, G.; Piperno, A. Recent Advances of Graphene-Based Strategies for Arsenic Remediation. Front. Chem. 2020, 8, 608236. [Google Scholar] [CrossRef]
- Shan, H.; Liu, Y.; Zeng, C.; Peng, S.; Zhan, H. On As(III) Adsorption Characteristics of Innovative Magnetite Graphene Oxide Chitosan Microsphere. Materials 2022, 15, 7156. [Google Scholar] [CrossRef]
- Saqib, A.N.S.; Waseem, A.; Khan, A.F.; Mahmood, Q.; Khan, A.; Habib, A.; Khan, A.R. Arsenic Bioremediation by Low Cost Materials Derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecol. Eng. 2013, 51, 88–94. [Google Scholar] [CrossRef]
- Mondal, M.K.; Garg, R. A Comprehensive Review on Removal of Arsenic Using Activated Carbon Prepared from Easily Available Waste Materials. Environ. Sci. Pollut. Res. 2017, 24, 13295–13306. [Google Scholar] [CrossRef]
- Olusegun, S.J.; Souza, T.G.F.; Mohallem, N.D.S.; Ciminelli, V.S.T. Removal and Environmentally Safe Disposal of As(III) and As(V)-Loaded Ferrihydrite/Biosilica Composites. J. Environ. Manag. 2023, 335, 117489. [Google Scholar] [CrossRef]
- Hott, R.C.; Andrade, T.G.; Santos, M.S.; Lima, A.C.F.; Faria, M.C.S.; Bomfeti, C.A.; Barbosa, F.; Maia, L.F.O.; Oliveira, L.C.A.; Pereira, M.C.; et al. Adsorption of Arsenic from Water and Its Recovery as a Highly Active Photocatalyst. Environ. Sci. Pollut. Res. 2016, 23, 21969–21979. [Google Scholar] [CrossRef] [PubMed]
- Taleb, K.; Markovski, J.; Milosavljević, M.; Marinović-Cincović, M.; Rusmirović, J.; Ristić, M.; Marinković, A. Efficient Arsenic Removal by Cross-Linked Macroporous Polymer Impregnated with Hydrous Iron Oxide: Material Performance. Chem. Eng. J. 2015, 279, 66–78. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Current Trends of Arsenic Adsorption in Continuous Mode: Literature Review and Future Perspectives. Sustainability 2021, 13, 1186. [Google Scholar] [CrossRef]
- Ostermeyer, P.; Bonin, L.; Folens, K.; Verbruggen, F.; García-Timermans, C.; Verbeken, K.; Rabaey, K.; Hennebel, T. Effect of Speciation and Composition on the Kinetics and Precipitation of Arsenic Sulfide from Industrial Metallurgical Wastewater. J. Hazard. Mater. 2021, 409, 124418. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.S.; Coutinho de Paula, E.; Amaral, M.C.S. Arsenic Contamination, Effects and Remediation Techniques: A Special Look onto Membrane Separation Processes. Process Saf. Environ. Prot. 2021, 148, 604–623. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Agrawal, P.K.; Singh, D.K. Perspectives on Arsenic Toxicity, Carcinogenicity and Its Systemic Remediation Strategies. Environ. Technol. Innov. 2019, 16, 100462. [Google Scholar] [CrossRef]
- Pranudta, A.; Patra, S.; Amonpattaratkit, P.; Klysubun, W.; Saiyasombat, C.; El-Moselhy, M.M.; Nguyen, T.T.; Padungthon, S. Immobilization of Arsenic in Wastewater from Regeneration of Fixed-Bed Adsorbent by Co-Precipitation with Zirconium Nano-Sludge for Disposal in Landfills. J. Environ. Chem. Eng. 2022, 10, 107756. [Google Scholar] [CrossRef]
