Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanofiber Solutions
2.3. The Electrospinning Process and Fabrication of Nanofiber Membranes
2.4. Characterization of Nanofiber Membranes
2.5. Filtration Efficiency Test of PA6 Membranes
2.6. Filtration Test Results for Bacterial and Viral Filtration Efficiency
2.6.1. Method for In Vitro Determination of Bacterial Filtration Efficiency (BFE)
2.6.2. Method for In Vitro Determination of Viral Filtration Efficiency (VFE)
- VFE 110—the challenge concentration was maintained at (1100 ± 3300) PFU, enabling filtration efficiencies up to >99.9%.
- VFE 125—the challenge concentration was ≥1 × 106 PFU, allowing efficiencies up to >99.9999%.
2.7. Bacteriostatic and Bactericidal Properties of Nanofibers
2.8. Determination of Antiviral Activity of Nanofiber Membranes
2.9. Biocompatibility Testing
2.9.1. Cell Seeding and Culture Conditions
2.9.2. Metabolic Activity
2.9.3. Cell Morphology
2.9.4. Live/Dead Staining
2.9.5. Statistics and Use of Generative Artificial Intelligence
3. Results
3.1. Electrospinning and Morphological Characteristics of Pristine PA6 Nanofiber Membranes
3.2. Bacteriostatic and Bactericidal Performance of Nanofiber Membranes
3.3. Antiviral Activity of the Nanofiber Membrane
3.4. Biocompatibility Evaluation of the Nanofibers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabatabaei, N.; Faridi-Majidi, R.; Boroumand, S.; Norouz, F.; Rahmani, M.; Rezaie, F.; Fayazbakhsh, F.; Faridi-Majidi, R. Nanofibers in Respiratory Masks: An Alternative to Prevent Pathogen Transmission. IEEE Trans. NanoBiosci. 2022, 22, 685–701. [Google Scholar] [CrossRef]
- Lyu, C.; Zhao, P.; Xie, J.; Dong, S.; Liu, J.; Rao, C.; Fu, J. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. Nanomaterials 2021, 11, 1501. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The Impact of PM2.5 on the Human Respiratory System. J. Thorac. Dis. 2016, 8, E69. [Google Scholar]
- Thurston, G.; Awe, Y.; Ostro, B.; Sanchez-Triana, E. Are All Air Pollution Particles Equal? How Constituents and Sources of Fine Air Pollution Particles (PM2.5) Affect Health; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Drabek, J.; Zatloukal, M. Meltblown Technology for Production of Polymeric Microfibers/Nanofibers: A Review. Phys. Fluids 2019, 31, 91301. [Google Scholar] [CrossRef]
- Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S.K.; Zhang, F. Electrospun Nanofibers Membranes for Effective Air Filtration. Macromol. Mater. Eng. 2017, 302, 1600353. [Google Scholar] [CrossRef]
- Lu, T.; Cui, J.; Qu, Q.; Wang, Y.; Zhang, J.; Xiong, R.; Ma, W.; Huang, C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Appl. Mater. Interfaces 2021, 13, 23293–23313. [Google Scholar] [CrossRef] [PubMed]
- Beckman, I.P.; Berry, G.; Cho, H.; Riveros, G. Alternative High-Performance Fibers for Nonwoven HEPA Filter Media. Aerosol Sci. Eng. 2023, 7, 36–58. [Google Scholar] [CrossRef]
- Kemp, P.; Neumeister-Kemp, H.; Lysek, G.; Murray, F. Survival and Growth of Micro-Organisms on Air Filtration Media during Initial Loading. Atmos. Environ. 2001, 35, 4739–4749. [Google Scholar] [CrossRef]
