OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode
Abstract
:1. Introduction
- -
- industrial scalable planarization method based on blade-coating deposition;
- -
- fully transparent OLEDs that exploit a polymeric anode
- -
- down-converting approach to easily tune the colour emitted by the device.
2. Experimental Section
2.1. Materials
2.2. Planarization Method and OLED Fabrication
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef]
- Rodrigues, J.J.P.C.; Segundo, D.B.D.R.; Junqueira, H.A.; Sabino, M.H.; Prince, R.M.; Al-Muhtadi, J.; De Albuquerque, V.H.C. Enabling Technologies for the Internet of Health Things. IEEE Access 2018, 6, 13129–13141. [Google Scholar] [CrossRef]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Peake, J.M.; Kerr, G.; Sullivan, J.P. A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Front. Physiol. 2018, 9, 743. [Google Scholar] [CrossRef]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tutorials 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef]
- Hamedi, M.; Forchheimer, R.; Inganäs, O. Towards woven logic from organic electronic fibres. Nat. Mater. 2007, 6, 357–362. [Google Scholar] [CrossRef]
- Wu, W.; Bai, S.; Yuan, M.; Qin, Y.; Wang, Z.L.; Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 2012, 6, 6231–6235. [Google Scholar] [CrossRef]
- Jur, J.S.; Sweet, W.J.; Oldham, C.J.; Parsons, G.N. Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: Conductivity analysis and functional chemical sensing using “all-fiber” capacitors. Adv. Funct. Mater. 2011, 21, 1993–2002. [Google Scholar] [CrossRef]
- Jung, J.W.; Bae, J.H.; Ko, J.H.; Lee, W. Fully solution-processed indium tin oxide-free textile-based flexible solar cells made of an organic–inorganic perovskite absorber: Toward a wearable power source. J. Power Sources 2018, 402, 327–332. [Google Scholar] [CrossRef]
- Cinquino, M.; Prontera, C.; Pugliese, M.; Giannuzzi, R.; Taurino, D.; Gigli, G.; Maiorano, V. Light-Emitting Textiles: Device Architectures, Working Principles, and Applications. Micromachines 2021, 12, 652. [Google Scholar] [CrossRef] [PubMed]
- Janietz, S.; Gruber, B.; Schattauer, S.; Schulze, K. Integration of OLEDs in Textiles. Adv. Sci. Technol. 2012, 80, 14–21. [Google Scholar] [CrossRef]
- O’Connor, B.; An, K.H.; Zhao, Y.; Pipe, K.P.; Shtein, M. Fiber shaped organic light emitting device. Adv. Mater. 2007, 19, 3897–3900. [Google Scholar] [CrossRef]
- Lee, H.; Chun, Y.T. Fibertronic Quantum-Dot Light-Emitting Diode for E-Textile. ACS Appl. Nano Mater. 2020, 3, 11060–11069. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, W.; Kim, H.; Choi, S.; Park, B.C.; Kang, S.H.; Choi, K.C. High Luminance Fiber-Based Polymer Light-Emitting Devices by a Dip-Coating Method. Adv. Electron. Mater. 2015, 1, 1500103. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, H.; Choi, S.; Jeong, E.G.; Kim, D.; Lee, S.; Lee, H.S.; Seo, Y.C.; Choi, K.C. Weavable and Highly Efficient Organic Light-Emitting Fibers for Wearable Electronics: A Scalable, Low-Temperature Process. Nano Lett. 2018, 18, 347–356. [Google Scholar] [CrossRef]
