Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage
Abstract
:1. Introduction
2. Properties
3. Different Dimensions of Co9S8-Based Materials
3.1. Zero-Dimensional (0D) Structure
3.2. One-Dimensional (1D) Structure
3.3. Two-Dimensional (2D) Structure
3.4. Three-Dimensional (3D) Structure
4. Applications
4.1. Photoelectric Catalysis
4.1.1. Photocatalytic Hydrogen Evolution Reaction (HER)
4.1.2. Electrocatalytic Water Splitting
4.2. Electrochemical Energy Storage
4.2.1. Batteries
Lithium-Ion Batteries
Sodium-Ion Batteries
Lithium–Sulfur Batteries
Zn-Air Batteries
4.2.2. Supercapacitors
5. Conclusions and Outlooks
- (i)
- The research regarding their reaction mechanism was not thorough, which restricts the further development of Co9S8-based materials as excellent catalyst and electrode materials.
- (ii)
- As an ideal catalyst, excellent results in different pH must be shown to make the water splitting process more efficient. However, experimental studies have shown that the proton concentration is bound to change during the HER process, which leads to different degrees of influence on Co9S8-based materials working in acidic or alkaline media.
- (iii)
- Some renewable energy installations typically require excellent bi-functional catalytic performance, such as the Zn-air batteries mentioned above. However, the role of bi-functional catalytic activity in different electrolytes is not the same, which hinders its practical application.
- (iv)
- We review the applications of Co9S8-based materials as photocatalysts and energy storage materials in recent years, but not limited to this, we can also explore its applications in biosensors, organic catalytic synthesis and other new fields, which are of great value for facilitating multi-field applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, J.; Gong, Y.; Lin, J. Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro-and photo-catalysts for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 10495–10509. [Google Scholar] [CrossRef]
- Riaz, M.S.; Yuan, X.; Zhao, Y.; Dong, C.; Nong, S.; Ali, Z.; Huang, F. Porous NiCo2S4/Co9S8 microcubes templated by sacrificial ZnO spheres as an efficient bifunctional oxygen electrocatalyst. Adv. Sustain. Syst. 2019, 3, 1800167. [Google Scholar] [CrossRef]
- Chen, T.-T.; Wang, R.; Li, L.-K.; Li, Z.-J.; Zang, S.-Q. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution. J. Energy Chem. 2020, 44, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lv, X.; Sun, X.; Yang, C.; Zheng, Y.-Z.; Yang, L.; Li, S.; Tao, X. Edge-oriented, high-percentage 1T′-phase MoS2 nanosheets stabilize Ti3C2 MXene for efficient electrocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 284, 119708. [Google Scholar] [CrossRef]
- Hu, C.; Ma, K.; Hu, Y.; Chen, A.; Saha, P.; Jiang, H.; Li, C. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy Environ. 2021, 6, 75–82. [Google Scholar] [CrossRef]
- Ma, G.; Xu, X.; Feng, Z.; Hu, C.; Zhu, Y.; Yang, X.; Yang, J.; Qian, Y. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802–809. [Google Scholar] [CrossRef]
- Xing, Y.; Li, D.; Li, L.; Tong, H.; Jiang, D.; Shi, W. Accelerating water dissociation kinetic in Co9S8 electrocatalyst by mn/N Co-doping toward efficient alkaline hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 7989–8001. [Google Scholar] [CrossRef]
- Liu, H.; Ma, X.; Hu, H.; Pan, Y.; Zhao, W.; Liu, J.; Zhao, X.; Wang, J.; Yang, Z.; Zhao, Q. Robust NiCoP/CoP heterostructures for highly efficient hydrogen evolution electrocatalysis in alkaline solution. ACS Appl. Mater. Inter. 2019, 11, 15528–15536. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, J.; Yanzhang, R.; Du, M.; Wang, Q.; Gao, G.; Wu, J.; Wu, G.; Zhang, M.; Liu, B. When cubic cobalt sulfide meets layered molybdenum disulfide: A core–shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 2015, 27, 4752–4759. [Google Scholar] [CrossRef]