- Mittal, H.; Parks, S.R.; Pottage, T.; Walker, J.T.; Bennett, A.M. Survival of Microorganisms on HEPA Filters. Appl. Biosaf. 2011, 16, 163–166. [Google Scholar] [CrossRef]
- Amini, G.; Samiee, S.; Gharehaghaji, A.A.; Hajiani, F. Fabrication of Polyurethane and Nylon 66 Hybrid Electrospun Nanofiber Layer for Waterproof Clothing Applications. Adv. Polym. Technol. 2016, 35, 419–427. [Google Scholar] [CrossRef]
- Avossa, J.; Batt, T.; Pelet, T.; Sidjanski, S.P.; Schönenberger, K.; Rossi, R.M. Polyamide Nanofiber-Based Air Filters for Transparent Face Masks. ACS Appl. Nano Mater. 2021, 4, 12401–12406. [Google Scholar] [CrossRef]
- Blanco, M.; Monteserín, C.; Gómez, E.; Aranzabe, E.; Vilas Vilela, J.L.; Pérez-Márquez, A.; Maudes, J.; Vaquero, C.; Murillo, N.; Zalakain, I. Polycarbonate Nanofiber Filters with Enhanced Efficiency and Antibacterial Performance. Polymers 2025, 17, 444. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Wang, M.; Zhang, X.; Gan, Z. Thermoplastic Polyurethane Nanofiber Membrane Based Air Filters for Efficient Removal of Ultrafine Particulate Matter PM0.1. ACS Appl. Nano Mater. 2020, 4, 182–189. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Liu, L.; Yu, J.; Ding, B. High-performance PM0.3 Air Filters Using Self-polarized Electret Nanofiber/Nets. Adv. Funct. Mater. 2020, 30, 1909554. [Google Scholar] [CrossRef]
- Patel, P.; Yadav, B.K.; Patel, G. State-of-the-Art and Projected Developments of Nanofiber Filter Material for Face Mask Against COVID-19. Recent. Pat. Nanotechnol. 2022, 16, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Yalcinkaya, F. Preparation of Various Nanofiber Layers Using Wire Electrospinning System. Arab. J. Chem. 2019, 12, 5162–5172. [Google Scholar] [CrossRef]
- Yalcinkaya, B.; Strejc, M.; Yalcinkaya, F.; Spirek, T.; Louda, P.; Buczkowska, K.E.; Bousa, M. An Innovative Approach for Elemental Mercury Adsorption Using X-Ray Irradiation and Electrospun Nylon/Chitosan Nanofibers. Polymers 2024, 16, 1721. [Google Scholar] [CrossRef]
- Yalcinkaya, B.; Buzgo, M. Optimization of Electrospun TORLON® 4000 Polyamide-Imide (PAI) Nanofibers: Bridging the Gap to Industrial-Scale Production. Polymers 2024, 16, 1516. [Google Scholar] [CrossRef]
- Ryšánek, P.; Malý, M.; Čapková, P.; Kormunda, M.; Kolská, Z.; Gryndler, M.; Novák, O.; Hocelíková, L.; Bystrianský, L.; Munzarová, M. Antibacterial Modification of Nylon-6 Nanofibers: Structure, Properties and Antibacterial Activity. J. Polym. Res. 2017, 24, 208. [Google Scholar] [CrossRef]
- Dhineshbabu, N.R.; Karunakaran, G.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V. Electrospun MgO/Nylon 6 Hybrid Nanofibers for Protective Clothing. Nano-Micro Lett. 2014, 6, 46–54. [Google Scholar] [CrossRef]
- Jabur, A.R.; Abbas, L.K.; Moosa, S.A. Antibacterial Activity of Electrospun Silver Nitrate/Nylon 6 Polymeric Nanofiber Water Filtration Mats. Al-Khwarizmi Eng. J. 2017, 13, 84–93. [Google Scholar] [CrossRef]
- Ali, A.; Baheti, V.; Vik, M.; Militky, J. Copper Electroless Plating of Cotton Fabrics after Surface Activation with Deposition of Silver and Copper Nanoparticles. J. Phys. Chem. Solids 2020, 137, 109181. [Google Scholar] [CrossRef]
