Optical and Structural Characteristics of Rare Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis Method
2.3. Sample Characterization
3. Results and Discussion
3.1. Transmission Electron Microscopy and Selected Area Electron Diffraction (SAED)
3.2. X-ray Fluorescence (XRF)
3.3. Photoluminescence and Optical Absorption
3.3.1. Photoluminescence (PL)
3.3.2. Optical Absorption
3.4. Raman Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chou, H.-S.; Yang, K.-D.; Xiao, S.-H.; Patil, R.A.; Lai, C.-C.; Yeh, W.-C.V.; Ho, C.-H.; Liou, Y.; Ma, Y.-R. Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures. Nanoscale 2019, 11, 13385–13396. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.K.; Kumar, R. Journey of ZnO quantum dots from undoped to rare-earth and transition metal-doped and their applications. RSC Adv. 2021, 11, 2512–2545. [Google Scholar] [CrossRef]
- Wood, A.; Giersig, M.; Hilgendorff, M.; Vilas-Campos, A.; Liz-Marzán, L.M.; Mulvaney, P. Size Effects in ZnO: The Cluster to Quantum Dot Transition. Aust. J. Chem. 2003, 56, 1051–1057. [Google Scholar] [CrossRef]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef]
- Strano, V.; Greco, M.G.; Ciliberto, E.; Mirabella, S. ZnO microflowers grown by chemical bath deposition: A low-cost approach for massive production of functional nanostructures. Chemosensors. 2019, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, D.N.; Hortelano, V.; Martínez, O.; Martínez-Tomas, M.C.; Sallet, V.; Muñoz-Sanjosé, V.; Jiménez, J. Influence of metal organic chemical vapour deposition growth conditions on vibrational and luminescent properties of ZnO nanorods. J. Appl. Phys. 2013, 113, 143513. [Google Scholar] [CrossRef]
- Schneider, L.; Halm, S.; Bacher, G.; Roy, A.; Kruis, F.E. Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase. Phys. Status Solidi C 2006, 3, 1014–1017. [Google Scholar] [CrossRef]
- Reynolds, D.C.; Look, D.C.; Jogai, B. Fine structure on the green band in ZnO. J. Appl. Phys. 2001, 89, 6189–6191. [Google Scholar] [CrossRef]
- Zamiri, R.; Lemos, A.; Reblo, A.; Ahangar, H.A.; Ferreira, J. Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram. Int. 2014, 40, 523–529. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, W.; Li, R.; Chen, X. Optical properties of Nd3+ ion-doped ZnO nanocrystals. J. Nanosci. Nanotechnol. 2010, 10, 1871–1876. [Google Scholar] [CrossRef]
- Ungureanu, M.; Schmidt, H.; von Wenckstern, H.; Hochmuth, H.; Lorenz, M.; Grundmann, M.; Fecioru-Morariu, M.; Güntherodt, G. A comparison between ZnO films doped with 3d and 4f magnetic ions. Thin Solid Film. 2007, 515, 8761–8763. [Google Scholar] [CrossRef]
- Goodall, J.B.M.; Illsley, D.; Lines, R.; Makwana, N.M.; Darr, J.A. Structure-property-composition relationships in doped zinc oxides: Enhanced photocatalytic activity with rare earth dopants. ACS Comb. Sci. 2015, 17, 100–112. [Google Scholar] [CrossRef]
- Wang, R.; Xin, J.H.; Yang, Y.; Liu, H.; Xu, L.; Hu, J. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl. Surf. Sci. 2004, 227, 312–317. [Google Scholar] [CrossRef]
- Dodd, A.; McKinley, A.; Tsuzuki, T.; Saunders, M. Tailoring the photocatalytic activity of nanoparticulate zinc oxide by transition metal oxide doping. Mater. Chem. Phys. 2009, 114, 382–386. [Google Scholar] [CrossRef]
- Cerrato, E.; Gionco, C.; Berruti, I.; Sordello, F.; Calza, P.; Paganini, M.C. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment. J. Solid State Chem. 2018, 264, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Barui, S.; Gerbaldo, R.; Garino, N.; Brescia, R.; Laviano, F.; Cauda, V. Facile Chemical Synthesis of Doped ZnO Nanocrystals Exploiting Oleic Acid. Nanomaterials 2020, 10, 1150. [Google Scholar] [CrossRef]
- Erdoğan, E.; Yilmaz, M.; Aydogan, S.; Turgut, G. Investigation of neodymium rare earth element doping in spray-coated zinc oxide thin films. J. Mater. Sci. Mater. Electron. 2021, 32, 1379–1391. [Google Scholar] [CrossRef]
- Shukla, S.; Sharma, D.K. A review on rare earth (Ce and Er)-doped zinc oxide nanostructures. Mater. Today Proc. 2021, 34, 793–801. [Google Scholar] [CrossRef]
- FDA, Q3C-Tables and List Guidance for Industry Q3C-Tables and List Guidance for Industry Q3C-Tables and List Guidance for Industry 1. 2017. Available online: https://www.fda.gov/media/71737/download (accessed on 30 June 2022).