- Heidelberg, R.F.; Luxem, A.H.; Talhouk, S.; Banewicz, J.J. The magnetic susceptibilities of the cobalt-sulfur system. Inorg. Chem. 1966, 5, 194–197. [Google Scholar] [CrossRef]
- Dutková, E.; Čaplovičová, M.; Škorvánek, I.; Baláž, M.; Zorkovská, A.; Baláž, P.; Čaplovič, Ľ. Structural, surface and magnetic properties of chalcogenide Co9S8 nanoparticles prepared by mechanochemical synthesis. Inorg. Chem. 2018, 745, 863–867. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Yao, H.B.; Wang, Y.; Liu, H.L.; Gao, M.R.; Shen, P.K.; Yu, S.H. Hierarchical hollow Co9S8 microspheres: Solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties. Chem. Eur. J. 2010, 16, 12000–12007. [Google Scholar] [CrossRef]
- Lai, C.-H.; Lu, M.-Y.; Chen, L.-J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22, 19–30. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Xu, C.; Huang, S.; Zhu, C.; Jiang, X.; Shao, L.; Hou, L. Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl. Mater. Inter. 2017, 9, 28394–28405. [Google Scholar] [CrossRef]
- Dong, D.; Wu, Z.; Wang, J.; Fu, G.; Tang, Y. Recent progress in Co9S8 -based materials for hydrogen and oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 16068–16088. [Google Scholar] [CrossRef]
- Kalimuldina, G.; Nurpeissova, A.; Adylkhanova, A.; Adair, D.; Taniguchi, I.; Bakenov, Z. Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: A review. ACS Appl. Enegr. Mater. 2020, 3, 11480–11499. [Google Scholar] [CrossRef]
- Pokropivny, V.; Skorokhod, V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 2007, 27, 990–993. [Google Scholar] [CrossRef]
- Feng, L.-L.; Li, G.-D.; Liu, Y.; Wu, Y.; Chen, H.; Wang, Y.; Zou, Y.-C.; Wang, D.; Zou, X. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Inter. 2015, 7, 980–988. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Cheng, S.; Pan, Q.; Yao, M.; Zhu, Y.; Wu, P.; Luo, H.; Yang, L.; Liu, M. Template synthesis of carbon-coated Co9S8 composite with largely improved capacity for lithium ion batteries. Mater. Res. Lett. 2018, 217, 163–166. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Zhao, Y.; Dong, Y.; Fan, Q.; Kuang, Q. A promising mechanical ball-milling method to synthesize carbon-coated Co9S8 nanoparticles as high-performance electrode for supercapacitor. J. Mater. Sci. 2017, 52, 13552–13560. [Google Scholar] [CrossRef]
- Lu, M.; Liao, C.; Jiang, C.; Du, Y.; Zhang, Z.; Wu, S. Remarkable high-temperature performance of hollow Co9S8 nanoparticles integrated with carbon materials for lithium-ion batteries. Electrochim. Acta 2017, 250, 196–202. [Google Scholar] [CrossRef]
- Zhang, S.; Li, D.; Chen, S.; Yang, X.; Zhao, X.; Zhao, Q.; Komarneni, S.; Yang, D. Highly stable supercapacitors with MOF-derived Co9S8/carbon electrodes for high rate electrochemical energy storage. J. Mater. Chem. A 2017, 5, 12453–12461. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, Q.; Du, S.; Li, J.; Zhong, J.; Deng, X.; Liu, Y. Porous Co9S8/nitrogen, sulfur-doped carbon@ Mo2C dual catalyst for efficient water splitting. ACS Appl. Mater. Inter. 2018, 10, 22291–22302. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, R.; Lv, Y.-R.; Wei, Y.-L.; Zang, S.-Q. One-step MOF-derived Co/Co9S8 nanoparticles embedded in nitrogen, sulfur and oxygen ternary-doped porous carbon: An efficient electrocatalyst for overall water splitting. Chem. Commun. 2019, 55, 3203–3206. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, G.; Lv, J.; Ma, Y.; Wang, Y.; Hu, C.; Zhang, J.; Yang, J.; He, G.; Zhang, M. Co9S8/CoS@S, N co-doped porous carbon derived from MOFs as an efficient catalyst for the oxygen evolution reaction. J. Phys. Chem. Solids 2021, 148, 109696. [Google Scholar] [CrossRef]