- Choi, S.; Kwon, S.; Kim, H.; Kim, W.; Kwon, J.H.; Lim, M.S.; Lee, H.S.; Choi, K.C. Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays. Sci. Rep. 2017, 7, 6424. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, S.; Choi, S.; Choi, K.C. Solution-processed bottom-emitting polymer light-emitting diodes on a textile substrate towards a wearable display. J. Inf. Disp. 2015, 16, 179–184. [Google Scholar] [CrossRef]
- Kim, W.; Kwon, S.; Lee, S.M.; Kim, J.Y.; Han, Y.; Kim, E.; Choi, K.C.; Park, S.; Park, B.C. Soft fabric-based flexible organic light-emitting diodes. Org. Electron. 2013, 14, 3007–3013. [Google Scholar] [CrossRef]
- Kim, W.; Kwon, S.; Han, Y.C.; Kim, E.; Kim, H.C.; Choi, K.C.; Kang, S.H.; Park, B.C. OLEDs on textile substrates with planarization and encapsulation using multilayers for wearable displays. SID Symp. Dig. Tech. Pap. 2014, 45, 364–366. [Google Scholar] [CrossRef]
- Kim, W.; Kwon, S.; Han, Y.C.; Kim, E.; Choi, K.C.; Kang, S.H.; Park, B.C. Reliable Actual Fabric-Based Organic Light-Emitting Diodes: Toward a Wearable Display. Adv. Electron. Mater. 2016, 2, 1600220. [Google Scholar] [CrossRef]
- Kim, J.S.; Song, C.K. AMOLED panel driven by OTFTs on polyethylene fabric substrate. Org. Electron. 2016, 30, 45–51. [Google Scholar] [CrossRef]
- Choi, S.; Jo, W.; Jeon, Y.; Kwon, S.; Kwon, J.H.; Son, Y.H.; Kim, J.; Park, J.H.; Kim, H.; Lee, H.S.; et al. Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. npj Flex. Electron. 2020, 4, 33. [Google Scholar] [CrossRef]
- Liu, Y.F.; An, M.H.; Bi, Y.G.; Yin, D.; Feng, J.; Sun, H.B. Flexible Efficient Top-Emitting Organic Light-Emitting Devices on a Silk Substrate. IEEE Photonics J. 2017, 9, 1–6. [Google Scholar] [CrossRef]
- Yin, D.; Chen, Z.Y.; Jiang, N.R.; Liu, Y.F.; Bi, Y.G.; Zhang, X.L.; Han, W.; Feng, J.; Sun, H.B. Highly Flexible Fabric-Based Organic Light-Emitting Devices for Conformal Wearable Displays. Adv. Mater. Technol. 2020, 5, 1900942. [Google Scholar] [CrossRef]
- Sohn, S.; Kim, S.; Shim, J.W.; Jung, S.K.; Jung, S. Printed Organic Light-Emitting Diodes on Fabric with Roll-to-Roll Sputtered ITO Anode and Poly(vinyl alcohol) Planarization Layer. ACS Appl. Mater. Interfaces 2021, 13, 28521–28528. [Google Scholar] [CrossRef]
- Yin, D.; Chen, Z.; Jiang, N.; Liu, Y.; Bi, Y.; Zhang, X.; Han, W.; Feng, J.; Sun, H. Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Org. Electron. 2020, 76, 105494. [Google Scholar] [CrossRef]
- Lee, J.; Choi, S.; Lee, T.-W.; Hwang, Y.H.; Park, Y.; Jeong, S.Y.; Choi, K.C. RGB-Color Textile-Based Flexible and Transparent OLEDs Considering Aesthetics. Adv. Mater. Interfaces 2023, 10, 2202114. [Google Scholar] [CrossRef]