- Panasiuk, Y.V.; Raevskaya, O.E.; Stroyuk, O.; Kuchmiy, S.Y.; Dzhagan, V.; Hietschold, M.; Zahn, D.R. Colloidal ZnO nanocrystals in dimethylsulfoxide: A new synthesis, optical, photo- and electroluminescent properties. Nanotechnology 2014, 25, 75601. [Google Scholar] [CrossRef]
- Bomila, R.; Srinivasan, S.; Venkatesan, A.; Bharath, B.; Perinbam, K. Structural, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method. Mater. Res. Innov. 2018, 22, 379–386. [Google Scholar] [CrossRef]
- Roy, B.; Chakrabarty, S.; Mondal, O.; Pal, M.; Dutta, A. Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO. Mater. Charact. 2012, 70, 1–7. [Google Scholar] [CrossRef]
- Kumar, S.; Sahare, P. Nd-doped ZnO as a multifunctional nanomaterial. J. Rare Earths 2012, 30, 761–768. [Google Scholar] [CrossRef]
- Dakhel, A.A.; El-Hilo, M. Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation. J. Appl. Phys. 2010, 107, 123905. [Google Scholar] [CrossRef]
- X-ray Data Booklet. 2009. Available online: https://xdb.lbl.gov/ (accessed on 30 June 2022).
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Barbagiovanni, E.G.; Reitano, R.; Franzò, G.; Strano, V.; Terrasi, A.; Mirabella, S. Radiative mechanism and surface modification of four visible deep level defect states in ZnO nanorods. Nanoscale 2016, 8, 995–1006. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.; Yang, L.; Lang, J.; Wei, M.; Gao, M.; Liu, X.; Cao, J.; Li, X.; Yang, N. Tunable deep-level emission in ZnO nanoparticles via yttrium doping. J. Alloy. Compd. 2011, 509, 3606–3612. [Google Scholar] [CrossRef]
- Honglin, L.; Yingbo, L.; Jinzhu, L.; Ke, Y. Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. J. Alloy. Compd. 2014, 617, 102–107. [Google Scholar] [CrossRef]
- Kumar, S.; Sahare, P. Gd3+ incorporated ZnO nanoparticles: A versatile material. Mater. Res. Bull. 2014, 51, 217–223. [Google Scholar] [CrossRef]
- Hiller, D.; López-Vidrier, J.; Gutsch, S.; Zacharias, M.; Nomoto, K.; König, D. Defect-Induced Luminescence Quenching vs. Charge Carrier Generation of Phosphorus Incorporated in Silicon Nanocrystals as Function of Size. Sci. Rep. 2017, 7, 863. [Google Scholar] [CrossRef] [Green Version]
- Cajzl, J.; Nekvindova, P.; Jeníčková, K.; Jagerová, A.; Malinský, P.; Remeš, Z.; Neykova, N.; Chang, Y.; Oswald, J.; Kentsch, U.; et al. Erbium-ion implantation of single- and nano-crystalline ZnO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 464, 65–73. [Google Scholar] [CrossRef]
- Lang, J.; Zhang, Q.; Han, Q.; Fang, Y.; Wang, J.; Li, X.; Liu, Y.; Wang, D.; Yang, J. The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route. Mater. Chem. Phys. 2017, 194, 29–36. [Google Scholar] [CrossRef]
- Hastir, A.; Kohli, N.; Singh, R.C. Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J. Phys. Chem. Solids 2017, 105, 23–34. [Google Scholar] [CrossRef]
- Raji, R.; Gopchandran, K. ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices 2017, 2, 51–58. [Google Scholar] [CrossRef]
- Saboor, A.; Shah, S.M.; Hussain, H. Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Mater. Sci. Semicond. Process. 2019, 93, 215–225. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, L.; Wang, C.; Lun, N.; Qi, Y.; Xiang, D. Origin of Visible Photoluminescence of ZnO Quantum Dots: Defect-Dependent and Size-Dependent. J. Phys. Chem. C 2010, 114, 9651–9658. [Google Scholar] [CrossRef]