- Yu, H.; Sun, X.; Tang, D.; Huang, Y.; Zhang, W.; Miao, S.; Qiao, Z.-A.; Wang, J.; Zhao, Z. Molten salt strategy to synthesize alkali metal-doped Co9S8 nanoparticles embedded, N, S co-doped mesoporous carbon as hydrogen evolution electrocatalyst. Int. J. Hydrogen Energy 2020, 45, 6006–6014. [Google Scholar] [CrossRef]
- Yu, H.; Tang, D.; Huang, Y.; Zhang, W.; Sun, X.; Yang, X.; Qiao, Z.A.; Wang, J.; Zhao, Z. Nitrogen and Sulfur Co-Doped Mesoporous Carbon Embedded with Co9S8 Nanoparticles: Efficient Electrocatalysts for Hydrogen Evolution. Chempluschem 2019, 84, 1604–1609. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, W.; Miao, S.; Du, Y.; Huang, Y.; Tang, D.; Qiao, Z.-A.; Wang, J.; Zhao, Z. Synthesis of Co9S8 nanoparticle embedded, N, S Co-doped mesoporous carbon with salts as templates for electrocatalytic hydrogen evolution. Micropor. Mesopor. Mat 2020, 302, 110235. [Google Scholar] [CrossRef]
- Zhang, P.; Bin, D.; Wei, J.-S.; Niu, X.-Q.; Chen, X.-B.; Xia, Y.-Y.; Xiong, H.-M. Efficient oxygen electrocatalyst for Zn–air batteries: Carbon dots and Co9S8 nanoparticles in a N, S-codoped carbon matrix. ACS Appl. Mater. Inter. 2019, 11, 14085–14094. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Xie, Y.; Jiang, W.; Wang, X.; Jiang, Y.; Zhou, W.; Pan, K. In situ growth of Co9S8 nanocrystals on reduced graphene oxide for the enhanced catalytic performance of dye-sensitized solar cell. J. Alloys Compd. 2019, 803, 216–223. [Google Scholar] [CrossRef]
- Li, Y.; Cao, R.; Li, L.; Tang, X.; Chu, T.; Huang, B.; Yuan, K.; Chen, Y. Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn–air batteries to drive water splitting. Small 2020, 16, 1906735. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, W.; Teng, C.; Wu, Z.; Ye, Z.; Zhi, M.; Hong, Z. Co9S8 nanoparticle-decorated carbon nanofibers as high-performance supercapacitor electrodes. RSC Adv. 2018, 8, 27574–27579. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Liu, L.; Xiao, L.; Zhang, L.; Wang, M.J.; Li, J.; Wei, Z. Co9S8@N, S-codoped carbon core–shell structured nanowires: Constructing a fluffy surface for high-density active sites. J. Mater. Chem. A 2018, 6, 14752–14760. [Google Scholar] [CrossRef]
- Dong, X.; Jiao, Y.; Yang, G.; Yan, H.; Wu, A.; Guo, D.; Wang, Y.; Tian, C.; Fu, H. One-dimensional CO9S8-V3S4 heterojunctions as bifunctional electrocatalysts for highly efficient overall water splitting. Sci. China Mater. 2021, 64, 1396–1407. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Yu, X.; Zhang, H.; Zhang, H.; Li, S.; Huang, F. Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors. Energy 2022, 238, 121767. [Google Scholar] [CrossRef]
- Zhu, F.; Yan, M.; Liu, Y.; Shen, H.; Lei, Y.; Shi, W. Hexagonal prism-like hierarchical Co9S8@Ni(OH)2 core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 22782–22789. [Google Scholar] [CrossRef]
- Li, J.; Xu, P.; Zhou, R.; Li, R.; Qiu, L.; Yuan, D. Co9S8-Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochim. Acta 2019, 299, 152–162. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angew. Chem. 2020, 132, 8332–8338. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, K.; Wang, T.; Xu, X.; Zhao, Y.; Sun, Y.; Zhong, W.; Du, Y. Cobalt Sulfide Nanotubes (Co9S8) Decorated with Amorphous MoSx as Highly Efficient Hydrogen Evolution Electrocatalyst. ACS Appl. Nano Mater. 2018, 1, 1083–1093. [Google Scholar] [CrossRef]
