Evaluating the Impact of Laundering on the Electrical Performance of Wearable Photovoltaic Cells: A Comparative Study of Current Consistency and Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Testing Measurements
2.2.1. Current Measurement
2.2.2. Electrical Resistance Test
2.2.3. Laundering Test
2.3. Data Analysis
3. Results
3.1. Comparison Between the Current Values Pre- and Post-Laundering
3.2. Comparison Between Electrical Resistance Values Pre- and Post-Laundering
3.3. Comparison Between Current Values Pre- and Post-Laundering in Terms of Types
3.4. Comparison Between Electrical Resistance Values Pre- and Post-Laundering in Terms of Types
4. Discussion
4.1. Comparison Between Current Values Pre- and Post-Laundering
4.2. Comparison Between Electrical Resistance Values Pre- and Post-Laundering
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef]
- Dolez, P.I. Energy harvesting materials and structures for smart textile applications: Recent progress and path forward. Sensors 2021, 21, 6297. [Google Scholar] [CrossRef] [PubMed]
- Shim, B.S.; Chen, W.; Doty, C.; Xu, C.; Kotov, N.A. Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes. Nano Lett. 2008, 8, 4151–4157. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, K.; Li, Y.; Li, X.; Guan, G.; Li, H.; Luo, Y.; Zhao, F.; Zhang, Q.; Wei, B.; et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photon 2015, 9, 233–238. [Google Scholar] [CrossRef]
- Choi, A.Y.; Lee, C.J.; Park, J.; Kim, D.; Kim, Y.T. Corrugated Textile based triboelectric generator for wearable energy harvesting. Sci. Rep. 2017, 7, 45583. [Google Scholar] [CrossRef]
- Matsouka, D.; Vassiliadis, S.; Bayramol, D.V. Piezoelectric textile fibres for wearable energy harvesting systems. Mater. Res. Express 2018, 5, 065508. [Google Scholar] [CrossRef]
- Nocito, C.; Koncar, V. Flexible photovoltaic cells embedded into textile structures. In Smart Textiles and Their Applications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 401–422. ISBN 978-0-08-100574-3. [Google Scholar]
- Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G.J. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 2020, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Barua, N.; Dutta, A.; Chakma, S.; Das, A.; Chowdhury, S.S. Implementation of cost-effective MPPT solar photovoltaic system based on the comparison between Incremental Conductance and P&O algorithm. In Proceedings of the 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Pune, India, 19–21 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 143–146. [Google Scholar]
- Sojan, S.; Kulkarni, R.K. A comprehensive review of energy harvesting techniques and its potential applications. Int. J. Comput. Appl. 2016, 139, 14–19. [Google Scholar] [CrossRef]
- Neira, J.; Sequeiros, C.; Huamani, R.; Machaca, E.; Fonseca, P.; Nina, W. Review on Unmanned Underwater Robotics, Structure Designs, Materials, Sensors, Actuators, and Navigation Control. J. Robot. 2021, 2021, 5542920. [Google Scholar] [CrossRef]
- Mamun, A.A.; Bormon, K.K.; Rasu, M.N.S.; Talukder, A.; Freeman, C.; Burch, R.; Chander, H. An Assessment of Energy and Groundwater Consumption of Textile Dyeing Mills in Bangladesh and Minimization of Environmental Impacts via Long-Term Key Performance Indicators (KPI) Baseline. Textiles 2022, 2, 511–523. [Google Scholar] [CrossRef]
- Freeman, C.; Orzada, B.; Cobb, K.; Talukder, A. Being part of a winning team: A problem-based approach to teach sustainability adoption in collegiate athletic uniforms. Int. J. Fash. Des. Technol. Educ. 2023, 16, 14–21. [Google Scholar] [CrossRef]
- Al Mamun, A.; Abbas Uddin, M.; Abu Sayeed Shohag, M.; Mohammad Bappy, M.; Talukder, A. Energy consumption modeling in industrial sewing operations: A case study on carbon footprint measurement in the apparel industry. Manuf. Lett. 2024, 41, 1635–1644. [Google Scholar] [CrossRef]
- International Energy Agency. Solar Energy Perspectives; OECD: Paris, France, 2011; ISBN 978-92-64-12457-8. [Google Scholar]
- Zewe, A. Paper-Thin Solar Cell Can Turn Any Surface into a Power Source. MIT News|Massachusetts Institute of Technology. Available online: https://news.mit.edu/2022/ultrathin-solar-cells-1209 (accessed on 2 September 2024).