- Camacho, J.; Wee, H.-Y.; Kramer, T.A.; Autenrieth, R. Arsenic Stabilization on Water Treatment Residuals by Calcium Addition. J. Hazard. Mater. 2009, 165, 599–603. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, Q.; Shao, L.-M.; He, P.-J. Recovery of Arsenic Trioxide from a Sludge-Like Waste by Alkaline Leaching and Acid Precipitation. Waste Biomass Valoriz. 2014, 5, 255–263. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Y.; Zhang, X.; Sun, W.; Han, H.; Yu, Z.; Yue, T. A Novel Scheme for Safe Disposal and Resource Utilization of Arsenic-Alkali Slag. Process Saf. Environ. Prot. 2021, 156, 429–437. [Google Scholar] [CrossRef]
- Siddique, T.; Gangadoo, S.; Quang Pham, D.; Dutta, N.K.; Choudhury, N.R. Antifouling and Antimicrobial Study of Nanostructured Mixed-Matrix Membranes for Arsenic Filtration. Nanomaterials 2023, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Worou, C.N.; Chen, Z.-L.; Bacharou, T. Arsenic Removal from Water by Nanofiltration Membrane: Potentials and Limitations. Water Pract. Technol. 2021, 16, 291–319. [Google Scholar] [CrossRef]
- Algieri, C.; Pugliese, V.; Coppola, G.; Curcio, S.; Calabro, V.; Chakraborty, S. Arsenic Removal from Groundwater by Membrane Technology: Advantages, Disadvantages, and Effect on Human Health. Groundw. Sustain. Dev. 2022, 19, 100815. [Google Scholar] [CrossRef]
- Sharma, S.; Desai, A.V.; Joarder, B.; Ghosh, S.K. A Water-Stable Ionic MOF for the Selective Capture of Toxic Oxoanions of SeVI and AsV and Crystallographic Insight into the Ion-Exchange Mechanism. Angew. Chem. Int. Ed. 2020, 59, 7788–7792. [Google Scholar] [CrossRef] [PubMed]
- Padungthon, S.; German, M.; Wiriyathamcharoen, S.; SenGupta, A.K. Polymeric Anion Exchanger Supported Hydrated Zr(IV) Oxide Nanoparticles: A Reusable Hybrid Sorbent for Selective Trace Arsenic Removal. React. Funct. Polym. 2015, 93, 84–94. [Google Scholar] [CrossRef]
- Bukhari, D.A.; Rehman, A. Metal-Resistant Bacteria as a Green Bioresource for Arsenic Remediation in Wastewaters. Curr. Opin. Green Sustain. Chem. 2023, 40, 100785. [Google Scholar] [CrossRef]
- Kaya, C.; Uğurlar, F.; Ashraf, M.; Hou, D.; Kirkham, M.B.; Bolan, N. Microbial Consortia-Mediated Arsenic Bioremediation in Agricultural Soils: Current Status, Challenges, and Solutions. Sci. Total Environ. 2024, 917, 170297. [Google Scholar] [CrossRef]
- Guo, J.; Luo, S.; Liu, Z.; Luo, T. Direct Arsenic Removal from Water Using Non-Membrane, Low-Temperature Directional Solvent Extraction. J. Chem. Eng. Data 2020, 65, 2938–2946. [Google Scholar] [CrossRef]
- German, M.S.; Watkins, T.A.; Chowdhury, M.; Chatterjee, P.; Rahman, M.; Seingheng, H.; SenGupta, A.K. Evidence of Economically Sustainable Village-Scale Microenterprises for Arsenic Remediation in Developing Countries. Environ. Sci. Technol. 2019, 53, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Sengupta, M.K.; Ahamed, S.; Rahman, M.M.; Mondal, D.; Lodh, D.; Das, B.; Nayak, B.; Roy, B.K.; Mukherjee, A.; et al. Ineffectiveness and Poor Reliability of Arsenic Removal Plants in West Bengal, India. Environ. Sci. Technol. 