- Garcia, M.M.; Da Silva, B.L.; Sorrechia, R.; Pietro, R.C.L.R.; Chiavacci, L.A. Sustainable Antibacterial Activity of Polyamide Fabrics Containing ZnO Nanoparticles. ACS Appl. Bio Mater. 2022, 5, 3667–3677. [Google Scholar] [CrossRef]
- Zhang, M.; Song, W.; Tang, Y.; Xu, X.; Huang, Y.; Yu, D. Polymer-Based Nanofiber–Nanoparticle Hybrids and Their Medical Applications. Polymers 2022, 14, 351. [Google Scholar] [CrossRef]
- Hashmi, M.; Ullah, S.; Kim, I.S. Copper Oxide (CuO) Loaded Polyacrylonitrile (PAN) Nanofiber Membranes for Antimicrobial Breath Mask Applications. Curr. Res. Biotechnol. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Xie, G.; Liu, Z.; Zhu, Z.; Liu, Q.; Ge, J.; Huang, Z. Simultaneous Removal of SO2 and NOx from Flue Gas Using a CuO/Al2O3 Catalyst Sorbent: I. Deactivation of SCR Activity by SO2 at Low Temperatures. J. Catal. 2004, 224, 36–41. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, S.; Xu, X.; Du, Q. Copper-Containing Nanoparticles: Mechanism of Antimicrobial Effect and Application in Dentistry-a Narrative Review. Front. Surg. 2022, 9, 905892. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Fomina, P.A.; Validov, S.Z.; Kozlov, V.A. Antibacterial Properties of Copper Oxide Nanoparticles. Int. J. Mol. Sci. 2024, 25, 11563. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Memic, A. Size-Dependent Antimicrobial Properties of CuO Nanoparticles against Gram-Positive and-Negative Bacterial Strains. Int. J. Nanomed. 2012, 7, 3527–3535. [Google Scholar] [CrossRef]
- Mantlo, E.K.; Paessler, S.; Seregin, A.; Mitchell, A. Luminore Coppertouch Surface Coating Effectively Inactivates SARS-CoV-2, Ebola Virus, and Marburg Virus in Vitro. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Chin, A.W.; Behzadinasab, S.; Poon, L.L.; Ducker, W.A. Cupric Oxide Coating That Rapidly Reduces Infection by SARS-CoV-2 via Solids. ACS Appl. Mater. Interfaces 2021, 13, 5919–5928. [Google Scholar] [CrossRef]
- Brunelli, A.; Calgaro, L.; Semenzin, E.; Cazzagon, V.; Giubilato, E.; Marcomini, A.; Badetti, E. Leaching of Nanoparticles from Nano-Enabled Products for the Protection of Cultural Heritage Surfaces: A Review. Environ. Sci. Eur. 2021, 33, 48. [Google Scholar] [CrossRef]
- Kajau, A.; Motsa, M.; Mamba, B.B.; Mahlangu, O. Leaching of CuO Nanoparticles from PES Ultrafiltration Membranes. ACS Omega 2021, 6, 31797–31809. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Motsa, M.M.; Richards, H.; Mamba, B.B.; George, M.J.; Nthunya, L.N. The Impact of Nanoparticle Leach on Sustainable Performance of the Membranes—A Critical Review. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100984. [Google Scholar] [CrossRef]
- Yalcinkaya, B.; Buzgo, M. A Guide for Industrial Needleless Electrospinning of Synthetic and Hybrid Nanofibers. Polymers 2025, 17, 3019. [Google Scholar] [CrossRef] [PubMed]
- EN 149:2001; Respiratory Protective Devices—Filtering Half Masks to Protect Against Particles. European Standard Norm: Brussels, Belgium, 2001. Available online: https://standards.iteh.ai/catalog/standards/cen/f440f60a-91c1-497b-815e-4e9d46436256/en-149-2001a1-2009?srsltid=AfmBOoryhMFRgOotTdorm6NvlLLhNQWE2lTmg9hKlQNkDFgBrIjTi9V0 (accessed on 6 November 2025).