- Gourley, K.; Hagan, F.; Talukder, A.; Jose, B.; Strawderman, L.; Freeman, C.; Burch, R.; Knight, A.; Chander, H. Impact of different personal floatation devices during a simulated workload on physiological responses. Int. J. Exerc. Sci. Conf. Proc. 2024, 16, 271. [Google Scholar]
- Tao, X.; Koncar, V.; Huang, T.-H.; Shen, C.-L.; Ko, Y.-C.; Jou, G.-T. How to Make Reliable, Washable, and Wearable Textronic Devices. Sensors 2017, 17, 673. [Google Scholar] [CrossRef] [PubMed]
- Satharasinghe, A.; Hughes-Riley, T.; Dias, T. An investigation of a wash-durable solar energy harvesting textile. Prog. Photovolt. Res. Appl. 2020, 28, 578–592. [Google Scholar] [CrossRef]
- Ilén, E.; Elsehrawy, F.; Palovuori, E.; Halme, J. Washable textile embedded solar cells for self-powered wearables. Res. J. Text. Appar. 2024, 28, 133–151. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhu, M.; Li, Z.; Qiu, K.; Liu, X.; Yu, J.; Ding, B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 2019, 58, 750–758. [Google Scholar] [CrossRef]
- Jinno, H.; Fukuda, K.; Xu, X.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2017, 2, 780–785. [Google Scholar] [CrossRef]
- Jeong, E.G.; Jeon, Y.; Cho, S.H.; Choi, K.C. Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy Environ. Sci. 2019, 12, 1878–1889. [Google Scholar] [CrossRef]
- Lee, J.C.; Liu, W.; Lo, C.; Chen, C.-C. Laundering Reliability of Electrically Conductive Fabrics for E-Textile Applications. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 1826–1832. [Google Scholar]
- AATCC. Evaluation Procedure for Electrical Resistance of Electronically Integrated Textiles. 2021. Available online: https://www.standardssupply.com/product/AATCC-EP13-2021/ (accessed on 1 September 2024).
- ISO 6330:2021; Textiles—Domestic Washing and Drying Procedures for Textile Testing. International Organization for Standardization: Geneva, Switzerland, 2021.
- Hossain, M.M.; Bradford, P.D. Durability of smart electronic textiles. In Nanosensors and Nanodevices for Smart Multifunctional Textiles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 27–53. ISBN 978-0-12-820777-2. [Google Scholar]
- Cobb, D. Smart Fabrics Testing and Standards Under Development. Specialty Fabrics Review. Available online: https://specialtyfabricsreview.com/2024/03/01/smart-fabrics-testing-and-standards-under-development/ (accessed on 2 September 2024).
- Sacco, A.; Gerosa, M.; Bianco, S.; Mercatelli, L.; Fontana, R.; Pezzati, L.; Quaglio, M.; Pirri, C.F.; Tucci, A.O.M. Dye-sensitized solar cell for a solar concentrator system. Sol. Energy 2016, 125, 307–313. [Google Scholar] [CrossRef]
- Al-Rabeeah, A.Y.; Seres, I.; Farkas, I. Experimental investigation of improved parabolic trough solar collector thermal efficiency using novel receiver geometry design. Int. J. Thermofluids 2023, 18, 100344. [Google Scholar] [CrossRef]
- Veligorskyi, O.; Khomenko, M.; Chakirov, R.; Vagapov, Y. Performance analysis of a wearable photovoltaic system. In Proceedings of the 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Hamilton, New Zealand, 31 January–2 February 2018; pp. 376–381. [Google Scholar]
- Vu, C.C.; Kim, J. Highly sensitive e-textile strain sensors enhanced by geometrical treatment for human monitoring. Sensors 2020, 20, 2383. [Google Scholar] [CrossRef] [PubMed]
- Mayasari, T.; Susilowati, E.; Winarno, N. Practicing integrated STEM in renewable energy projects: Solar power. J. Phys. Conf. Ser. 2019, 1280, 052033. [Google Scholar] [CrossRef]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS, 7th ed.; Routledge: London, UK, 2020; ISBN 978-1-00-311745-2. [Google Scholar]
- Allcoat, D.; Hatchard, T.; Azmat, F.; Stansfield, K.; Watson, D.; Von Mühlenen, A. Education in the Digital Age: Learning Experience in Virtual and Mixed Realities. J. Educ. Comput. Res. 2021, 59, 795–816. [Google Scholar] [CrossRef]