2005, 39, 4300–4306. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, I.M.; McBean, E.A. Beyond Appropriate Technology: Social Considerations for the Sustainable Use of Arsenic–Iron Removal Plants in Rural Bangladesh. Technol. Soc. 2015, 41, 1–9. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Ryu, J.; Choi, W. Photocatalytic Oxidation of Arsenite on TiO2: Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors. Environ. Sci. Technol. 2006, 40, 7034–7039. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Leng, W.; Li, X.; Cheng, X.; Xu, Y.; Zhang, J.; Cao, C. Photocatalytic Oxidation of Arsenite over TiO2: Is Superoxide the Main Oxidant in Normal Air-Saturated Aqueous Solutions? Environ. Sci. Technol. 2011, 45, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Litter, M.I. Last Advances on TiO2-Photocatalytic Removal of Chromium, Uranium and Arsenic. Curr. Opin. Green Sustain. Chem. 2017, 6, 150–158. [Google Scholar] [CrossRef]
- García, F.E.; Litter, M.I.; Sora, I.N. Assessment of the Arsenic Removal From Water Using Lanthanum Ferrite. ChemistryOpen 2021, 10, 790–797. [Google Scholar] [CrossRef]
- Molinari, R.; Argurio, P. Arsenic Removal from Water by Coupling Photocatalysis and Complexation-Ultrafiltration Processes: A Preliminary Study. Water Res. 2017, 109, 327–336. [Google Scholar] [CrossRef]
- Pendlebury, S.R.; Wang, X.; Le Formal, F.; Cornuz, M.; Kafizas, A.; Tilley, S.D.; Grätzel, M.; Durrant, J.R. Ultrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias. J. Am. Chem. Soc. 2014, 136, 9854–9857. [Google Scholar] [CrossRef]
- Tahir, M.; Tasleem, S.; Tahir, B. Recent Development in Band Engineering of Binary Semiconductor Materials for Solar Driven Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 15985–16038. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Jang, J.S.; Kim, H.G.; Lee, J.S. Heterojunction Semiconductors: A Strategy to Develop Efficient Photocatalytic Materials for Visible Light Water Splitting. Catal. Today 2012, 185, 270–277. [Google Scholar] [CrossRef]
- Ochiai, T.; Fujishima, A. Photoelectrochemical Properties of TiO2 Photocatalyst and Its Applications for Environmental Purification. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 247–262. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. TiO2 Photocatalyst for Water Treatment Applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Rizzo, L. Visible Light Active Fe-Doped TiO2 for the Oxidation of Arsenite to Arsenate in Drinking Water. Chem. Eng. Trans. 2018, 70, 1573–1578. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, M.; Liu, Y.; Lang, X.; Liu, L.; Liu, H.; Qu, J.; Li, J. Visible-Light Induced Photocatalytic Activity of Electrospun-TiO2 in Arsenic(III) Oxidation. ACS Appl. Mater. Interfaces 2015, 7, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Diaz, D.; Hernandez-Ramirez, A.; Guzman-Mar, J.; Villanueva-Rodriguez, M.; Maya-Trevino, L.; Hinojosa-Reyes, L. N-S Co-Doped TiO2 Synthesized by Microwave Precipitation Method: Effective Photocatalytic Performance for the Removal of Organoarsenic Compounds. J. Environ. Chem. Eng. 2021, 9, 106683. [Google Scholar] [CrossRef]