- Du, X.; Ma, G.; Zhang, X. Mo-doped Co9S8 nanorod array as a high performance electrochemical water splitting catalyst in alkaline solution. Int. J. Hydrogen Energy 2019, 44, 27765–27771. [Google Scholar] [CrossRef]
- Du, X.; Huang, C.; Zhang, X. Surface modification of a Co9S8 nanorods with Ni(OH)2 on nickel foam for high water splitting performance. Int. J. Hydrogen Energy 2019, 44, 19953–19966. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, M.; Li, H.; Sun, G.; Ma, S. Controllable synthesis of ultrathin Co9S8 nanosheets as a highly efficient electrocatalyst for overall water splitting. Electrochim. Acta 2018, 281, 198–207. [Google Scholar] [CrossRef]
- Li, L.; Song, L.; Guo, H.; Xia, W.; Jiang, C.; Gao, B.; Wu, C.; Wang, T.; He, J. N-Doped porous carbon nanosheets decorated with graphitized carbon layer encapsulated Co9S8 nanoparticles: An efficient bifunctional electrocatalyst for the OER and ORR. Nanoscale 2019, 11, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Lu, Z.W.; Wang, Y.H.; Dai, Z.; Zhao, H.; Sun, G.Z.; Lan, W.; Pan, X.J.; Zhou, J.Y.; Xie, E.Q. Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium–sulfur batteries. Chem. Eng. J. 2020, 392, 123734. [Google Scholar] [CrossRef]
- Xing, L.; Dong, Y.; Wu, X. Hierarchical Co3O4@Co9S8 nanowall structures assembled by many nanosheets for high performance asymmetric supercapacitors. RSC. Adv. 2018, 8, 28172–28178. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, Y.; Shi, L.; Qian, R.; Wen, Z. Realizing the growth of nano-network Li2O2 film on defect-rich holey Co9S8 nanosheets for Li-O2 battery. Chem. Eng. J. 2020, 396, 125228. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Gao, J.; Han, G.; Hu, M.; Wu, X.; Cao, H.; Wang, X.; Li, B. Defect-rich (Co–CoS2)x@Co9S8 nanosheets derived from monomolecular precursor pyrolysis with excellent catalytic activity for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 7977–7987. [Google Scholar] [CrossRef]
- Wang, X.; Su, D.; Xiao, Y.; Xu, S.; Fang, S.; Cao, S. Ultra-dispersed island-like Co9S8 nanoparticles composed of nanosheets in-situ grown on nitrogen-doped graphene for asymmetric supercapacitor. Electrochim. Acta 2019, 293, 419–425. [Google Scholar] [CrossRef]
- Li, N.; Sun, L.; Wang, K.; Xu, S.; Zhang, J.; Guo, X.; Liu, X. Sandwiched N-carbon@Co9S8@Graphene nanosheets as high capacity anode for both half and full lithium-ion batteries. J. Energy Chem. 2020, 51, 62–71. [Google Scholar] [CrossRef]
- Hao, P.; Zhu, W.; Li, L.; Tian, J.; Xie, J.; Lei, F.; Cui, G.; Zhang, Y.; Tang, B. Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis. Electrochim. Acta 2020, 338, 135883. [Google Scholar] [CrossRef]
- Tang, Y.; Jing, F.; Xu, Z.; Zhang, F.; Mai, Y.; Wu, D. Highly crumpled hybrids of nitrogen/sulfur dual-doped graphene and Co9S8 nanoplates as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Inter. 2017, 9, 12340–12347. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, C.; Song, J.; Feng, S.; Du, D.; Engelhard, M.H.; Xiao, D.; Li, D.; Lin, Y. Two-dimensional N, S-codoped carbon/Co9S8 catalysts derived from Co(OH)2 nanosheets for oxygen reduction reaction. ACS Appl. Mater. Inter. 2017, 9, 36755–36761. [Google Scholar] [CrossRef]
- Illathvalappil, R.; Walko, P.S.; Kanheerampockil, F.; Bhat, S.K.; Devi, R.N.; Kurungot, S. Hierarchical Nanoflower Arrays of Co9S8-Ni3S2 on Nickel Foam: A Highly Efficient Binder-Free Electrocatalyst for Overall Water Splitting. Chem. Eur. J. 2020, 26, 7900–7911. [Google Scholar] [CrossRef]
- Xia, C.; Xue, C.; Bian, W.; Liu, J.; Wang, J.; Wei, Y.; Zhang, J. Hollow Co9S8/CdS nanocages as efficient photocatalysts for hydrogen evolution. ACS Appl. Nano Mater. 2021, 4, 2743–2751. [Google Scholar] [CrossRef]
- Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem. Int. Ed. 2017, 56, 2684–2688. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, W.; Zhang, H.; Zhou, D. Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors. Appl. Surf. Sci. 2017, 426, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, Y.; Li, Q.; Lu, W.; Ning, J.; Zhong, Y.; Zhang, Z.; Hu, Y. Molecule-assisted modulation of the high-valence Co3+ in 3D honeycomb-like CoxSy networks for high-performance solid-state asymmetric supercapacitors. Sci. China Mater. 2021, 64, 840–851. [Google Scholar] [CrossRef]
- Li, Y.-W.; Wu, Q.; Ma, R.-C.; Sun, X.-Q.; Li, D.-D.; Du, H.-M.; Ma, H.-Y.; Li, D.-C.; Wang, S.-N.; Dou, J.-M. A Co-MOF-derived Co9S8@NS-C electrocatalyst for efficient hydrogen evolution reaction. RSC Adv. 2021, 11, 5947–5957. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Yang, W.; Chen, L.; Huang, Z.; Zhang, N.; Fu, C.; Kuang, Y. Co9S8 nanoparticles embedded in a N, S co-doped graphene-unzipped carbon nanotube composite as a high performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 1014–1021. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H.; Zhang, X.; Wu, T.; Zhao, H.; Wang, G. Co9S8@N, P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media. RSC Adv. 2017, 7, 19181–19188. [Google Scholar] [CrossRef] [Green Version]
- Brumme, T.; Calandra, M.; Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys. Rev. B 2015, 91, 155436. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hu, E.; Jiang, H.; Xiang, Y.; Weng, Z.; Li, M.; Fan, Q.; Yu, X.; Altman, E.I.; Wang, H. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, Y.; Xia, B.; Sun, C.; Liu, Y.; Liu, P.; Gao, D. Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 259, 955–961. [Google Scholar] [CrossRef]
- Cabán-Acevedo, M.; Stone, M.L.; Schmidt, J.; Thomas, J.G.; Ding, Q.; Chang, H.-C.; Tsai, M.-L.; He, J.-H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Matem. 2015, 14, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.; Wu, T.; Yu, Y.; Wang, Z.; Zhou, Y.; Tang, Z.; Yue, Q. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960–2965. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Jiang, J.; Lin, W.; Zhu, S.; Sha, J.; Ma, L.; Zhao, N. In-situ synthesis of MoS2/Co9S8 heterostructure for efficient HER electrocatalyst. Mater. Lett. 2021, 292, 129621. [Google Scholar] [CrossRef]
- Su, P.; Liu, H.; Ma, Q.; Jin, Z. Mn0.05Cd0.95S decorated MOF-derived Co9S8 hollow polyhedron for efficient photocatalytic hydrogen evolution. Int. J. Energy Res. 2021, 45, 13040–13054. [Google Scholar] [CrossRef]
- Li, X.-l.; He, R.-b.; Dai, Y.-j.; Li, S.-s.; Xiao, N.; Wang, A.-x.; Gao, Y.-q.; Li, N.; Gao, J.-f.; Zhang, L.-h. Design and fabrication of Co9S8/Zn0.5Cd0.5S hollow nanocages with significantly enhanced photocatalytic hydrogen production activity. Chem. Eng. J. 2020, 400, 125474. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Liu, X.; Huo, P.; Yan, Y.; Wang, L.; Liao, G.; Liu, C. Interface engineering of Co9S8/CdIn2S4 ohmic junction for efficient photocatalytic H2 evolution under visible light. J. Colloid Interf. Sci. 2021, 600, 794–803. [Google Scholar] [CrossRef]
- Yendrapati, T.P.; Soumya, J.; Bojja, S.; Pal, U. Robust Co9S8@CdIn2S4 cage for efficient photocatalytic H2 evolution. J. Phys. Chem. C 2021, 125, 5099–5109. [Google Scholar] [CrossRef]
- Liang, D.; Mao, J.; Liu, P.; Yan, J.; Song, W. In-situ growth of NCNT and encapsulation of Co9S8/Co as a sustainable multifunctional electrocatalyst. J. Colloid Interf. Sci. 2019, 557, 291–300. [Google Scholar] [CrossRef]
