Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Steady-State Optical Spectroscopy
2.2.2. Electrochemical Measurements
3. Results
3.1. Optical Characteristics
3.2. Electrochemical Behaviour
3.2.1. Oxidation and Reduction of PF+-H
3.2.2. Effects of the Substituents on Ring E on the Oxidation and Reduction
(/eV vs. Vacuum) b,c | (/eV vs. Vacuum) e,f,g | |||
---|---|---|---|---|
PF+-NMe2 | −0.607 ± 0.003 h | 1.34 (−6.02) | 0.967 ± 0.052 | −0.973 (−3.71) |
PF+-OMe | −0.497 ± 0.007 g | 1.95 (−6.63) | 1.05 ± 0.06 | −1.06 (−3.62) |
PF+-(OMe)3 | −0.480 ± 0.006 | 1.90 (−6.58) | 1.06 ± 0.03 | −1.02 (−3.66) |
PF+-Me | −0.444 ± 0.006 | 2.13 (−6.81) | 0.966 ± 0.056 | −1.14 (−3.54) |
PF+-F | −0.422 ± 0.032 g | 2.15 (−6.83) | 0.983 ± 0.020 | −1.23 (−3.55) |
PF+-H | −0.398 ± 0.063 | 2.17 (−6.85) | 1.12 ± 0.04 | −0.990 (−3.69) |
PF+-Py | −0.349 ± 0.008 | 2.20 (−6.88) | 1.19 ± 0.05 | −0.980 (−3.70) |
PF+-CN | −0.339 ± 0.006 | 2.17 (−6.85) | 1.27 ± 0.09 | −0.800 (−3.88) |
PF+-NO2 | −0.232 ± 0.005 g | 1.89 (−6.56) | 1.15 ± 0.03 | −0.760 (−3.92) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Wang, X.-F.; Koyama, Y.; Kitao, O.; Wada, Y.; Sasaki, S.-i.; Tamiaki, H.; Zhou, H. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes. Biosens. Bioelectron. 2010, 25, 1970–1976. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Kay, C.D.; Pereira-Caro, G.; Ludwig, I.A.; Clifford, M.N.; Crozier, A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu. Rev. Food Sci. Technol. 2017, 8, 155–180. [Google Scholar] [CrossRef]
- Castaneda-Ovando, A.; Pacheco-Hernandez, M.d.L.; Paez-Hernandez, M.E.; Rodriguez, J.A.; Galan-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Quina, F.H.; Bastos, E.L. Chemistry inspired by the colors of fruits, flowers and wine. An. Acad. Bras. Cienc. 2018, 90, 681–695. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.Y.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.G.; Yeh, C.Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, D.I. Synthesis and photophysics of new types of fullerene-porphyrin dyads. Carbon 2000, 38, 1607–1614. [Google Scholar] [CrossRef]
- Schuster, D.I.; Li, K.; Guldi, D.M. Porphyrin-fullerene photosynthetic model systems with rotaxane and catenane architectures. Comptes Rendus Chim. 2006, 9, 892–908. [Google Scholar] [CrossRef]
- SteinbergYfrach, G.; Liddell, P.A.; Hung, S.C.; Moore, A.L.; Gust, D.; Moore, T.A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241. [Google Scholar] [CrossRef]
- Steinberg-Yfrach, G.; Rigaud, J.L.; Durantini, E.N.; Moore, A.L.; Gust, D.; Moore, T.A. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 1998, 392, 479–482. [Google Scholar] [CrossRef]
- Bennett, I.M.; Farfano, H.M.V.; Bogani, F.; Primak, A.; Liddell, P.A.; Otero, L.; Sereno, L.; Silber, J.J.; Moore, A.L.; Moore, T.A.; et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 2002, 420, 398–401. [Google Scholar] [CrossRef]
- Straight, S.D.; Kodis, G.; Terazono, Y.; Hambourger, M.; Moore, T.A.; Moore, A.L.; Gust, D. Self-regulation of photoinduced electron transfer by a molecular nonlinear transducer. Nat. Nanotechnol. 2008, 3, 280–283. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [Green Version]