- Eike, R.J.; Depping, A.; Cliett, A.; Michaelson, D.; Li, Y. Initial insights of laundry detergent and additive impact on e-textile surface resistivity. Text. Res. J. 2023, 004051752311528. [Google Scholar] [CrossRef]
Samples | Variables | N | M | SD | Df | CI (2-Tailed, α = 0.05) | p | t |
---|---|---|---|---|---|---|---|---|
Sample Type (1) | Pre- and Post-CC (Cycle 1) | 8 | 3.71 | 2.46 | 7 | 0.004 | 4.263 | |
Pre- and Post-CC (Cycle 2) | 8 | 3.48 | 3.18 | 7 | 0.018 | 3.091 | ||
Pre- and Post-CC (Cycle 3) | 8 | 4.94 | 3.01 | 7 | 0.002 | 4.628 | ||
Pre- and Post-CC (Cycle 4) | 8 | 5.93 | 2.33 | 7 | <0.001 | 7.186 | ||
Pre- and Post-CC (Cycle 5) | 8 | 7.13 | 2.96 | 7 | 95% | <0.001 | 6.803 | |
Sample Type (2) | Pre- and Post-CC (Cycle 1) | 8 | 1.55 | 5.55 | 7 | 0.455 | 0.790 | |
Pre- and Post-CC (Cycle 2) | 8 | 2.01 | 1.42 | 7 | 0.005 | 4.012 | ||
Pre- and Post-CC (Cycle 3) | 8 | 4.80 | 2.72 | 7 | 0.002 | 4.992 | ||
Pre- and Post-CC (Cycle 4) | 8 | 5.46 | 2.64 | 7 | <0.001 | 5.848 | ||
Pre- and Post-CC (Cycle 5) | 8 | 5.92 | 2.72 | 7 | <0.001 | 6.168 |
Samples | Variables | N | M | SD | Df | CI (2-Tailed, α = 0.05) | p | t |
---|---|---|---|---|---|---|---|---|
Sample Type (1) | Pre- and Post-ER (Cycle 1) | 8 | −0.017375 | 0.014657 | 7 | 0.012 | −3.353 | |
Pre- and Post-ER (Cycle 2) | 8 | −0.001750 | 0.027416 | 7 | 0.862 | −0.181 | ||
Pre- and Post-ER (Cycle 3) | 8 | −0.029125 | 0.087365 | 7 | 0.377 | −0.943 | ||
Pre- and Post-ER (Cycle 4) | 8 | −0.082625 | 0.079945 | 7 | 0.022 | −2.923 | ||
Pre- and Post-ER (Cycle 5) | 8 | −0.064000 | 0.108061 | 7 | 95% | 0.138 | −1.675 | |
Sample Type (2) | Pre- and Post-ER (Cycle 1) | 8 | −0.020500 | 0.041980 | 7 | 0.210 | −1.381 | |
Pre- and Post-ER (Cycle 2) | 8 | 0.013625 | 0.045807 | 7 | 0.428 | 0.841 | ||
Pre- and Post-ER (Cycle 3) | 8 | −0.048625 | 0.089065 | 7 | 0.166 | −1.544 | ||
Pre- and Post-ER (Cycle 4) | 8 | −0.052625 | 0.110637 | 7 | 0.220 | −1.345 | ||
Pre- and Post-ER (Cycle 5) | 8 | −0.059000 | 0.109485 | 7 | 0.171 | −1.524 |
Effect | Wilks’ Lambda Value | F | p | eta2 |
---|---|---|---|---|
Laundering Cycles | 0.13 | 13.46 | <0.001 | 0.871 |
Laundering Cycles * Types | 0.82 | 0.44 | 0.813 | 0.180 |
SS | Df | MS | F | p | eta2 | |
---|---|---|---|---|---|---|
Laundering Cycles | 464.909 | 5 | 92.982 | 16.736 | <0.001 | 0.545 |
Laundering Cycles * Types | 14.332 | 5 | 2.866 | 0.516 | 0.763 | 0.036 |
Error (Laundering Cycles) | 388.909 | 70 | 5.556 |
Effect | Wilks’ Lambda Value | F | p | eta2 |
---|---|---|---|---|
Laundering Cycles | 0.257 | 5.77 | 0.009 | 0.743 |
Laundering Cycles * Types | 0.848 | 0.359 | 0.865 | 0.152 |
SS | Df | MS | F | p | eta2 | |
---|---|---|---|---|---|---|
Laundering Cycles | 0.077 | 5 | 0.015 | 4.35 | 0.002 | 0.236 |
Laundering Cycles * Types | 0.006 | 5 | 0.001 | 0.321 | 0.899 | 0.022 |
Error (Laundering Cycles) | 0.248 | 70 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talukder, A.; Freeman, C.; Kobia, C.; Burch, R.F.V. Evaluating the Impact of Laundering on the Electrical Performance of Wearable Photovoltaic Cells: A Comparative Study of Current Consistency and Resistance. Textiles 2024, 4, 493-506. https://doi.org/10.3390/textiles4040028
Talukder A, Freeman C, Kobia C, Burch RFV. Evaluating the Impact of Laundering on the Electrical Performance of Wearable Photovoltaic Cells: A Comparative Study of Current Consistency and Resistance. Textiles. 2024; 4(4):493-506. https://doi.org/10.3390/textiles4040028
Chicago/Turabian StyleTalukder, Amit, Charles Freeman, Caroline Kobia, and Reuben F. V. Burch. 2024. "Evaluating the Impact of Laundering on the Electrical Performance of Wearable Photovoltaic Cells: A Comparative Study of Current Consistency and Resistance" Textiles 4, no. 4: 493-506. https://doi.org/10.3390/textiles4040028
APA StyleTalukder, A., Freeman, C., Kobia, C., & Burch, R. F. V. (2024). Evaluating the Impact of Laundering on the Electrical Performance of Wearable Photovoltaic Cells: A Comparative Study of Current Consistency and Resistance. Textiles, 4(4), 493-506. https://doi.org/10.3390/textiles4040028