- Si, F.; Tang, C.; Gao, Q.; Peng, F.; Zhang, S.; Fang, Y.; Yang, S. Bifunctional CdS@Co9S8/Ni3S2 catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting. J. Mater. Chem. A 2020, 8, 3083–3096. [Google Scholar] [CrossRef]
- Bai, J.; Meng, T.; Guo, D.; Wang, S.; Mao, B.; Cao, M. Co9S8@MoS2 core-shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. ACS Appl. Mater. Inter. 2018, 10, 1678–1689. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Cui, M.; Xiong, J.; Mi, L.; Chen, S. Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2021, 543, 148804. [Google Scholar] [CrossRef]
- Gu, L.; Zhu, H.; Yu, D.; Zhang, S.; Chen, J.; Wang, J.; Wan, M.; Zhang, M.; Du, M. A facile strategy to synthesize cobalt-based self-supported material for electrocatalytic water splitting. Part. Part. Syst. Char. 2017, 34, 1700189. [Google Scholar] [CrossRef]
- Lin, Q.; Liang, J.; Liu, J.; Zhang, Q.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Hierarchical amorphous carbon-coated Co/Co9S8 nanoparticles on MoS2 toward synergetic electrocatalytic water splitting. Ind. Eng. Chem. Res. 2019, 58, 23093–23098. [Google Scholar] [CrossRef]
- Yan, J.; Chen, L.; Liang, X. Co9S8 nanowires@NiCo LDH nanosheets arrays on nickel foams towards efficient overall water splitting. Sci. Bull. 2019, 64, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Zang, Z.; Wang, X.; Li, X.; Zhao, Q.; Li, L.; Yang, X.; Yu, X.; Zhang, X.; Lu, Z. Co9S8 nanosheet coupled Cu2S nanorod heterostructure as efficient catalyst for overall water splitting. ACS Appl. Mater. Inter. 2021, 13, 9865–9874. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, B.; Wu, J.; Huang, K.; Cao, X.; Lu, Y.; Zhang, Y.; Li, C.; Huang, Y. Growth of Lattice Coherent Co9S8/Co3O4 Nano-Heterostructure for Maximizing the Catalysis of Co-Based Composites. Chemcatchem 2020, 12, 2431–2435. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Zang, Y.; Liu, R.; Liu, G.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93–102. [Google Scholar] [CrossRef]
- Kim, M.; Seok, H.; Selvam, N.C.S.; Cho, J.; Choi, G.H.; Nam, M.G.; Kang, S.; Kim, T.; Yoo, P.J. Kirkendall effect induced bifunctional hybrid electrocatalyst (Co9S8@MoS2/N-doped hollow carbon) for high performance overall water splitting. J. Power Source 2021, 493, 229688. [Google Scholar] [CrossRef]
- Chen, L.; Yang, W.; Li, X.; Han, L.; Wei, M. Co9S8 embedded into N/S doped carbon composites: In situ derivation from a sulfonate-based metal-organic framework and its electrochemical properties. J. Mater. Chem. A 2019, 7, 10331–10337. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Z.; Yang, K.; Mei, T.; Yan, D.; Wang, X. Design and synthesize hollow spindle Ni-doped Co9S8@ZnS composites and their enhanced cycle performance. J. Alloys Compd. 2021, 853, 157118. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, X.; Zhou, Y.; Ma, B.; Natarajan, A. Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium-sulfur batteries. J. Energy Chem. 2020, 46, 22–29. [Google Scholar] [CrossRef]
- He, Z.; Guo, H.; LaCoste, J.D.; Cook, R.A.; Hussey, B.; Zhang, X.; Gang, D.D.; Hao, J.; Chen, L.; Cooke, P. Directly embedded Ni3S2/Co9S8@S-doped carbon nanofiber networks as a free-standing anode for lithium-ion batteries. Sustain. Energy Fuels 2021, 5, 166–174. [Google Scholar] [CrossRef]
- Yin, M.; Zhao, D.; Feng, C.; Zhou, W.; Jiao, Q.; Feng, X.; Wang, S.; Zhao, Y.; Li, H.; Feng, T. Construction of porous Co9S8 hollow boxes with double open ends toward high-performance half/full sodium-ion batteries. ACS Sustain. Chem. Eng. 2020, 8, 6305–6314. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Sun, F.; Yu, X.; Kang, W.; Zhang, J. One-step synthesis of Co9S8@Ni3S2 heterostructure for enhanced electrochemical performance as sodium ion battery anode material and hydrogen evolution electrocatalyst. J. Solid State Chem. 2020, 285, 121230. [Google Scholar] [CrossRef]