- Romero, N.A.; Nicewicz, D.A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef]
- Goliszewska, K.; Rybicka-Jasinska, K.; Clark, J.A.; Vullev, V.I.; Gryko, D. Photoredox Catalysis: The Reaction Mechanism Can Adjust to Electronic Properties of a Catalyst. ACS Catal. 2020, 10, 5920–5927. [Google Scholar] [CrossRef]
- De Annunzio, S.R.; Costa, N.C.S.; Mezzina, R.D.; Graminha, M.A.S.; Fontana, C.R. Chlorin, phthalocyanine, and porphyrin types derivatives in phototreatment of cutaneous manifestations: A review. Int. J. Mol. Sci. 2019, 20, 3861. [Google Scholar] [CrossRef] [Green Version]
- Granville, D.J.; McManus, B.M.; Hunt, D.W.C. Photodynamic therapy: Shedding light on the biochemical pathways regulating porphyrin-mediated cell death. Histol. Histopathol. 2001, 16, 309–317. [Google Scholar] [PubMed]
- Pinto, A.L.; Cruz, H.; Oliveira, J.; Araujo, P.; Cruz, L.; Gomes, V.; Silva, C.P.; Silva, G.T.M.; Mateus, T.; Calogero, G.; et al. Dye-sensitized solar cells based on dimethylamino-π-bridge-pyranoanthocyanin dyes. Sol. Energy 2020, 206, 188–199. [Google Scholar] [CrossRef]
- Pina, F.; Melo, M.J.; Laia, C.A.T.; Parola, A.J.; Lima, J.C. Chemistry and applications of flavylium compounds: A handful of colours. Chem. Soc. Rev. 2012, 41, 869–908. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Xu, Y. Composition of anthocyanins in mulberry and their antioxidant activity. J. Food Compos. Anal. 2008, 21, 390–395. [Google Scholar] [CrossRef]
- Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in Dye-Sensitized Solar Cells. Chem. Rev. 2019, 119, 7279–7327. [Google Scholar] [CrossRef]
- Quina, F.H.; Moreira, P.F., Jr.; Vautier-Giongo, C.; Rettori, D.; Rodrigues, R.F.; Freitas, A.A.; Silva, P.F.; Macanita, A.L. Photochemistry of anthocyanins and their biological role in plant tissues. Pure Appl. Chem. 2009, 81, 1687–1694. [Google Scholar] [CrossRef]
- Zolkepli, Z.; Lim, A.; Ekanayake, P.; Tennakoon, K. Efficiency Enhancement of Cocktail Dye of Ixora coccinea and Tradescantia spathacea in DSSC. J. Biophys 2015, 2015, 582091. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.A.; Silva, C.P.; Silva, G.T.M.; Macanita, A.L.; Quina, F.H. From vine to wine: Photophysics of a pyranoflavylium analog of red wine pyranoanthocyanins. Pure Appl. Chem. 2017, 89, 1761–1767. [Google Scholar] [CrossRef]
- da Silva, C.P.; Pioli, R.M.; Liu, L.; Zheng, S.S.; Zhang, M.J.; Silva, G.T.D.; Carneiro, V.M.T.; Quina, F.H. Improved Synthesis of Analogues of Red Wine Pyranoanthocyanin Pigments. Acs Omega 2018, 3, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Vullev, V.I. From Biomimesis to Bioinspiration: What’s the Benefit for Solar Energy Conversion Applications? J. Phys. Chem. Lett. 2011, 2, 503–508. [Google Scholar] [CrossRef]
- Rybicka-Jasińska, K.; Derr, J.B.; Vullev, V.I. What defines biomimetic and bioinspired science and engineering? Pure Appl. Chem. 2021, 93, 1275–1292. [Google Scholar] [CrossRef]
- Xia, B.; Bao, D.; Upadhyayula, S.; Jones, G.; Vullev, V.I. Anthranilamides as Bioinspired Molecular Electrets: Experimental Evidence for a Permanent Ground-State Electric Dipole Moment. J. Org. Chem. 2013, 78, 1994–2004. [Google Scholar] [CrossRef]
