Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis of Ru−In2O3 Nanoparticles
2.3. Characterization
2.4. Photocatalytic Dehalogenation Reactions
3. Results and Discussion
3.1. Characterizations of Ru−In2O3 Nanoparticles
hv = 1240/λ
3.2. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De-Wit, C.A. An Overview of Brominated Flame Retardants in the Environment. Chemosphere 2002, 46, 583–624. [Google Scholar] [CrossRef] [PubMed]
- Wemken, N.; Drage, D.S.; Abdallah, M.A.; Harrad, S.; Coggins, M.A. Concentrations of Brominated Flame Retardants in Indoor Air and Dust from Ireland Reveal Elevated Exposure to Decabromodiphenyl Ethane. Environ. Sci. Technol. 2019, 53, 9826–9836. [Google Scholar] [CrossRef] [PubMed]
- Hites, R.A. Polybrominated Diphenyl Ethers in the Environment and in People: A Meta-Analysis of Concentrations. Environ. Sci. Technol. 2004, 38, 945–956. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, L.; Majima, T.; Lei, M.; Tang, H. Reductive Debromination of Polybrominated Diphenyl Ethers: Dependence on Br Number of the Br-Rich Phenyl Ring. Environ. Sci. Technol. 2019, 53, 4433–4439. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Han, Z.; Liu, C. A Review on the Effects of PBDEs on Thyroid and Reproduction Systems in Fish. Gen. Comp. Endocrinol. 2015, 219, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Burreau, S.; Zebuhr, Y.; Broman, D.; Ishaq, R. Biomagnification of Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) Studied in Pike (Esox lucius), Perch (Perca fluviatilis) and Roach (Rutilus rutilus) from the Baltic Sea. Chemosphere 2004, 55, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, G.; Li, L.; Breivik, K. Global Historical Stocks and Emissions of PBDEs. Environ. Sci. Technol. 2019, 53, 6330–6340. [Google Scholar] [CrossRef]
- Zhou, C.; Pagano, J.; McGoldrick, D.J.; Chen, D.; Crimmins, B.S.; Hopke, P.K.; Milligan, M.S.; Murphy, E.W.; Holsen, T.M. Legacy Polybrominated Diphenyl Ethers (PBDEs) Trends in Top Predator Fish of the Laurentian Great Lakes (GL) from 1979 to 2016: Will Concentrations Continue to Decrease? Environ. Sci. Technol. 2019, 53, 6650–6659. [Google Scholar] [CrossRef]
- Singh, A.R.; Dhumal, P.S.; Bhakare, M.A.; Lokhande, K.D.; Bondarde, M.P.; Some, S. In-situ Synthesis of Metal Oxide and Polymer Decorated Activated Carbon-Based Photocatalyst for Organic Pollutants Degradation. Sep. Purif. Technol. 2022, 286, 120380. [Google Scholar] [CrossRef]
- Samanta, A.; Goswami, M.N.; Mahapatra, P.K. Fe-Doped ZnO Nanoparticles as Novel Photonic and Multiferroic Semiconductor. Mater. Chem. Phys. 2020, 240, 122180. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, D.; Chen, C.; Ma, W.; Zhao, J. TiO2-Mediated Photocatalytic Debromination of Decabromodiphenyl Ether: Kinetics and Intermediates. Environ. Sci. Technol. 2009, 43, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.F.; Alves, A.; Madeira, L.M. Chemical and Photochemical Degradation of Polybrominated Diphenyl Ethers in Liquid Systems—A Review. Water Res. 2016, 88, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Zhao, Q.; Chen, G.; Zhang, Q. High-Performance In2O3@Pani Core@Shell Architectures with Ultralong Charge Carriers Lifetime for Photocatalytic Degradation of Gaseous 1,2-Dichlorobenzene. Appl. Catal. B Environ. 2020, 263, 118278. [Google Scholar] [CrossRef]
- Lei, M.; Wang, N.; Zhu, L.; Xie, C.; Tang, H. A Peculiar Mechanism for the Photocatalytic Reduction of Decabromodiphenyl Ether over Reduced Graphene Oxide–TiO2 Photocatalyst. Chem. Eng. J. 2014, 241, 207–215. [Google Scholar] [CrossRef]
- Guo, W.; Zou, J.; Guo, B.; Xiong, J.; Liu, C.; Xie, Z.; Wu, L. Pd Nanoclusters/TiO2(B) Nanosheets with Surface Defects Toward Rapid Photocatalytic Dehalogenation of Polyhalogenated Biphenyls Under Visible Light. Appl. Catal. B Environ. 2020, 277, 119255. [Google Scholar] [CrossRef]