- Yin, M.; Feng, X.; Zhao, D.; Zhao, Y.; Li, H.; Zhou, W.; Liu, H.; Bai, X.; Wang, H.; Feng, C. Hierarchical Co9S8@carbon hollow microspheres as an anode for sodium ion batteries with ultralong cycling stability. ACS Sustain. Chem. Eng. 2019, 7, 6122–6130. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Zhu, S.; Fan, K.; Lyu, L.; Yao, H.; Li, Y.; Hu, J.; Huang, H.; Mai, Y.W. Fiber-in-Tube Design of Co9S8-Carbon/Co9S8: Enabling Efficient Sodium Storage. Angew. Chem. 2019, 131, 6305–6309. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, Y.-x.; Feng, X.; Chen, W.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. In situ formation of Co9S8 nanoclusters in sulfur-doped carbon foam as a sustainable and high-rate sodium-ion anode. ACS Appl. Mater. Inter. 2019, 11, 19218–19226. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Yang, X.; Zhao, Z.; Yang, H.; Feng, M.; Zhang, W.; Zheng, W. Synergistic dual-confinement effect: Merit of hollowly metallic Co9S8 in packaging enhancement of electrochemical performance of Li-S batteries. ACS Appl. Energy Mater. 2019, 2, 1428–1435. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J.; Huang, M.; Shang, H.; Jiang, J.; Qiao, Y.; Liu, W.; Zhou, H.; Li, T.; Zhou, X. MOF-derived Co9S8/C hollow polyhedra grown on 3D graphene aerogel as efficient polysulfide mediator for long-life Li-S batteries. Mater. Lett. 2020, 277, 128331. [Google Scholar] [CrossRef]
- Chen, T.; Ma, L.; Cheng, B.; Chen, R.; Hu, Y.; Zhu, G.; Wang, Y.; Liang, J.; Tie, Z.; Liu, J. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017, 38, 239–248. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Ren, Y.; Zeng, W. N-doped graphene embellished with Co9S8 enable advanced sulfur cathode for high-performance lithium-sulfur batteries. Int. J. Energy Res. 2020, 44, 4961–4968. [Google Scholar] [CrossRef]
- Li, H.-J.; Song, Y.-H.; Xi, K.; Wang, W.; Liu, S.; Li, G.-R.; Gao, X.-P. Sulfur vacancies in Co9S8−x/N-doped graphene enhancing the electrochemical kinetics for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 10704–10713. [Google Scholar] [CrossRef]
- Huang, L.; Zuo, L.; Yu, T.; Wang, H.; He, Z.; Zhou, H.; Su, S.; Bian, T. Two-dimensional Co/Co9S8 nanoparticles decorated N, S dual-doped carbon composite as an efficient electrocatalyst for zinc-air battery. J. Alloys Compd. 2022, 897, 163108. [Google Scholar] [CrossRef]
- Peng, W.; Wang, Y.; Yang, X.; Mao, L.; Jin, J.; Yang, S.; Fu, K.; Li, G. Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery. Appl. Catal. B Environ. 2020, 268, 118437. [Google Scholar] [CrossRef]
- Zheng, Q.; Xiong, Y.; Tang, K.; Wu, M.; Hu, H.; Zhou, T.; Wu, Y.; Cao, Z.; Sun, J.; Yu, X. Modulation of pore-size in N, S-codoped carbon/Co9S8 hybrid for a stronger O2 affinity toward rechargable zinc-air battery. Nano Energy 2022, 92, 106750. [Google Scholar] [CrossRef]
- Cao, Z.-Q.; Wu, M.-Z.; Hu, H.-B.; Liang, G.-J.; Zhi, C.-Y. Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn–air battery. NPG Asia Mater. 2018, 10, 670–684. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [Green Version]
- Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and Electrolytes for Advanced Supercapacitors. Adv. Mater. 2014, 26, 2219–2251. [Google Scholar] [CrossRef] [PubMed]
- Khattak, A.M.; Ghazi, Z.A.; Liang, B.; Khan, N.A.; Iqbal, A.; Li, L.; Tang, Z. A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A 2016, 4, 16312–16317. [Google Scholar] [CrossRef]