- Ashraf, M.K.; Pandey, R.R.; Lake, R.K.; Millare, B.; Gerasimenko, A.A.; Bao, D.; Vullev, V.I. Theoretical design of bioinspired macromolecular electrets based on anthranilamide derivatives. Biotechnol. Prog. 2009, 25, 915–922. [Google Scholar] [CrossRef]
- Skonieczny, K.; Espinoza, E.M.; Derr, J.B.; Morales, M.; Clinton, J.M.; Xia, B.; Vullev, V.I. Biomimetic and bioinspired molecular electrets. How to make them and why does the established peptide chemistry not always work? Pure Appl. Chem. 2020, 92, 275–299. [Google Scholar] [CrossRef]
- Larsen, J.M.; Espinoza, E.M.; Vullev, V.I. Bioinspired molecular electrets: Bottom-up approach to energy materials and applications. J. Photon. Energy. 2015, 5, 055598. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.M.; Gomes, B.; Goncalves, L.M.; Oliveira, J.; Rocha, S.; Coelho, M.; Rodrigues, J.A.; Freitas, V.; Aguilar, H. Pyranoflavylium derivatives extracted from wine grape as photosensitizers in solar cells. J. Braz. Chem. Soc. 2014, 25, 1029–1035. [Google Scholar] [CrossRef]
- Pinto, A.L.; Oliveira, J.; Araujo, P.; Calogero, G.; de Freitas, V.; Pina, F.; Parola, A.J.; Lima, J.C. Study of the multi-equilibria of red wine colorants pyranoanthocyanins and evaluation of their potential in dye-sensitized solar cells. Sol. Energy 2019, 191, 100–108. [Google Scholar] [CrossRef]
- Pinto, A.L.; Cruz, L.; Gomes, V.; Cruz, H.; Calogero, G.; de Freitas, V.; Pina, F.; Parola, A.J.; Carlos Lima, J. Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts. Dye. Pigm. 2019, 170, 107577. [Google Scholar] [CrossRef]
- Weber, G.; Teale, F.W.J. Fluorescence excitation spectrum of organic compounds in solution. I. Systems with quantum yield independent of the exciting wave length. Trans. Faraday Soc. 1958, 54, 640–648. [Google Scholar] [CrossRef]
- Martin, M.M.; Lindqvist, L. The pH dependence of fluorescein fluorescence. J. Lumin. 1975, 10, 381–390. [Google Scholar] [CrossRef]
- Bao, D.; Millare, B.; Xia, W.; Steyer, B.G.; Gerasimenko, A.A.; Ferreira, A.; Contreras, A.; Vullev, V.I. Electrochemical Oxidation of Ferrocene: A Strong Dependence on the Concentration of the Supporting Electrolyte for Nonpolar Solvents. J. Phys. Chem. A 2009, 113, 1259–1267. [Google Scholar] [CrossRef]
- Espinoza, E.M.; Larsen, J.M.; Vullev, V.I. What Makes Oxidized N-Acylanthranilamides Stable? J. Phys. Chem. Lett. 2016, 7, 758–764. [Google Scholar] [CrossRef]
- Espinoza, E.M.; Clark, J.A.; Soliman, J.; Derr, J.B.; Morales, M.; Vullev, V.I. Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails. J. Electrochem. Soc. 2019, 166, H3175–H3187. [Google Scholar] [CrossRef]
- O’Mari, O.; Vullev, V.I. Electrochemical analysis in charge-transfer science: The devil in the details. Curr. Opin. Electrochem. 2022, 31, 100862. [Google Scholar] [CrossRef]
- Gritzner, G.; Küta, J. Recommendations on Reporting Electrode-Potentials in Nonaqueous Solvents (Recommendations 1983). Pure Appl. Chem. 1984, 56, 461–466. [Google Scholar] [CrossRef]
- Gritzner, G.; Küta, J. Iupac Commission on Electrochemistry—Recommendations on Reporting Electrode-Potentials in Nonaqueous Solvents. Electrochim. Acta 1984, 29, 869–873. [Google Scholar] [CrossRef]