- Feng, Z.; Zhu, X.; Yang, J.; Zhong, K.; Jiang, Z.; Yu, Q.; Song, Y.; Hua, Y.; Li, H.; Xu, H. Inherent Facet-Dominant Effect for Cobalt Oxide Nanosheets to Enhance Photocatalytic CO2 Reduction. Appl. Surf. Sci. 2022, 578, 151848. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, J.; Zeng, D.; Yu, C.; Huang, W.; Yang, K.; Liu, X.; Liu, H. Binary-Phase TiO2 Modified Bi2MoO6 Crystal for Effective Removal of Antibiotics under Visible Light Illumination. Mater. Res. Bull. 2019, 112, 336–345. [Google Scholar] [CrossRef]
- Lai, Y.; Meng, M.; Yu, Y.; Wang, X.; Ding, T. Photoluminescence and Photocatalysis of the Flower-Like Nano-ZnO Photocatalysts Prepared by a Facile Hydrothermal Method with or without Ultrasonic Assistance. Appl. Catal. B Environ. 2011, 105, 335–345. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Kang, Z.; Jin, S.; Zhang, X.; Zheng, X.; Qi, Z.; Zhu, J.; Pan, B.; Xie, Y. Oxygen Vacancy Associated Single-Electron Transfer for Photofixation of CO2 to Long-Chain Chemicals. Nat. Commun. 2019, 10, 788. [Google Scholar] [CrossRef]
- Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. Oxygen Vacancies Confined in Ultrathin Indium Oxide Porous Sheets for Promoted Visible-Light Water Splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829. [Google Scholar] [CrossRef]
- Raizada, P.; Soni, V.; Kumar, A.; Singh, P.; Parwaz Khan, A.A.; Asiri, A.M.; Thakur, V.K.; Nguyen, V.-H. Surface Defect Engineering of Metal Oxides Photocatalyst for Energy Application and Water Treatment. J. Mater. 2021, 7, 388–418. [Google Scholar] [CrossRef]
- Ni, M.; Zhu, Y.; Guo, C.; Chen, D.-L.; Ning, J.; Zhong, Y.; Hu, Y. Efficient Visible-Light-Driven CO2 Methanation with Self-Regenerated Oxygen Vacancies in Co3O4/NiCo2O4 Hetero-Nanocages: Vacancy-Mediated Selective Photocatalysis. ACS Catal. 2023, 13, 2502–2512. [Google Scholar] [CrossRef]
- Hoch, L.B.; He, L.; Qiao, Q.; Liao, K.; Reyes, L.M.; Zhu, Y.; Ozin, G.A. Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO2 Reduction. Chem. Mater. 2016, 28, 4160–4168. [Google Scholar] [CrossRef]
- Ran, M.; Wang, H.; Cui, W.; Li, J.; Chen, P.; Sun, Y.; Sheng, J.; Zhou, Y.; Zhang, Y.; Dong, F. Light-Induced Generation and Regeneration of Oxygen Vacancies in BiSbO4 for Sustainable Visible Light Photocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 47984–47991. [Google Scholar] [CrossRef]
- Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO. Angew. Chem. Int. Ed. 2018, 57, 6054–6059. [Google Scholar] [CrossRef]
- Bi, W.; Ye, C.; Xiao, C.; Tong, W.; Zhang, X.; Shao, W.; Xie, Y. Spatial Location Engineering of Oxygen Vacancies for Optimized Photocatalytic H2 Evolution Activity. Small 2014, 10, 2820–2825. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yin, L.-C.; Gong, Y.; Niu, P.; Wang, J.-Q.; Gu, L.; Chen, X.; Liu, G.; Wang, L.; Cheng, H.-M. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies. Adv. Mater. 2018, 30, 1704479. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.; Xing, Z.; Kuang, J.; Li, Z.; Yin, J.; Zhu, Q.; Zhou, W. Oxygen Vacancy-Mediated Efficient Electron-Hole Separation for C-N-S-Tridoped Single Crystal Black TiO2(B) Nanorods as Visible-Light-Driven Photocatalysts. Appl. Surf. Sci. 2018, 457, 287–294. [Google Scholar] [CrossRef]
- Huang, L.; Duan, Z.; Song, Y.; Li, Q.; Chen, L. BiVO4 Microplates with Oxygen Vacancies Decorated with Metallic Cu and Bi Nanoparticles for CO2 Photoreduction. ACS Appl. Nano Mater. 2021, 4, 3576–3585. [Google Scholar] [CrossRef]
- Vu, M.-H.; Quach, T.-A.; Do, T.-O. The Construction of Ru-doped In2O3 Hollow Peanut-like Structure for An Enhanced Photocatalytic Nitrogen Reduction under Solar Light Irradiation. Sustain. Energ. Fuels 2021, 5, 2528–2536. [Google Scholar] [CrossRef]