- Cossari, P.; Pugliese, M.; Gambino, S.; Cannavale, A.; Maiorano, V.; Gigli, G.; Mazzeo, M. Fully integrated electrochromic-OLED devices for highly transparent smart glasses. J. Mater. Chem. C 2018, 6, 7274–7284. [Google Scholar] [CrossRef]
- Prontera, C.T.; Pugliese, M.; Giannuzzi, R.; Carallo, S.; Esposito, M.; Gigli, G.; Maiorano, V. Flexible distributed Bragg reflectors as optical outcouplers for OLEDs based on a polymeric anode. J. Inf. Disp. 2020, 22, 1–9. [Google Scholar] [CrossRef]
Year | Planarization Method | Device Architecture and Deposition Techniques | Performance | Ref. |
---|---|---|---|---|
2017 | Thermal lamination by roll-to-roll process | Al/Liq/TPBi/CBP:Ir(ppy)3/NPB/MoO3/Ag/NPB (Top emitting) (Thermal evaporation) | Max. CE 70.43 cd/A—Stable operation for 3000 cycles (2 mm bending radius) 30,000 cycles (1 cm bending radius) | [17] |
2015 | Lamination | PEDOT:PSS/PDY-132/LiF/Al (Bottom emitting) (Spin coating + thermal evaporation) | Max. CE 9.7 cd/A—Stable operation under bending stress (2.5 mm bending radius) | [18] |
2013 | Lamination under pressure of a polyurethane (PU) sheets with low and high viscosity side + poly(vinyl alcohol) (PVA) spin coating | Ag/WO3/NPB/Alq3/Liq/Al/Ag/NPB (Top emitting) (Thermal evaporation) | Max. CE 8 cd/A—Stable operation for 1000 cycles (5 mm bending radius) | [19] |
2016 | Lamination of a PU sheets with low and high viscosity side by using a guide substrate | Al/LiQ/AlQ3/NPB/WO3/Ag/NPB/ZnS/NPB/ZnS (Top emitting) (Thermal evaporation) | Max. CE 5 cd/A—Stable operation for 1000 cycles (20 mm bending radius) | [21] |
2016 | Two-step process PU and photo-acrylic (PA) | Ag/HAT-CN/NPB/TAPC/CBP:Ir(ppy)3 /TPBi/LiF/Al/Ag/NPB (Top emitting) (Thermal evaporation) | Max. Lum. 64,459 cd/m2 | [22] |
2020 | Lamination under pressure of textile on top of SU8/elastomeric strain buffer bilayer | ZnS/Ag/ZnO/PEI/PDY-132/MoO3/Ag/NPB (Top emitting) (Thermal evaporation + spin coating) | Max. Lum. 92,000 cd/m2—Harsh wrinkling resulted in a luminance reduction of about 15–20% | [23] |
2017 | Spin coating of NOA 63 (UV curable resin) | Ag/MoO3/NPB/mCP:Ir(ppy)3/TPBi/Ca/Ag (Top emitting) (Thermal evaporation) | Max. CE 37.7 cd/A—Stable operation for 100 cycles (8 mm bending radius) | [24] |
2020 | Spin coating of NOA 63 on a guide substrate, coating with the fabric and peeling off | Ag/MoO3/NPB/CBP: Ir(bt)2(acac)/TPBi/Ca/Ag (Top emitting) (Thermal evaporation) | Max. CE 78 cd/A—Stable operation for 1000 cycles (1 mm bending radius) | [25] |
2021 | PVA spin coating (double layer) and thermal annealing | ITO/PEDOT:PSS/Cytop bank/PDY-132/LiF/Al (Bottom emitting) (RTR sputtering + spin coating + nozzle-printing + thermal evaporation) | Max. Lum. 5346 cd/m2 | [26] |
2020 | Spin coating of NOA 63 on a guide substrate, coating with the fabric and peeling off | MoO3/Au//MoO3/NPB/mCP:Ir(ppy)3/TPBi/Ca/Ag/NPB (Full Transparent) (Thermal evaporation) | Max. CE 16.7 cd/A—Device degrades quickly after tens of bending cycles | [27] |