- Bond, A.M.; Oldham, K.B.; Snook, G.A. Use of the Ferrocene Oxidation Process To Provide Both Reference Electrode Potential Calibration and a Simple Measurement (via Semiintegration) of the Uncompensated Resistance in Cyclic Voltammetric Studies in High-Resistance Organic Solvents. Anal. Chem. 2000, 72, 3492–3496. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, A.; Wada, H.; Kitagawa, T. A solvent-independent reference potential in nonaqueous solvents. Anal. Sci. 1991, 7, 1711–1714. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, A.; Waligora, L.; Galinski, M. Ferrocene as a Reference Redox Couple for Aprotic Ionic Liquids. Electroanalysis 2009, 21, 2221–2227. [Google Scholar] [CrossRef]
- Gagne, R.R.; Koval, C.A.; Lisensky, G.C. Ferrocene as an internal standard for electrochemical measurements. Inorg. Chem. 1980, 19, 2854–2855. [Google Scholar] [CrossRef]
- Gritzner, G. Gibbs Free-Energies of Transfer Deltagdegreestr for Alkali-Metal Ions and T1+. Inorg Chim Acta 1977, 24, 5–12. [Google Scholar] [CrossRef]
- Gritzner, G. Polarographic Half-Wave Potentials of Cations in Nonaqueous Solvents. Pure Appl. Chem. 1990, 62, 1839–1858. [Google Scholar] [CrossRef] [Green Version]
- Tsierkezos, N.G. Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J. Solut. Chem. 2007, 36, 289–302. [Google Scholar] [CrossRef]
- Tsierkezos, N.G.; Ritter, U. Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. J. Appl. Electrochem. 2010, 40, 409–417. [Google Scholar] [CrossRef]
- Zhong, Z.H.; Matsumura-Inoue, T.; Ichimura, A. Solvent effect on the redox potential of ferrocene derivatives using an ultramicroelectrode. Anal. Sci. 1992, 8, 877–879. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.I.; Silvester, D.S.; Poole, D.L.; Aldous, L.; Hardacre, C.; Compton, R.G. Voltammetric characterization of the ferrocene vertical bar ferrocenium and cobaltocenium vertical bar cobaltocene redox couples in RTILs. J. Phys. Chem. C 2008, 112, 2729–2735. [Google Scholar] [CrossRef]
- Izutsu, K. Liquid Junction Potentials between Electrolyte Solutions in Different Solvents. Anal. Sci. 2011, 27, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Bao, D.; Ramu, S.; Contreras, A.; Upadhyayula, S.; Vasquez, J.M.; Beran, G.; Vullev, V.I. Electrochemical Reduction of Quinones: Interfacing Experiment and Theory for Defining Effective Radii of Redox Moieties. J. Phys. Chem. B 2010, 114, 14467–14479. [Google Scholar] [CrossRef]
- Born, M. Volumes and heats of hydration of ions. Z. Phys. 1920, 1, 45–48. [Google Scholar] [CrossRef]
- Jaworski, J.S.; Lesniewska, E.; Kalinowski, M.K. Solvent effect on the redox potential of quinone-semiquinone systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 105, 329–334. [Google Scholar] [CrossRef]
- Bond, A.M.; Mclennan, E.A.; Stojanovic, R.S.; Thomas, F.G. Assessment of Conditions under Which the Oxidation of Ferrocene Can Be Used as a Standard Voltammetric Reference Process in Aqueous-Media. Anal. Chem. 1987, 59, 2853–2860. [Google Scholar] [CrossRef]
- Freitas, A.A.; Silva, C.P.; Silva, G.T.M.; Macanita, A.L.; Quina, F.H. Ground- and Excited-State Acidity of Analogs of Red Wine Pyranoanthocyanins. Photochem. Photobiol. 2018, 94, 1086–1091. [Google Scholar] [CrossRef]