- Ren, X.; Yao, H.; Tang, R.; Rong, A.; Yuan, S.; Wang, W.; Ali, I.; Hu, Z. Modification of TiO2 by Er3+ and rGO Enhancing Visible Photocatalytic Degradation of Arsanilic Acid. Environ. Sci. Pollut. Res. 2022, 30, 35023–35033. [Google Scholar] [CrossRef]
- Choi, W.; Yeo, J.; Ryu, J.; Tachikawa, T.; Majima, T. Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species. Environ. Sci. Technol. 2010, 44, 9099–9104. [Google Scholar] [CrossRef]
- Ryu, J.; Choi, W. Effects of TiO2 Surface Modifications on Photocatalytic Oxidation of Arsenite: The Role of Superoxides. Environ. Sci. Technol. 2004, 38, 2928–2933. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, Y.; Tian, Z.; Wu, Y.; Cui, Y. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode. Nanoscale Res. Lett. 2016, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.K.; Ray, A.K.; Sharma, V.K.; Millero, F.J. Adsorption of Arsenate and Arsenite on Titanium Dioxide Suspensions. J. Colloid Interface Sci. 2004, 278, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.A.; Hoffmann, M.R.; Hering, J.G. TiO2-Photocatalyzed As(III) Oxidation in Aqueous Suspensions: Reaction Kinetics and Effects of Adsorption. Environ. Sci. Technol. 2005, 39, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xu, B.; Yang, J.; Wu, J.; Zhai, W.; Yang, B.; Liu, M. Rapid Preparation of TiO2 and Its Photocatalytic Oxidation for Arsenic Adsorption under Visible Light. Langmuir 2020, 36, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- González-Borrero, P.P.; Sato, F.; Medina, A.N.; Baesso, M.L.; Bento, A.C.; Baldissera, G.; Persson, C.; Niklasson, G.A.; Granqvist, C.G.; Ferreira Da Silva, A. Optical Band-Gap Determination of Nanostructured WO3 Film. Appl. Phys. Lett. 2010, 96, 061909. [Google Scholar] [CrossRef]
- Ezaki, M.; Kusakabe, K. Highly Crystallized Tungsten Trioxidc Loaded Titania Composites Prepared by Using Ionic Liquids and Their Photocatalytic Behaviors. Evergreen 2014, 1, 18–24. [Google Scholar] [CrossRef]
- Xie, L.; Liu, P.; Zheng, Z.; Weng, S.; Huang, J. Morphology Engineering of V2O5/TiO2 Nanocomposites with Enhanced Visible Light-Driven Photofunctions for Arsenic Removal. Appl. Catal. B Environ. 2016, 184, 347–354. [Google Scholar] [CrossRef]
- Balati, A.; Matta, A.; Nash, K.; Shipley, H.J. Heterojunction of Vertically Aligned MoS2 Layers to Hydrogenated Black TiO2 and Rutile Based Inorganic Hollow Microspheres for the Highly Enhanced Visible Light Arsenic Photooxidation. Compos. Part B—Eng. 2020, 185, 107785. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Zhang, T.C.; Xiang, G.; Wang, X.; Pehkonen, S.; Yuan, S. A Magnetic γ-Fe2O3@PANI@TiO2core-Shell Nanocomposite for Arsenic Removalviaa Coupled Visible-Light-Induced Photocatalytic Oxidation-Adsorption Process. Nanoscale Adv. 2020, 2, 2018–2024. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, Y.; Zhang, P.; Wang, X.; Yuan, S. Heterostructured MWCNTs@PANI@TiO2 Nanocomposites for Enhanced Adsorption of As(III) from Aqueous Solution: Adsorption and Photocatalytic Oxidation Behaviors. Ind. Eng. Chem. Res. 2020, 59, 11743–11756. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, T.C.; Xiang, G.; Wang, X.; Yuan, S. Removal of Trace Arsenite through Simultaneous Photocatalytic Oxidation and Adsorption by Magnetic Fe3O4@PpPDA@TiO2 Core-Shell Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 8495–8504. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zhang, T.; Xiang, G.; Wang, X.; Yuan, S. One-Pot Synthesis of a Magnetic TiO2/PTh/Gamma-Fe2O3 Heterojunction Nanocomposite for Removing Trace Arsenite via Simultaneous Photocatalytic Oxidation and Adsorption. Ind. Eng. Chem. Res. 2021, 60, 528–540. [Google Scholar] [CrossRef]
- Ouyang, L.; Zhang, Y.; Wang, Y.; Wang, X.; Yuan, S. Insights into the Adsorption and Photocatalytic Oxidation Behaviors of Boron-Doped TiO2/g-C3N4 Nanocomposites toward As(III) in Aqueous Solution. Ind. Eng. Chem. Res. 2021, 60, 7003–7013. [Google Scholar] [CrossRef]
- Bolognino, I.; Pelosato, R.; Marcì, G.; Natali Sora, I. Comparison of Ten Metal-Doped LaFeO3 Samples on Photocatalytic Degradation of Antibiotics in Water under Visible Light: Role of Surface Area and Aqueous Phosphate Ions. Molecules 2023, 28, 3807. [Google Scholar] [CrossRef]
- Katz, A.; McDonagh, A.; Tijing, L.; Shon, H.K. Fouling and Inactivation of Titanium Dioxide-Based Photocatalytic Systems. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1880–1915. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.W.; Choi, W. Platinized WO3 as an Environmental Photocatalyst That Generates OH Radicals under Visible Light. Environ. Sci. Technol. 2010, 44, 6849–6854. [Google Scholar] [CrossRef]
- Kim, J.; Moon, G.; Kim, S.; Kim, J. Photocatalytic Oxidation Mechanism of Arsenite on Tungsten Trioxide under Visible Light. J. Photochem. Photobiol. Chem. 2015, 311, 35–40. [Google Scholar] [CrossRef]
- Samad, A.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Highly Efficient Visible Light-Induced Photocatalytic Oxidation of Arsenite with Nanosized WO3 Particles in the Presence of Cu2+ and CuO. Environ. Technol. 2022, 44, 3096–3107. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G.; Rizzo, L. Cu-Doped ZnO as Efficient Photocatalyst for the Oxidation of Arsenite to Arsenate under Visible Light. Appl. Catal. B Environ. 2018, 238, 471–479. [Google Scholar] [CrossRef]
- Vaiano, V.; Chianese, L.; Rizzo, L.; Iervolino, G. Visible Light Driven Oxidation of Arsenite to Arsenate in Aqueous Solution Using Cu-Doped ZnO Supported on Polystyrene Pellets. Catal. Today 2021, 361, 69–76. [Google Scholar] [CrossRef]