- Xian, F.; Li, X. Effect of Nd doping level on optical and structural properties of ZnO:Nd thin films synthesized by the sol–gel route. Opt. Laser Technol. 2013, 45, 508–512. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M.; Keller, V.; Khan, W.Q.; Khalid, N. Rare earth co-doped ZnO photocatalysts: Solution combustion synthesis and environmental applications. Sep. Purif. Technol. 2019, 237, 116328. [Google Scholar] [CrossRef]
- Layek, A.; Banerjee, S.; Manna, B.; Chowdhury, A. Synthesis of rare-earth doped ZnO nanorods and their defect–dopant correlated enhanced visible-orange luminescence. RSC Adv. 2016, 6, 35892–35900. [Google Scholar] [CrossRef]
- Babamoradi, M.; Sadeghi, H.; Azimirad, R.; Safa, S. Enhancing photoresponsivity of ultraviolet photodetectors based on ZnO/ZnO:Eu (x = 0, 0.2, 1, 5 and 20 at.%) core/shell nanorods. Optik 2018, 167, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.; Li, Z.; Liu, C.; Tao, X.; Zhou, Y.; Long, H.; Wang, H.; Ouyang, Y. Improving and manipulating green-light electroluminescence in solution-processed ZnO nanocrystals via Erbium doping. J. Lumin. 2019, 213, 127–132. [Google Scholar] [CrossRef]
- Ashkenov, N.; Mbenkum, B.N.; Bundesmann, C.; Riede, V.; Lorenz, M.; Spemann, D.; Kaidashev, E.M.; Kasic, A.; Schubert, M.; Grundmann, M.; et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 2003, 93, 126–133. [Google Scholar] [CrossRef]
- Ozgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Arguello, C.A.; Rousseau, D.L.; Porto, S.P.S. First-order raman effect in wurtzite-type crystals. Phys. Rev. (Ser. I) 1969, 181, 1351–1363. [Google Scholar] [CrossRef]
- Serrano, J.; Romero, A.H.; Manjón, F.J.; Lauck, R.; Cardona, M.; Rubio, A. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys. Rev. B Condens. Matter Mater. Phys. Condens. Matter Mater. Phys. 2004, 69, 094306. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fan, Z.; Koster, R.S.; Fang, C.; van Huis, M.A.; Yalcin, A.O.; Tichelaar, F.D.; Zandbergen, H.W.; Vlugt, T.J.H. New ab initio based pair potential for accurate simulation of phase transitions in ZnO. J. Phys. Chem. C 2014, 118, 11050–11061. [Google Scholar] [CrossRef]
- Milekhin, A.G.; Yeryukov, N.A.; Sveshnikova, L.L.; Duda, T.A.; Zenkevich, E.I.; Kosolobov, S.S.; Latyshev, A.V.; Himcinski, C.; Surovtsev, N.V.; Adichtchev, S.V.; et al. Surface enhanced Raman scattering of light by ZnO nanostructures. J. Exp. Theor. Phys. 2011, 113, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, V.S.; Dzhagan, V.N.; Zavaritskaya, T.N.; Kucherenko, I.V.; Mel’Nik, N.N.; Novikova, N.N.; Janik, E.; Wojtowicz, T.; Plyashechnik, O.S.; Zahn, D.R.T. Optical phonons in the bulk and on the surface of ZnO and ZnTe/ZnO nanowires in Raman spectra. Phys. Solid State 2012, 54, 2083–2090. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 165202. [Google Scholar] [CrossRef]
- Milekhin, A.; Sveshnikova, L.; Duda, T.; Surovtsev, N.; Adichtchev, S.; Zahn, D. Optical Phonons in Nanoclusters Formed by the Langmuir-Blodgett Technique. Chin. J. Phys. 2011, 49, 63–70. [Google Scholar]
- Liu, H.F.; Tripathy, S.; Hu, G.X.; Gong, H. Surface optical phonon and A1(LO) in ZnO submicron crystals probed by Raman scattering: Effects of morphology and dielectric coating. J. Appl. Phys. 2009, 105, 53507. [Google Scholar] [CrossRef]
- Dzhagan, V.M.; Azhniuk, Y.M.; Milekhin, A.G.; Zahn, D.R.T. Vibrational spectroscopy of compound semiconductor nanocrystals. J. Phys. D: Appl. Phys. 2018, 51, 50. [Google Scholar] [CrossRef]