- Angulo, G.; Grampp, G.; Rosspeintner, A. Recalling the appropriate representation of electronic spectra. Spectrochim. Acta A 2006, 65, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Muckerman, J.T.; Skone, J.H.; Ning, M.; Wasada-Tsutsui, Y. Toward the accurate calculation of pKa values in water and acetonitrile. Biochim. Biophys. Acta Bioenerg. 2013, 1827, 882–891. [Google Scholar] [CrossRef] [Green Version]
- Sarmini, K.; Kenndler, E. Ionization constants of weak acids and bases in organic solvents. J. Biochem. Bioph. Meth. 1999, 38, 123–137. [Google Scholar] [CrossRef]
- Sousa, J.L.C.; Gomes, V.; Mateus, N.; Pina, F.; de Freitas, V.; Cruz, L. Synthesis and equilibrium multistate of new pyrano-3-deoxyanthocyanin-type pigments in aqueous solutions. Tetrahedron 2017, 73, 6021–6030. [Google Scholar] [CrossRef]
- Moncada, M.C.; de Mesquita, M.F.; dos Santos, M.M.C. Electrochemical oxidation of the synthetic anthocyanin analogue 4-methyl-7,8-dihydroxyflavylium salt. J. Electroanal. Chem. 2009, 636, 60–67. [Google Scholar] [CrossRef]
- Bocharova, O. New evidence of anthocyanins reduction in fruit juices on Pt electrode, and separate investigation of their oxidized and reduced forms. J. Food. Meas. Charact. 2019, 13, 932–939. [Google Scholar] [CrossRef]
- Koopmans, T. The classification of wave functions and eigen-values to the single electrons of an atom. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Muchová, E.; Slavíček, P. Beyond Koopmans’ theorem: Electron binding energies in disordered materials. J. Phys.: Condens. Matter 2019, 31, 043001–043019. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Singh, P.P. Eosin Y catalysed photoredox synthesis: A review. RSC Adv. 2017, 7, 31377–31392. [Google Scholar] [CrossRef]
- Calogero, G.; Citro, I.; Di Marco, G.; Caramori, S.; Casarin, L.; Bignozzi, C.A.; Avo, J.; Parola, A.J.; Pina, F. Electronic and charge transfer properties of bio-inspired flavylium ions for applications in TiO2-based dye-sensitized solar cells. Photoch. Photobio. Sci. 2017, 16, 1400–1414. [Google Scholar] [CrossRef]
- Manyashin, A.O.; Fomenko, A.I.; Storozhenko, V.N.; Berberova, N.T. Mechanism of interaction of γ-halogenated salts of pyrylium and benzopyrylium with aromatic amines. Russ. J. Electrochem. 2003, 39, 1240–1244. [Google Scholar] [CrossRef]
- Huynh, M.T.; Anson, C.W.; Cavell, A.C.; Stahl, S.S.; Hammes-Schiffer, S. Quinone 1 e- and 2 e-/2 H+ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships. J. Am. Chem. Soc. 2016, 138, 15903–15910. [Google Scholar] [CrossRef]
- Lee, S.K.; Zu, Y.; Herrmann, A.; Geerts, Y.; Muellen, K.; Bard, A.J. Electrochemistry, Spectroscopy and Electrogenerated Chemiluminescence of Perylene, Terrylene, and Quaterrylene Diimides in Aprotic Solution. J. Am. Chem. Soc. 1999, 121, 3513–3520. [Google Scholar] [CrossRef] [Green Version]
- Orłowski, R.; Clark, J.A.; Derr, J.B.; Espinoza, E.M.; Mayther, M.F.; Staszewska-Krajewska, O.; Winkler, J.R.; Jędrzejewska, H.; Szumna, A.; Gray, H.B.; et al. Role of intramolecular hydrogen bonds in promoting electron flow through amino acid and oligopeptide conjugates. Proc. Natl. Acad. Sci. USA 2021, 118, e2026462118. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, E.M.; Xia, B.; Darabedian, N.; Larsen, J.M.; Nunez, V.; Bao, D.; Mac, J.T.; Botero, F.; Wurch, M.; Zhou, F.; et al. Nitropyrene Photoprobes: Making Them, and What Are They Good for? Eur. J. Org. Chem. 2016, 2016, 343–356. [Google Scholar] [CrossRef]