- Hu, J.; Weng, S.; Zheng, Z.; Pei, Z.; Huang, M.; Liu, P. Solvents Mediated-Synthesis of BiOI Photocatalysts with Tunable Morphologies and Their Visible-Light Driven Photocatalytic Performances in Removing of Arsenic from Water. J. Hazard. Mater. 2014, 264, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, L.; Chen, M.; Zhang, Q.; Dai, S.; Zhao, T. Mechanochemical Construction of Bi1-xLaxOI Solid Solution with Abundant Oxygen Vacancies for Enhanced Photocatalytic Oxidation of Inorganic/Organic Arsenic. Appl. Surf. Sci. 2022, 602, 154250. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, M.; Guo, J.; Liu, W.; Tong, M. Facile Synthesis of ZrO2 Coated BiOCl0.5I0.5 for Photocatalytic Oxidation-Adsorption of As(III) under Visible Light Irradiation. Chemosphere 2018, 211, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Chen, Q.; Zhang, T.C.; Ouyang, L.; Yuan, S. Simultaneous Photocatalytic Oxidation and Adsorption for Efficient As(III) Removal by Magnetic BiOI/γ-Fe2O3 Core–Shell Nanoparticles. Mater. Today Chem. 2022, 24, 100823. [Google Scholar] [CrossRef]
- Ren, H.-T.; Jing, M.-Z.; Liang, Y.; Li, T.-T.; Jiang, S.-M.; Lou, C.-W.; Lin, J.-H.; Han, X. Performance and Mechanism Involved in the Cascade Oxidation of Mn(II) and As(III) by Bi2.15WO6 under Alkaline Conditions. J. Environ. Chem. Eng. 2021, 9, 106196. [Google Scholar] [CrossRef]
- Tian, Q.; Zhuang, J.; Wang, J.; Xie, L.; Liu, P. Novel Photocatalyst, Bi2Sn2O7, for Photooxidation of As(III) under Visible-Light Irradiation. Appl. Catal. Gen. 2012, 425–426, 74–78. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kim, H.-B.; Choi, J.-H.; Baek, K. Bifunctional Iron-Modified Graphitic Carbon Nitride (g-C3N4) for Simultaneous Oxidation and Adsorption of Arsenic. Environ. Res. 2020, 188, 109832. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Murugananthan, M.; Zhang, Y. Graphitic Carbon Nitride Based Photocatalysis for Redox Conversion of Arsenic(III) and Chromium(VI) in Acid Aqueous Solution. Appl. Catal. B Environ. 2019, 248, 349–356. [Google Scholar] [CrossRef]
- Lei, D.; Xue, J.; Peng, X.; Li, S.; Bi, Q.; Tang, C.; Zhang, L. Oxalate Enhanced Synergistic Removal of Chromium(VI) and Arsenic(III) over ZnFe2O4/g-C3N4: Z-Scheme Charge Transfer Pathway and Photo-Fenton like Reaction. Appl. Catal. B Environ. 2021, 282, 119578. [Google Scholar] [CrossRef]
- Wang, C.; Dai, Y.; Fu, X.; Lu, H.; Zhang, J. A Novel Layer-Layer Crossed Structure of Bentonite/g-C3N4 for Enhanced Photocatalytic Oxidation of Arsenic(III) in a Wide pH Range. Surf. Interfaces 2021, 26, 101365. [Google Scholar] [CrossRef]
- Sun, S.; Ji, C.; Wu, L.; Chi, S.; Qu, R.; Li, Y.; Lu, Y.; Sun, C.; Xue, Z. Facile One-Pot Construction of α-Fe2O3/g-C3N4 Heterojunction for Arsenic Removal by Synchronous Visible Light Catalysis Oxidation and Adsorption. Mater. Chem. Phys. 2017, 194, 1–8. [Google Scholar] [CrossRef]
- Lei, D.; Xue, J.; Bi, Q.; Tang, C.; Zhang, L.; Zhang, J. Visible-Light Activation of Sulfite by ZnFe2O4@PANI Photocatalyst for As(III) Removal: The Role of Radicals and Fe(IV). Appl. Surf. Sci. 2022, 578, 151940. [Google Scholar] [CrossRef]