- EN 14683:2025; European Standard Norm Medical Face Masks—Requirements and Test Methods. ISO: Geneva, Switzerland, 2025. Available online: https://standards.iteh.ai/catalog/standards/cen/a6af61a7-49b8-4db9-aab9-5cae296b5bbf/en-14683-2025?srsltid=AfmBOopX-VxmrY4n_qEzlUw8t7IEl1AbE4MJyiS3uLyhx26_w1UgDtpP (accessed on 6 November 2025).
- ASTM F2101; Standard Test Method for Evaluating the Bacterial Filtration Efficiency (BFE) of Medical Face Mask Materials, Using a Biological Aerosol of Staphylococcus Aureus. ASTM International: Conshohocken, PA, USA, 2023. Available online: https://store.astm.org/f2101-22.html (accessed on 6 November 2025).
- ISO 18184:2025; The International Organization for Standardization. Textiles—Determination of Antiviral Activity of Textile Products. ISO: Geneva, Switzerland, 2025. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:18184:ed-3:v1:en (accessed on 6 November 2025).
- Zainelabdin, A.; Amin, G.; Zaman, S.; Nur, O.; Lu, J.; Hultman, L.; Willander, M. CuO/ZnO Nanocorals synthesis via hydrothermal technique: Growth mechanism and their application as Humidity Sensor. J. Mater. Chem. 2012, 22, 11583–11590. [Google Scholar] [CrossRef]
- Arun, K.; Batra, A.; Krishna, A.; Bhat, K.; Aggarwal, M.; Francis, P.J. Surfactant Free Hydrothermal Synthesis of Copper Oxide Nanoparticles. Am. J. Mater. Sci. 2015, 5, 36–38. [Google Scholar]
- Varughese, A.; Kaur, R.; Singh, P. Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Psidium Guajava Leaf Extract; IOP Publishing: Bristol, UK, 2020; Volume 961, p. 012011. [Google Scholar]
- Al Kayal, T.; Giuntoli, G.; Cavallo, A.; Pisani, A.; Mazzetti, P.; Fonnesu, R.; Rosellini, A.; Pistello, M.; D’Acunto, M.; Soldani, G. Incorporation of Copper Nanoparticles on Electrospun Polyurethane Membrane Fibers by a Spray Method. Molecules 2023, 28, 5981. [Google Scholar] [CrossRef]
- Mpukuta, O.; Dincer, K.; Özaytekin, İ. Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles. Int. J. Innov. Eng. Appl. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Salkovskiy, Y.; Fadeev, A. High-Efficiency Retention of Ultrafine Aerosols by Electrospun Nanofibers. Sci. Rep. 2022, 12, 20850. [Google Scholar] [CrossRef]
- Habibi, S.; Ghajarieh, A. Application of Nanofibers in Virus and Bacteria Filtration. Russ. J. Appl. Chem. 2022, 95, 486–498. [Google Scholar] [CrossRef]
- Yang, K.; Shi, J.; Wang, L.; Chen, Y.; Liang, C.; Yang, L.; Wang, L.-N. Bacterial Anti-Adhesion Surface Design: Surface Patterning, Roughness and Wettability: A Review. J. Mater. Sci. Technol. 2022, 99, 82–100. [Google Scholar] [CrossRef]
- Wardlaw, T.A.; Masri, A.; Brown, D.M.; Johnston, H.J. Assessing Antibacterial Properties of Copper Oxide Nanomaterials on Gut-Relevant Bacteria In Vitro: A Multifaceted Approach. Nanomaterials 2025, 15, 1103. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Y.; Ma, K.; Wei, Z.; Ran, X.; Fu, X.; Zhang, C.; Zhao, C. Electrospun Nanofibrous Membranes Meet Antibacterial Nanomaterials: From Preparation Strategies to Biomedical Applications. Bioact. Mater. 2024, 42, 478–518. [Google Scholar] [CrossRef]