- Poronik, Y.M.; Baryshnikov, G.V.; Deperasińska, I.; Espinoza, E.M.; Ågren, H.; Gryko, D.T.; Vullev, V.I. Deciphering the Enigma of Unusual Fluorescence in Weakly Coupled Bis-nitro-pyrrolo[3,2-b]pyrroles. Commun. Chem. 2020, 3, 190. [Google Scholar] [CrossRef]
- Jones, G., II; Lu, L.N.; Vullev, V.; Gosztola, D.; Greenfield, S.; Wasielewski, M. Photoactive peptides. 6. Photoinduced electron transfer for pyrenesulfonamide conjugates of tryptophan-containing peptides. Mitigation of fluoroprobe behavior in N-terminal labeling experiments. Bioorg. Med. Chem. Lett. 1995, 5, 2385–2390. [Google Scholar] [CrossRef]
- Rybicka-Jasinska, K.; Espinoza, E.M.; Clark, J.A.; Derr, J.B.; Carlos, G.; Morales, M.; Billones, M.K.; OMari, O.; Agren, H.; Baryshnikov, G.V.; et al. Making Nitronaphthalene Fluoresce. J. Phys. Chem. Lett. 2021, 12, 10295–10303. [Google Scholar] [CrossRef]
- Sadowski, B.; Kaliszewska, M.; Poronik, Y.M.; Czichy, M.; Janasik, P.; Banasiewicz, M.; Mierzwa, D.; Gadomski, W.; Lohrey, T.D.; Clark, J.A.; et al. Potent strategy towards strongly emissive nitroaromatics through a weakly electron-deficient core. Chem. Sci. 2021, 12, 14039–14049. [Google Scholar] [CrossRef]
- Irwin, M.D.; Buchholz, B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. USA 2008, 105, 2783–2787. [Google Scholar] [CrossRef] [Green Version]
- Hansch, C.; Leo, A.; Taft, R.W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Swain, C.G.; Lupton, E.C., Jr. Field and resonance components of substituent effects. J. Am. Chem. Soc. 1968, 90, 4328–4337. [Google Scholar] [CrossRef]
- Derr, J.B.; Tamayo, J.; Clark, J.A.; Morales, M.; Mayther, M.F.; Espinoza, E.M.; Rybicka-Jasinska, K.; Vullev, V.I. Multifaceted aspects of charge transfer. Phys. Chem. Chem. Phys. 2020, 22, 21583–21629. [Google Scholar] [CrossRef]
- Trasatti, S. The Absolute Electrode Potential—An Explanatory Note (Recommendations 1986). Pure Appl. Chem. 1986, 58, 955–966. [Google Scholar] [CrossRef]
- Purc, A.; Espinoza, E.M.; Nazir, R.; Romero, J.J.; Skonieczny, K.; Jeżewski, A.; Larsen, J.M.; Gryko, D.T.; Vullev, V.I. Gating That Suppresses Charge Recombination–The Role of Mono-N-Arylated Diketopyrrolopyrrole. J. Am. Chem. Soc. 2016, 138, 12826–12832. [Google Scholar] [CrossRef]
- Ryu, H.G.; Mayther, M.F.; Tamayo, J.; Azarias, C.; Espinoza, E.M.; Banasiewicz, M.; Lukasiewicz, L.G.; Poronik, Y.M.; Jezewski, A.; Clark, J.; et al. Bidirectional Solvatofluorochromism of a Pyrrolo[3,2-b]pyrrole-Diketopyrrolopyrrole Hybrid. J. Phys. Chem. C 2018, 122, 13424–13434. [Google Scholar] [CrossRef]
- Blanch, J.H. Determination of the Hammett substituent constants for the 2-, 3-, and 4-pyridyl and -pyridinium groups. J. Chem. Soc. B 1966, 937–939. [Google Scholar] [CrossRef]
- Carano, M.; Da Ros, T.; Fanti, M.; Kordatos, K.; Marcaccio, M.; Paolucci, F.; Prato, M.; Roffia, S.; Zerbetto, F. Modulation of the Reduction Potentials of Fullerene Derivatives. J. Am. Chem. Soc. 2003, 125, 7139–7144. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M. Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes. J. Phys. Chem. 1995, 99, 8843. [Google Scholar] [CrossRef]