- Qin, Y.; Cui, Y.; Tian, Z.; Wu, Y.; Li, Y. Synthesis of AG@AgCl Core–Shell Structure Nanowires and Its Photocatalytic Oxidation of Arsenic (III) Under Visible Light. Nanoscale Res. Lett. 2017, 12, 247. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ye, Q.; Wang, H.; Duo, X.; Peng, L.; Dong, W.; Cui, X.; Lu, Y.; Li, Y. Photocatalytic and Oxidation Mechanisms of Fe–Ag@AgCl: Effect on Co-Existing Arsenic (III) and Escherichia coli. Environ. Res. 2023, 217, 114913. [Google Scholar] [CrossRef]
Oxidation Method | Advantages | Disadvantages | Ref. |
---|---|---|---|
chemical oxidation | suitable for high [As(III)], fast and complete for some oxidants, some oxidants may act as adsorbents | need for stoichiometric chemicals, potentially toxic residues, efficiency may be strongly pH dependent, possible interference by other substances present in groundwater | [12,13,18] |
in situ oxidation | simple, cheap, effective (<10 μg/mL), no sludge | very few reported examples | [18] |
electrochemistry | no chemicals required, high pH groundwater is reduced to ≈pH 7, viable cost | need for electrochemical apparatus, possibility of formation of noxious by-products, lower efficacy in groundwater than in synthetic water | [15,20] |
biochemical oxidation | biocompatible, algae may act as adsorbents | need for selected strains of bacteria or algae and controlled temperature, proved effective only in laboratory conditions | [19] |
photocatalysis (UV) | efficient, no chemicals required | need for UV radiation, possible interference from other ions present in groundwater | [13,23] |
Photocatalyst | pH | Light Source | As(III) (μM) | Catalyst (g/L) | As(III) Oxidized (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
TiO2/WO3 | 3 | 230 W EB-1750 Epson | 200 | 0.4 | ~75 | 60 | [79] |
V2O5@TiO2 | 4 | Xe 300 W λ > 420 nm | 26.7 | 0.8 | 92 | 80 | [80] |
HBTiO2/RBIHM * | 10 | DH-2000 deuterium tungsten halogen 1060 W/m2 λ > 420 nm | 0.76 | 0.5 | 70.3 | 30 | [81] |
HBTiO2/RBIHM-MoS2 * | 10 | DH-2000 deuterium tungsten halogen 1060 W/m2 λ > 420 nm | 0.76 | 0.5 | 96.6 | 30 | [81] |
γ-Fe2O3@PANI@TiO2 | 8.5–10 | n.a. | 67 | 1.0 | ~89 | 300 | [82] |
MWCNT/PANI/TiO2 | 5 | Xe 500 W λ > 380 nm | 267 | 0.5 | ~52 | 300 | [83] |
Fe3O4@PpPDA@TiO2 ‡ | 6 | Xe 500 W λ > 380 nm | 267 | 0.5 | ~78 | 300 | [84] |
γ-Fe2O3/PTh/TiO2 # | 6 | Xe 500 W Visible light | 26.7 | 0.5 | 99 | 300 | [85] |
B-doped TiO2/g-C3N4 | 5 | Xe 500 W Visible light | 26.7 | 0.5 | 92 | 300 | [86] |
Photocatalyst | pH | Light Source | As(III) (μM) | Catalyst (g/L) | As(III) Oxidized (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
Pt/WO3 | 3 | 300 W Xe arc lamp λ > 420 nm | 100 | 0.5 | 100 | 30 | [89] |
WO3 | 3 | 300-W Xe arc lamp λ > 420 nm | 100 | 0.5 | 100 | 150 | [89] |
(10 mg L−1 Cu2+)/WO3 | 3 | visible LED light λmax ~ 405 nm | 133 | 0.33 | 95 | 360 | [91] |
(10 mg L−1 Cu2+)/WO3 | 7 | visible LED light λmax ~ 405 nm | 133 | 0.33 | 90 | 360 | [91] |
1 wt% CuO-WO3 | 10 | visible LED light λmax ~ 405 nm | 133 | 0.33 | 80 | 360 | [91] |
1 wt% CuO-WO3 | 7 | visible LED light λmax ~ 405 nm | 133 | 0.33 | 75 | 360 | [91] |
Photocatalyst | pH | Light Source | As(III) (μM) | Catalyst (g/L) | As(III) Oxidized (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