- Ito, Y.; Christodoulou, C.; Nardi, M.V.; Koch, N.; Kläui, M.; Sachdev, H.; Müllen, K. Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains. J. Am. Chem. Soc. 2015, 137, 7678–7685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Lin, D.; Feng, H.; Zeng, Y.; Tong, Y.; Lu, X. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem. 2017, 129, 5546–5551. [Google Scholar] [CrossRef]
- Sun, S.; Luo, J.; Qian, Y.; Jin, Y.; Liu, Y.; Qiu, Y.; Li, X.; Fang, C.; Han, J.; Huang, Y. Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High-Performance Supercapacitors. Adv. Energy Mater. 2018, 8, 1801080. [Google Scholar] [CrossRef]
- Liu, S.; Tong, M.; Liu, G.; Zhang, X.; Wang, Z.; Wang, G.; Cai, W.; Zhang, H.; Zhao, H. S, N-containing Co-MOF derived Co9S8@S, N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials. Inorg. Chem. Front. 2017, 4, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Goda, E.S.; ur Rehman, A.; Pandit, B.; Eissa, A.A.-S.; Hong, S.E.; Yoon, K.R. Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors. Chem. Eng. J. 2022, 428, 132470. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Z.; Gong, X.; Jiang, C.; Zhang, C.; Xu, J.; Li, Y.; Bao, J.; Cui, Y.; Wang, H. Enhancing stability of Co9S8 by iron incorporation for oxygen evolution reaction and supercapacitor electrodes. Chem. Eng. J. 2022, 431, 133980. [Google Scholar] [CrossRef]
Material | Electrolytes | OER (mV) | Tafel Slope (mV dec−1) | HER (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|---|---|
Co9S8-V3S4/CC | 1.0 M KOH | 232@10 mA cm−2 | 59 | 85@10 mA cm−2 | 51 | [34] |
CdS@Co9S8/Ni3S2 | 1.0 M KOH | 285@20 mA cm−2 | 96.8 | 69.6@-10 mA cm−2 | 121 | [72] |
Co9S8@MoS2 | 1.0 M KOH | 342@10 mA cm−2 | 94 | 147@10 mA cm−2 | 117 | [73] |
MoO2@MoS2@Co9S8 | 1.0 M KOH | 310@10 mA cm−2 | 70 | 160@10 mA cm−2 | 96 | [74] |
Co9S8@Ni(OH)2 | 1.0 M KOH | 140@60 mA cm−2 | 70 | 119@10 mA cm−2 | 80 | [41] |
Mo-Co9S8/NF | 1.0 M KOH | 210@50 mA cm−2 | - | 139@10 mA cm−2 | - | [40] |
Co9S8-Ni3S2 HNTs/Ni | 1.0 M KOH | 281@50 mA cm−2 | 53.3 | 85@10 mA cm−2 | 83.1 | [37] |
Co9S8-Ni3S2 /NF | 1.0 M KOH | 102@25 mA cm−2 | 105.3 | 227@25 mA cm−2 | 171.2 | [53] |
Co9S8/CNFs | 1.0 M KOH | 230@10 mA cm−2 | 72 | 165@10 mA cm−2 | 83 | [75] |
Co/Co9S8-MoS2 | 1.0 M KOH | 325@10 mA cm−2 | 69 | 128@10 mA cm−2 | 65 | [76] |
Co9S8-NSC@Mo2C | 1.0 M KOH | 293@10 mA cm−2 | 59.7 | 89@10 mA cm−2 | 86.7 | [23] |
Co9S8@NiCo LDH/NF | 1.0 M KOH | 278@30 mA cm−2 | 83 | 168@10 mA cm−2 | 103 | [77] |
Co9S8/Cu2S/CF | 1.0 M KOH | 195@10 mA cm−2 | 78.8 | 165@10 mA cm−2 | 80.2 | [78] |
CFP@Co9S8@C | 1.0 M KOH | 290@10 mA cm−2 | 74 | 175@10 mA cm−2 | 97 | [33] |
Co9S8/Co3O4 | 1.0 M KOH | 250@10 mA cm−2 | 73.54 | - | - | [79] |
Co/Co9S8@SNGS | 1.0 M KOH | 290@10 mA cm−2 | 80.2 | 350@20 mA cm−2 | 96.1 | [80] |
Co9S8@MoS2/N | 1.0 M KOH | 223@10 mA cm−2 | 56.3 | 126@-10 mA cm−2 | 74.1 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Pang, X.; Wang, G.; Gao, L.; Fu, F. Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage. Photochem 2023, 3, 15-37. https://doi.org/10.3390/photochem3010002
Wang C, Pang X, Wang G, Gao L, Fu F. Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage. Photochem. 2023; 3(1):15-37. https://doi.org/10.3390/photochem3010002
Chicago/Turabian StyleWang, Chuantao, Xiangxiang Pang, Guangqing Wang, Loujun Gao, and Feng Fu. 2023. "Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage" Photochem 3, no. 1: 15-37. https://doi.org/10.3390/photochem3010002
APA StyleWang, C., Pang, X., Wang, G., Gao, L., & Fu, F. (2023). Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage. Photochem, 3(1), 15-37. https://doi.org/10.3390/photochem3010002