- Yun, S.N.; Vlachopoulos, N.; Qurashi, A.; Ahmad, S.; Hagfeldt, A. Dye sensitized photoelectrolysis cells. Chem. Soc. Rev. 2019, 48, 3705–3722. [Google Scholar] [CrossRef]
- Maheu, C.; Cardenas, L.; Puzenat, E.; Afanasiev, P.; Geantet, C. UPS and UV spectroscopies combined to position the energy levels of TiO2 anatase and rutile nanopowders. Phys. Chem. Chem. Phys. 2018, 20, 25629–25637. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, Y.; Wang, L. Two novel mono-hydroxyl pyranoanthocyanidins bearing dimethylamino substituent(s) for dye-sensitized solar cell. J. Mol. Struct. 2021, 1252, 132055. [Google Scholar] [CrossRef]
- Higashino, T.; Imahori, H. Porphyrins as excellent dyes for dye-sensitized solar cells: Recent developments and insights. Dalton Trans. 2015, 44, 448–463. [Google Scholar] [CrossRef]
- Troian-Gautier, L.; Swords, W.B.; Meyer, G.J. Iodide Photoredox and Bond Formation Chemistry. Acc. Chem. Res. 2019, 52, 170–179. [Google Scholar] [CrossRef]
- Troian-Gautier, L.; Turlington, M.D.; Wehlin, S.A.M.; Maurer, A.B.; Brady, M.D.; Swords, W.B.; Meyer, G.J. Halide Photoredox Chemistry. Chem. Rev. 2019, 119, 4628–4683. [Google Scholar] [CrossRef]
- Magni, M.; Biagini, P.; Colombo, A.; Dragonetti, C.; Roberto, D.; Valore, A. Versatile copper complexes as a convenient springboard for both dyes and redox mediators in dye sensitized solar cells. Coord. Chem. Rev. 2016, 322, 69–93. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G. Cobalt-based electrolytes for dye-sensitized solar cells: Recent advances towards stable devices. Energies 2016, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Saygili, Y.; Stojanovic, M.; Flores-Diaz, N.; Zakeeruddin, S.M.; Vlachopoulos, N.; Graetzel, M.; Hagfeldt, A. Metal coordination complexes as redox mediators in regenerative dye-sensitized solar cells. Inorganics 2019, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Pashaei, B.; Shahroosvand, H.; Abbasi, P. Transition metal complex redox shuttles for dye-sensitized solar cells. RSC Adv. 2015, 5, 94814–94848. [Google Scholar] [CrossRef]
- Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Muñoz-García, A.B.; Zakeeruddin, S.M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J. Am. Chem. Soc. 2016, 138, 15087–15096. [Google Scholar] [CrossRef] [Green Version]
- Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Copper Complexes as Alternative Redox Mediators in Dye-Sensitized Solar Cells. Molecules 2021, 26, 194. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.R.; Cheema, H.; Delcamp, J.H. A High-Voltage Molecular-Engineered Organic Sensitizer-Iron Redox Shuttle Pair: 1.4 V DSSC and 3.3 V SSM-DSSC Devices. Angew. Chem., Int. Ed. 2018, 57, 5472–5476. [Google Scholar] [CrossRef]
- Odobel, F.; Pellegrin, Y.; Gibson, E.A.; Hagfeldt, A.; Smeigh, A.L.; Hammarstrom, L. Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coord. Chem. Rev. 2012, 256, 2414–2423. [Google Scholar] [CrossRef]
- Benazzi, E.; Mallows, J.; Summers, G.H.; Black, F.A.; Gibson, E.A. Developing photocathode materials for p-type dye-sensitized solar cells. J. Mater. Chem. C 2019, 7, 10409–10445. [Google Scholar] [CrossRef]