1.08 mol% Cu-doped ZnO | 7.2 | LED (10 W; light intensity 32 W/cm2) 400–600 nm | 67 | 3 | 100 | 120 | [92] |
1.08 mol Cu-doped ZnO% supported on polystyrene pellets | 7.2 | LED (86 W; light intensity 78 mW/cm2) 400–600 nm | 67 | n.a. | 100 | 120 | [93] |
Photocatalyst | pH | Light Source | As(III) (μM) | Catalyst (g/L) | As(III) Oxidized (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
Bi2Sn2O7 | ~7.0 | 300 W halogen lamp 420−850 nm | 27 | 0.8 | 83 | 60 | [99] |
BiOI | - | 300 W Xe lamp λ > 420 nm | 67 | 0.4 | 90 | 30 | [94] |
ZrO2-coated BiOCl0.5I0.5 | 11 | Xe lamp λ > 400 nm | 67 | 0.25 | 90 | 60 | [96] |
ZrO2-coated BiOCl0.5I0.5 | 7 | Xe lamp λ > 400 nm | 67 | 0.25 | 95 | 90 | [96] |
Bi1-xLaxOI | 5.7 | 500 W Xe lamp λ > 420 nm | 133 | 1 | 90 | 150 | [95] |
Photocatalyst | pH | Light Source | As(III) (μM) | Catalyst (g/L) | As(III) Oxidized (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
Bentonite/g-C3N4 | 3 ÷ 8.5 | 300 W Xe lamp | 133 | 0.2 | 100 | 180 | [103] |
g-C3N4 | 3 ÷ 8.5 | 300 W Xe lamp | 133 | 0.2 | 40 | 180 | [103] |
Fe-g-C3N4 | 7 | 400–680 nm | 334 | 5 | ~16 * | 300 | [100] |
g-C3N4 | 7 | 400–680 nm | 334 | 5 | <5 | 300 | [100] |
α-Fe2O3/g-C3N4 | 7 | 500 W Xe lamp | 67 | 0.5 | ~94 | 500 | [104] |
g-C3N4/PDI ** | 4 | 300 W Xe lamp λ > 420 nm | 100 § | 1 | 90 | 120 | [101] |
g-C3N4 | 4 | 300 W Xe lamp λ > 420 nm | 100 § | 1 | 65 | 120 | [101] |
ZnFe2O4/g-C3N4 | 5 | n.a. | 60 § | 1 | 67 | 120 | [102] |
ZnFe2O4/g-C3N4 + oxalate | 5 | n.a. | 60 § | 1 | 100 | 120 | [102] |
Photocatalyst | pH | Light Source | As(III) (μM) | Catalyst (g/L) | As(III) Oxidized (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
ZnFe2O4 | 3–10 | n.a. | 667 | 0.05 | 63 | 60 | [105] |
ZnFe2O4@PANI * (+sulfite) | 3–10 | n.a. | 667 | 0.05 | ~100 | 60 | [105] |
Ag@AgCl | 3/7/10 | 300 W halogen lamp λ > 420 nm | 27 | 0.3 | 40/76/83 | 120 | [106] |
Ag@AgCl | 7 | 300 W Xenon lamp 420 < λ < 760 nm | 27 | n.a. | ~39 | 180 | [107] |
Fe-Ag@AgCl | 7 | 300 W Xenon lamp 420 < λ < 760 nm | 27 | n.a. | ~92 | 180 | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natali Sora, I.; Fontana, F.; Pelosato, R.; Bertolotti, B. A Review of Visible Light Responsive Photocatalysts for Arsenic Remediation in Water. Photochem 2024, 4, 198-218. https://doi.org/10.3390/photochem4020012
Natali Sora I, Fontana F, Pelosato R, Bertolotti B. A Review of Visible Light Responsive Photocatalysts for Arsenic Remediation in Water. Photochem. 2024; 4(2):198-218. https://doi.org/10.3390/photochem4020012
Chicago/Turabian StyleNatali Sora, Isabella, Francesca Fontana, Renato Pelosato, and Benedetta Bertolotti. 2024. "A Review of Visible Light Responsive Photocatalysts for Arsenic Remediation in Water" Photochem 4, no. 2: 198-218. https://doi.org/10.3390/photochem4020012
APA StyleNatali Sora, I., Fontana, F., Pelosato, R., & Bertolotti, B. (2024). A Review of Visible Light Responsive Photocatalysts for Arsenic Remediation in Water. Photochem, 4(2), 198-218. https://doi.org/10.3390/photochem4020012