- Gad, E.S.; Salem, S.S.; Selim, S.; Almuhayawi, M.S.; Alruhaili, M.H.; Al Jaouni, S.K.; Saddiq, A.A.; Owda, M.E. A Comprehensive Study on Characterization of Biosynthesized Copper-Oxide Nanoparticles, Their Capabilities as Anticancer and Antibacterial Agents, and Predicting Optimal Docking Poses into the Cavity of S. Aureus DHFR. PLoS ONE 2025, 20, e0319791. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Hassan, K.A. The Gram-Negative Permeability Barrier: Tipping the Balance of the in and the Out. MBio 2023, 14, e01205-23. [Google Scholar] [CrossRef] [PubMed]
- Borisov, V.B.; Siletsky, S.A.; Nastasi, M.R.; Forte, E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants 2021, 10, 839. [Google Scholar] [CrossRef]
- Hans, M.; Erbe, A.; Mathews, S.; Chen, Y.; Solioz, M.; Mücklich, F. Role of Copper Oxides in Contact Killing of Bacteria. Langmuir 2013, 29, 16160–16166. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.; Hidmi, L.; Gladwell, D. Phosphate Inhibition of Soluble Copper Corrosion By-Product Release. Corros. Sci. 2002, 44, 1057–1071. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; Zhang, G.; Liu, J.; Shen, T.; Wei, X. Design on Antibacterial and Cytocompatible TiO2-CuxO/Ag Coating through Regulation of Ions Release. J. Mater. Res. Technol. 2024, 30, 3766–3779. [Google Scholar]
- Kent, R.D.; Vikesland, P.J. Dissolution and Persistence of Copper-Based Nanomaterials in Undersaturated Solutions with Respect to Cupric Solid Phases. Environ. Sci. Technol. 2016, 50, 6772–6781. [Google Scholar] [CrossRef] [PubMed]
- Čuk, N.; Simončič, B.; Fink, R.; Tomšič, B. Bacterial Adhesion to Natural and Synthetic Fibre-Forming Polymers: Influence of Material Properties. Polymers 2024, 16, 2409. [Google Scholar] [CrossRef]
- Hedberg, J.; Karlsson, H.L.; Hedberg, Y.; Blomberg, E.; Wallinder, I.O. The Importance of Extracellular Speciation and Corrosion of Copper Nanoparticles on Lung Cell Membrane Integrity. Colloids Surf. B Biointerfaces 2016, 141, 291–300. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Kokkarachedu, V. CuO Nanoparticles for Antimicrobial/Antiviral Applications. In Nanoparticles in Modern Antimicrobial and Antiviral Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 97–118. [Google Scholar]
- Abd-Elhameed, A.Y.; Eladly, A.M.; Abdel-radi, A.W.; Mekky, A.E. In Vitro Myco-Synthesized Copper Oxide Nanoparticles: A Promising Antiviral Agent with Antioxidant, Anti-Inflammatory, and Anti-Cancer Activity. Microb. Biosyst. 2024, 9, 1167. [Google Scholar] [CrossRef]
- Cui, W.Y.; Yoo, H.J.; Li, Y.G.; Baek, C.; Min, J. Electrospun Nanofibers Embedded with Copper Oxide Nanoparticles to Improve Antiviral Function. J. Nanosci. Nanotechnol. 2021, 21, 4174–4178. [Google Scholar] [CrossRef] [PubMed]







| Polymer/Nanoparticle | Concentration (w/v) % | Solvent | Solvent Ratio |
|---|---|---|---|