- Sullivan, I.; Zoellner, B.; Maggard, P.A. Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chem. Mater. 2016, 28, 5999–6016. [Google Scholar] [CrossRef]
- Daeneke, T.; Mozer, A.J.; Kwon, T.H.; Duffy, N.W.; Holmes, A.B.; Bach, U.; Spiccia, L. Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy Environ. Sci. 2012, 5, 7090–7099. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Siddique, F.; Freitas, A.A.; Silva, C.P.; Silva, G.T.M.; Quina, F.H.; Lischka, H.; Aquino, A.J.A. A computational study of the ground and excited state acidities of synthetic analogs of red wine pyranoanthocyanins. Theor. Chem. Acc. 2020, 139, 117. [Google Scholar] [CrossRef]
Solvent Acidity | ϕf × 103 a | λabs/nm b | λexc/nm c | λfl/nm d | 00/eV e | |
---|---|---|---|---|---|---|
PF+-NMe2 | 10 mM TFA | 0.96 | 550 | 468 | 500 | – f (1.95) |
No TFA | 1.5 | 549 | 470 | 507 | – f (1.94) | |
PF+-OMe | 10 mM TFA | 355 | 371, 449, 476 | 369, 449, 476 | 507 | 2.54 (2.45) |
No TFA | 5.5 | 342, 426, 520 | 342, 423, 519 | 515, 613, 669 | 2.11 (2.03) | |
PF+-(OMe)3 | 10 mM TFA | 4.1 | 378, 467, 478 | 361, 448, 464 | 504 | − f (2.38) f |
No TFA | 2.4 | 345, 478, 456, 531, 618 | 337, 419, 534, 572 | 505, 618, 672 | 2.08 (2.02) | |
PF+-Me | 10 mM TFA | 99.2 | 358, 451, 482 | 360, 446, 464 | 500 | 2.57 (2.46) |
No TFA | 7.4 | 336, 422, 529 | 328, 417, 531 | 499, 612, 669 | 2.11 (2.02) | |
PF+-F | 10 mM TFA | 66 | 354, 398, 448 | 355, 388, 448 | 505 | 2.57 (2.48) |
No TFA | 6.6 | 324, 422, 531 | 325, 417, 531 | 505, 614, 672 | 2.11 (2.02) | |
PF+-H | 10 mM TFA | 74.1 | 353, 402, 445 | 353, 409, 442 | 506 | 2.57 (2.47) |
No TFA | 3.6 | 325, 428, 520 | 324, 421, 519 | 614, 668 | 2.11 (2.00) | |
PF+-Py | 10 mM TFA | 31.7 | 349, 404, 447 | 350, 410, 448 | 515 | 2.55 (2.49) |
No TFA | 2.9 | 323, 421, 535 | 322, 418, 534 | 619, 677 | 2.17 (2.01) | |
PF+-CN | 10 mM TFA | 20.7 | 353, 412, 450 | 354, 422, 452 | 522 | 2.51 (2.42) |
No TFA | 2.9 | 328, 429, 524 | 328, 424, 528 | 626, 663 | 2.07 (2.01) | |
PF+-NO2 | 10 mM TFA | 32.2 | 353, 456, 476 | 360, 458, 472 | 515 | – f (2.11) |
No TFA | 2 | 314, 389, 531 | 320, 427, 534 | 620, 667 | – f (1.91) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza, E.M.; Clark, J.A.; Billones, M.K.; Silva, G.T.d.M.; Silva, C.P.d.; Quina, F.H.; Vullev, V.I. Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer. Photochem 2022, 2, 9-31. https://doi.org/10.3390/photochem2010003
Espinoza EM, Clark JA, Billones MK, Silva GTdM, Silva CPd, Quina FH, Vullev VI. Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer. Photochem. 2022; 2(1):9-31. https://doi.org/10.3390/photochem2010003
Chicago/Turabian StyleEspinoza, Eli Misael, John Anthony Clark, Mimi Karen Billones, Gustavo Thalmer de Medeiros Silva, Cassio Pacheco da Silva, Frank Herbert Quina, and Valentine Ivanov Vullev. 2022. "Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer" Photochem 2, no. 1: 9-31. https://doi.org/10.3390/photochem2010003
APA StyleEspinoza, E. M., Clark, J. A., Billones, M. K., Silva, G. T. d. M., Silva, C. P. d., Quina, F. H., & Vullev, V. I. (2022). Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer. Photochem, 2(1), 9-31. https://doi.org/10.3390/photochem2010003