- Dzhagan, V.M.; Valakh, M.Y.; Milekhin, A.G.; Yeryukov, N.A.; Zahn, D.R.; Cassette, E.; Pons, T.; Dubertret, B. Raman-and IR-active phonons in CdSe/CdS core/shell nanocrystals in the presence of interface alloying and strain. J. Phys. Chem. C 2013, 117, 18225–18233. [Google Scholar] [CrossRef]
- Alim, K.A.; Fonoberov, V.A.; Shamsa, M.; Balandin, A.A. Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 2005, 97, 124313. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Fu, C.; Pan, X.; Chen, X.; He, H.; Wang, W.; Zeng, Y.; Ye, Z. Raman-based measurement of carrier concentration in n-type ZnO thin films under resonant conditions. Phys. Lett. A 2020, 384, 126148. [Google Scholar] [CrossRef]
- Barker, J.A.S.; Sievers, A.J. Optical studies of the vibrational properties of disordered solids. Rev. Mod. Phys. 1975, 47, S1–S179. [Google Scholar] [CrossRef]
- Cheng, H.-M.; Lin, K.-F.; Hsu, H.-C.; Lin, C.-J.; Lin, A.L.-J.; Hsieh, W.-F. Enhanced Resonant Raman Scattering and Electron−Phonon Coupling from Self-Assembled Secondary ZnO Nanoparticles. J. Phys. Chem. B 2005, 109, 18385–18390. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Inoue, K.; Nakagawa, T.; Ishida, H.; Hasuike, N.; Harima, H. Characterization of ZnO nanoparticles by resonant Raman scattering and cathodoluminescence spectroscopies. Appl. Phys. Lett. 2008, 92, 113115. [Google Scholar] [CrossRef]
- Fonoberov, V.A.; Balandin, A.A. Interface and confined optical phonons in wurtzite nanocrystals. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 70, 233205. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.C.; Li, S. Size-Dependent Raman Red Shifts of Semiconductor Nanocrystals. J. Phys. Chem. B 2008, 112, 14193–14197. [Google Scholar] [CrossRef]
- Korepanov, V.I.; Chan, S.-Y.; Hsu, H.-C.; Hamaguchi, H.-O. Phonon confinement and size effect in Raman spectra of ZnO nanoparticles. Heliyon 2019, 5, e01222. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.M.; Varma, C.M. Cascade Theory of Inelastic Scattering of Light. Phys. Rev. Lett. 1971, 26, 1241. [Google Scholar] [CrossRef]
- Geurts, J. Crystal structure, chemical binding, and lattice properties. In Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 120, pp. 7–37. [Google Scholar] [CrossRef]
- Singh, C.; Rath, S. Spectroscopic ellipsometry and multiphonon Raman spectroscopic study of excitonic effects in ZnO films. J. Appl. Phys. 2013, 113, 163104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, M.; Selyshchev, O.; Havryliuk, Y.; Pop, A.; Zahn, D.R.T. Optical and Structural Characteristics of Rare Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution. Photochem 2022, 2, 515-527. https://doi.org/10.3390/photochem2030036
Toma M, Selyshchev O, Havryliuk Y, Pop A, Zahn DRT. Optical and Structural Characteristics of Rare Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution. Photochem. 2022; 2(3):515-527. https://doi.org/10.3390/photochem2030036
Chicago/Turabian StyleToma, Maria, Oleksandr Selyshchev, Yevhenii Havryliuk, Aurel Pop, and Dietrich R. T. Zahn. 2022. "Optical and Structural Characteristics of Rare Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution" Photochem 2, no. 3: 515-527. https://doi.org/10.3390/photochem2030036
APA StyleToma, M., Selyshchev, O., Havryliuk, Y., Pop, A., & Zahn, D. R. T. (2022). Optical and Structural Characteristics of Rare Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution. Photochem, 2(3), 515-527. https://doi.org/10.3390/photochem2030036