2023 | Lamination under pressure of textile on top of SU8/elastomeric strain buffer bilayer | ZnS/Ag/MoO3/NPB)/Bebq2:Ir(piq)3/ZnS/Cs2CO3/Ag/ZnS (Full Transparent) (Thermal evaporation) | Max. CE 6.07cd/A—Stable operation for 1000 cycles (3 mm bending radius) | [28] |
2024 | Blade coating deposition of UV curable resin by using a guide substrate | PEDOT:PSS/MeOTPD:F4TCNQ/MeOTPD/CBP:Ir(ppy)3/BPhen/BPHen:Cs/Ag/WO3 (Spin coating + thermal evaporation) | Max. CE 9.3 cd/A—Stable operation for 1000 cycles (5 mm bending radius) | This work |
Resin | Viscosity at 25 °C (CPS) | Modulus (PSI) | Tensile (PSI) | Elongation at Failure |
---|---|---|---|---|
NOA 61 | 300 | 150,000 | 3000 | 38% |
NOA 65 | 1000 | 20,000 | 1500 | 80% |
NOA 68 | 5000 | 20,000 | 2500 | 80% |
Vektron—Thickness (µm) | Carnival—Thickness (µm) | |
---|---|---|
Fabric | 90 ± 10 | 120 ± 15 |
Fabric + NOA 61 | 130 ± 12 | 150 ± 18 |
Fabric + NOA 65 | 150 ± 10 | 160 ± 17 |
Fabric + NOA 68 | 380 ± 20 | 300 ± 30 |
Fabric + NOA 65/NOA 61 | 160 ± 22 | 170 ± 20 |
Emitting Material | Fabric | Planarizing Layer | Current Density (mA/cm2) | Luminance (cd/m2) | Current Efficiency (cd/A) | External Quantum Efficiency (%) | EL Peak (nm) | CIE Coordinates (x; y) |
---|---|---|---|---|---|---|---|---|
Ir(ppy)3 | Carnival | NOA 68 | 40 at 8 V | 3627 at 8 V | 9.3 at 6.8 V | 3.7 at 6.8 V | 515; 596 | 0.4892; 0.4851 |
Ir(ppy)3 | Carnival | NOA 65 + NOA 61 | 38 at 8 V | 3500 at 8 V | 9.2 at 7 V | 3,5 at 7 V | 515; 597 | 0.4783; 0.4872 |
Ir(ppy)3 | Vektron | NOA 68 | 42 at 8 V | 3725 at 8 V | 9.2 at 6.9 V | 2.7 at 6.9 V | 514 | 0.2912; 0.6295 |
Ir(ppy)3 | Vektron | NOA 65 + NOA 61 | 41 at 8 V | 3663 at 8 V | 9.3 at 6.8 V | 2.8 at 6.8 V | 514 | 0.2861; 0.6338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prontera, C.T.; Pugliese, M.; Mariano, F.; Taurino, D.; Giannuzzi, R.; Primiceri, V.; Esposito, M.; Andretta, A.; Gigli, G.; Maiorano, V. OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode. Textiles 2024, 4, 91-103. https://doi.org/10.3390/textiles4010007
Prontera CT, Pugliese M, Mariano F, Taurino D, Giannuzzi R, Primiceri V, Esposito M, Andretta A, Gigli G, Maiorano V. OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode. Textiles. 2024; 4(1):91-103. https://doi.org/10.3390/textiles4010007
Chicago/Turabian StyleProntera, Carmela Tania, Marco Pugliese, Fabrizio Mariano, Daniela Taurino, Roberto Giannuzzi, Vitantonio Primiceri, Marco Esposito, Antonio Andretta, Giuseppe Gigli, and Vincenzo Maiorano. 2024. "OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode" Textiles 4, no. 1: 91-103. https://doi.org/10.3390/textiles4010007
APA StyleProntera, C. T., Pugliese, M., Mariano, F., Taurino, D., Giannuzzi, R., Primiceri, V., Esposito, M., Andretta, A., Gigli, G., & Maiorano, V. (2024). OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode. Textiles, 4(1), 91-103. https://doi.org/10.3390/textiles4010007