- Wang, J.; Su, J.; Chen, H.; Zou, X.; Li, G. Oxygen Vacancy-rich, Ru-doped In2O3 Ultrathin Nanosheets for Efficient Detection of Xylene at Low Temperature. J. Mater. Chem. C 2018, 5, 2528–2536. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, C.; Rui, N.; Sun, K.; Liy, C. Experimental and Theoretical Studies of CO2 Hydrogenation to Methanol on Ru/In2O3. J. CO2 Util. 2021, 53, 101720. [Google Scholar] [CrossRef]
- Li, H.; Tang, X.; Zhong, J.; Li, J.; Chen, G.; Chen, C. Carbon Nanofibers Induced Tunable Oxygen Vacancies on BiOCl for High Efficient Destruction of Decontaminants. Surf. Interfaces 2021, 25, 101247. [Google Scholar] [CrossRef]
- Huang, J.; Dou, L.; Li, J.; Zhong, J.; Li, M.; Wang, T. Excellent Visible Light Responsive Photocatalytic Behavior of N-Doped TiO2 toward Decontamination of Organic Pollutants. J. Hazard. Mater. 2021, 403, 123857. [Google Scholar] [CrossRef]
- Zhang, J.; Balasubramanian, R.; Yang, X. Novel 3D Multi-Layered Carbon Nitride/Indium Sulfide Heterostructure for Boosted Superoxide Anion Radical Generation and Enhanced Photocatalysis under Visible Light. Chem. Eng. J. 2023, 453, 139776. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Liu, G.; Shen, Z.; Xia, D.; Wong, P.K.; Yu, J.C. Monoclinic Dibismuth Tetraoxide: A New Visible-Light-Driven Photocatalyst for Environmental Remediation. Appl. Catal. B Environ. 2015, 106–177, 444–453. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, K.; Guo, T.; Li, J.; Wu, X.; Zhang, G. Construction of 2D/2D Bi2Se3/g-C3N4 Nanocomposite with High Interfacial Charge Separation and Photo-Heat Conversion Efficiency for Selective Photocatalytic CO2 Reduction. Appl. Catal. B Environ. 2020, 277, 119232. [Google Scholar] [CrossRef]
- Chang, W.-C.; Kuo, C.-H.; Juan, C.-C.; Lee, P.-J.; Chueh, Y.-L.; Lin, S.-J. Sn-Doped In2O3 Nanowires: Enhancement of Electrical Field Emission by a Selective Area Growth. Nanoscale Res. Lett. 2012, 7, 684. [Google Scholar] [CrossRef]
- He, L.; Wood, T.E.; Wu, B.; Dong, Y.; Hoch, L.B.; Reyes, L.M.; Wang, D.; Kubel, C.; Qian, C.; Jia, J.; et al. Spatial Separation of Charge Carriers in In2O3-x(OH)y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano 2016, 10, 5578–5586. [Google Scholar] [CrossRef]
- Lv, Y.; Cao, X.; Jiang, H.; Song, W.; Chen, C.; Zhao, J. Rapid Photocatalytic Debromination on TiO2 with In-situ Formed Copper Co-catalyst: Enhanced Adsorption and Visible Light Activity. Appl. Catal. B Environ. 2016, 194, 150–156. [Google Scholar] [CrossRef]
- Wan, Z.; Mao, Q.; Chen, Q. Proton-dependent Photocatalytic Dehalogenation Activities Caused by Oxygen Vacancies of In2O3. Chem. Eng. J. 2021, 403, 126389. [Google Scholar] [CrossRef]
- Sun, C.; Chen, C.; Ma, W.; Zhao, J. Photocatalytic Debromination of Decabromodiphenyl Ether by Graphitic Carbon Nitride. Sci. China Chem. 2012, 55, 2532–2536. [Google Scholar] [CrossRef]
Sample | Atom Ratio of OL (%) | Atom Ratio of OV (%) | Atom Ratio of OH (%) | Atom Ratio of Ru (%) |
---|---|---|---|---|
0% Ru−In2O3 | 59.3 | 20.6 | 20.1 | 0 |
0.1% Ru−In2O3 | 50.4 | 22.6 | 27.0 | 0.1 |
0.5% Ru−In2O3 | 36.5 | 44.2 | 19.3 | 0.5 |
1% Ru−In2O3 | 56.5 | 22.2 | 21.3 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Shang, J.; Wan, Z. Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy. Photochem 2023, 3, 360-372. https://doi.org/10.3390/photochem3030022
Xiang J, Shang J, Wan Z. Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy. Photochem. 2023; 3(3):360-372. https://doi.org/10.3390/photochem3030022
Chicago/Turabian StyleXiang, Jingjing, Jinting Shang, and Zhen Wan. 2023. "Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy" Photochem 3, no. 3: 360-372. https://doi.org/10.3390/photochem3030022
APA StyleXiang, J., Shang, J., & Wan, Z. (2023). Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy. Photochem, 3(3), 360-372. https://doi.org/10.3390/photochem3030022