| PA6 | 12.5 | Acidic/formic acid | 1/1 |
| PA6 | 15.0 | Acidic/formic acid | 1/1 |
| PA6 | 17.5 | Acidic/formic acid | 1/1 |
| PA6/CuO | 12.5/5 | Acidic/formic acid | 1/1 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() |
![]() |
![]() |
| Polymer Solution Concentrations | 12.5 w/v % | 15 w/v % | 17.5 w/v % | |||
|---|---|---|---|---|---|---|
| Substrate Winding Speed for Nanofiber Depositions | FE (%) | Pressure Drop (Pa) | FE (%) | Pressure Drop (Pa) | FE (%) | Pressure Drop (Pa) |
| 1 mm/s | 99.98 ± 0.01 | 354.8 ± 16 | 99.86 ± 0.12 | 312.6 ± 38 | 99.79 ± 0.15 | 311.2 ± 17 |
| 2 mm/s | 99.34 ± 0.25 | 191.9 ± 5.8 | 98.91 ± 0.21 | 209.6 ± 2.7 | 97.57 ± 0.24 | 189.3 ± 1.4 |
| 3 mm/s | 98.06 ± 0.03 | 142.5 ± 5.8 | 96.56 ± 0.53 | 158.6 ± 2.2 | 86.88 ± 0.79 | 128.3 ± 1.9 |
| 4 mm/s | 88.32 ± 2.37 | 110.8 ± 5.5 | 92.68 ± 0.43 | 134.4 ± 2.9 | 85.52 ± 1.37 | 121.5 ± 5.4 |
| 5 mm/s | 89.22 ± 2.56 | 110.7 ± 4.2 | 89.10 ± 0.14 | 120.2 ± 1.0 | 76.71 ± 5.67 | 107.2 ± 2.3 |
| 7 mm/s | 82.85 ± 1.30 | 101.0 ± 1.7 | 76.98 ± 1.75 | 103.3 ± 2.0 | 74.38 ± 0.63 | 100.9 ± 2.0 |
| 10 mm/s | 78.47 ± 3.96 | 89.9 ± 3.9 | 71.81 ± 1.71 | 94.8 ± 0.6 | 66.22 ± 2.35 | 85.9 ± 3.0 |
| Sample | Sample No | BFE Results |
|---|---|---|
| 12.5 w/v % PA6 | 1 | 99.29% |
| 2 | 99.16% | |
| 3 | 99.35% | |
| 4 | 99.27% | |
| Average | 99.26% |
| Sample | Test | Sample No | VFE Results |
|---|---|---|---|
| 12.5 w/v % PA6 | Viral Filtration Efficiency (VFE 110) (%) (0.3 µm) | 1 | 99.21 |
| 2 | 99.17 | ||
| 3 | 99.48 | ||
| 4 | 99.11 | ||
| 5 | 99.46 | ||
| 6 | 99.31 | ||
| Average | 99.29 | ||
| Viral Filtration Efficiency (VFE125) (%) (0.3 µm) | 1 | 99.13 | |
| 2 | 99.12 | ||
| 3 | 99.10 | ||
| 4 | 99.10 | ||
| 5 | 99.12 | ||
| 6 | 99.15 | ||
| Average | 99.12 |
| Sample | lg TCID50/mL 2 h | Value of Antiviral Activity (Mv) 2 h |
|---|---|---|
| PA6/CuO (Vc) | 3500 | 2000 |
| Control Sample (Va) | 5500 |
| Contact Time | lg TCID50/mL Max | lg TCID50/mL Min | lg TCID50/mL Mean | Max–Min Mean | Control Valid (≤0.2) |
|---|---|---|---|---|---|
| Pristine PA6 Nanofibers—2 h | 5.50 | 5.50 | 5.50 | 0.00 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Žižková, R.; Yalcinkaya, B.; Filová, E.; Yalcinkaya, F.; Buzgo, M. Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection. Textiles 2026, 6, 2. https://doi.org/10.3390/textiles6010002
Žižková R, Yalcinkaya B, Filová E, Yalcinkaya F, Buzgo M. Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection. Textiles. 2026; 6(1):2. https://doi.org/10.3390/textiles6010002
Chicago/Turabian StyleŽižková, Radmila, Baturalp Yalcinkaya, Eva Filová, Fatma Yalcinkaya, and Matej Buzgo. 2026. "Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection" Textiles 6, no. 1: 2. https://doi.org/10.3390/textiles6010002
APA StyleŽižková, R., Yalcinkaya, B., Filová, E., Yalcinkaya, F., & Buzgo, M. (2026). Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection. Textiles, 6(1), 2. https://doi.org/10.3390/textiles6010002












