A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges
Abstract
1. Introduction
1.1. SOFCs Role and Viability in Renewable Energy
1.1.1. Potential Carbon Mitigation
1.1.2. Syngas Production Strategies
1.2. Operating Principles and Thermodynamics of Methane Reforming
1.3. Traditional Catalyst Materials and Their Challenges
1.4. Scope of Review
2. SOFCs Components and Functions
Anode Materials—Exploring Different Perovskites, Ruddlesden-Popper Oxides, Spinels, Etc.
Structure–Property Relationship (Ionic and Electronic Conductivity, Thermal Expansion Coefficient, Acidity/Basicity)
3. Mechanistic and Kinetic Studies of Common Reforming Processes
3.1. Steam Methane Reforming
3.2. Partial Oxidation of Methane for H2 Production
3.3. CO2 Reforming of Methane for H2 Production
3.4. Mixed Steam and Dry Reforming
Reaction | Stoichiometry | |
BRM | 712 | |
SMR | 206 | |
DMR | 247 | |
WGSR | −41 | |
WGS | 41 | |
CH4 dissociation | 75 | |
Boudouard reaction | −172 |
4. Catalyst Deactivation Mechanisms
4.1. Carbon Formation
Reaction | Stoichiometry | |
Methane cracking | 74.9 | |
Boudouard reaction | −172.2 | |
Steam gasification of carbon | 131.4 | |
Carbon dioxide gasification of carbon | 172.2 | |
Water–Gas shift | −41.0 | |
Complete carbon oxidation | −393.7 |
4.2. Metal Sulfide Formation
5. Methane Reforming and Partial Oxidation Catalysts for SOFCs
5.1. Single-Cell Performance
5.1.1. The Performance of Different Perovskites and Related Oxides
5.1.2. Enhancement of Activity/Stability by Infiltration
5.1.3. Simulation and Modeling of Electrochemical Performance
6. Research Challenges Regarding SOFC in Methane Reforming/Partial Oxidation
6.1. Gas Composition Change Entering the Active SOFC Region
6.2. Large Thermal Gradients in Stack Systems
7. Analytical and Numerical Thermodynamic Equilibrium Simulations of Steam Methane Reforming (Computational Study)
8. Conclusions and Future Work
Funding
Data Availability Statement
Conflicts of Interest
References
- Stambouli, A.B.; Traversa, E. Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy. Renew. Sustain. Energy Rev. 2002, 6, 433–455. [Google Scholar] [CrossRef]
- Alaedini, A.H.; Tourani, H.K.; Saidi, M. A Review of Waste-to-Hydrogen Conversion Technologies for Solid Oxide Fuel Cell (SOFC) Applications: Aspect of Gasification Process and Catalyst Development. J. Environ. Manag. 2023, 329, 117077. [Google Scholar] [CrossRef] [PubMed]
- Shabri, H.A.; Othman, M.H.D.; Mohamed, M.A.; Kurniawan, T.A.; Jamil, S.M. Recent Progress in Metal-Ceramic Anode of Solid Oxide Fuel Cell for Direct Hydrocarbon Fuel Utilization: A Review. Fuel Process. Technol. 2021, 212, 106626. [Google Scholar] [CrossRef]
- Shah, M.A.K.Y.; Lu, Y.; Mushtaq, N.; Yousaf, M.; Akbar, N.; Xia, C.; Yun, S.; Zhu, B. Semiconductor-Membrane Fuel Cell (SMFC) for Renewable Energy Technology. Renew. Sustain. Energy Rev. 2023, 185, 113639. [Google Scholar] [CrossRef]
- Dwivedi, S. Solid Oxide Fuel Cell: Materials for Anode, Cathode and Electrolyte. Int. J. Hydrogen Energy 2020, 45, 23988–24013. [Google Scholar] [CrossRef]
- Liu, K.; Song, C.; Subramani, V. Hydrogen and Syngas Production and Purification Technologies; John Wiley & Sons: New York, NY, USA, 2010; ISBN 0471719757. [Google Scholar]
- Hanak, D.P.; Jenkins, B.G.; Kruger, T.; Manovic, V. High-Efficiency Negative-Carbon Emission Power Generation from Integrated Solid-Oxide Fuel Cell and Calciner. Appl. Energy 2017, 205, 1189–1201. [Google Scholar] [CrossRef]
- Lestari, N.A. Reduction of Co_2 Emission by Integrated Biomass Gasification-Solid Oxide Fuel Cell Combined with Heat Recovery and in-Situ Co_2 Utilization. Evergreen 2019, 6, 254–261. [Google Scholar] [CrossRef]
- Ramos, A.; Rouboa, A. Syngas Production Strategies from Biomass Gasification: Numerical Studies for Operational Conditions and Quality Indexes. Renew. Energy 2020, 155, 1211–1221. [Google Scholar] [CrossRef]
- Göransson, K.; Söderlind, U.; He, J.; Zhang, W. Review of Syngas Production via Biomass DFBGs. Renew. Sustain. Energy Rev. 2011, 15, 482–492. [Google Scholar] [CrossRef]
- Wan, W. An Innovative System by Integrating the Gasification Unit with the Supercritical Water Unit to Produce Clean Syngas for Solid Oxide Fuel Cell (SOFC): System Performance Assessment. Int. J. Hydrogen Energy 2016, 41, 22698–22710. [Google Scholar] [CrossRef]
- Rosen, M.A. Thermodynamic Investigation of Hydrogen Production by Steam-Methane Reforming. Int. J. Hydrogen Energy 1991, 16, 207–217. [Google Scholar] [CrossRef]
- Bhat, S.A.; Sadhukhan, J. Process Intensification Aspects for Steam Methane Reforming: An Overview. AIChE J. 2009, 55, 408–422. [Google Scholar] [CrossRef]
- Carapellucci, R.; Giordano, L. Steam, Dry and Autothermal Methane Reforming for Hydrogen Production: A Thermodynamic Equilibrium Analysis. J. Power Sources 2020, 469, 228391. [Google Scholar] [CrossRef]
- Fuqiang, W.; Lin, J.; Ziming, C.; Huaxu, L.; Jianyu, T. Combination of Thermodynamic Analysis and Regression Analysis for Steam and Dry Methane Reforming. Int. J. Hydrogen Energy 2019, 44, 15795–15810. [Google Scholar] [CrossRef]
- Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W.; Sahebdelfar, S. Thermodynamic Analysis of Carbon Dioxide Reforming of Methane and Its Practical Relevance. Int. J. Hydrogen Energy 2015, 40, 2445–2451. [Google Scholar] [CrossRef]
- Ayodele, B.V.; Cheng, C.K. Process Modelling, Thermodynamic Analysis and Optimization of Dry Reforming, Partial Oxidation and Auto-Thermal Methane Reforming for Hydrogen and Syngas Production. Chem. Prod. Process Model. 2015, 10, 211–220. [Google Scholar] [CrossRef]
- Nieva, M.A.; Villaverde, M.M.; Monzón, A.; Garetto, T.F.; Marchi, A.J. Steam-Methane Reforming at Low Temperature on Nickel-Based Catalysts. Chem. Eng. J. 2014, 235, 158–166. [Google Scholar] [CrossRef]
- Salahi, F.; Zarei-Jelyani, F.; Meshksar, M.; Farsi, M.; Rahimpour, M.R. Application of Hollow Promoted Ni-Based Catalysts in Steam Methane Reforming. Fuel 2023, 334, 126601. [Google Scholar] [CrossRef]
- Bian, Z.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A Review on Bimetallic Nickel-based Catalysts for CO2 Reforming of Methane. ChemPhysChem 2017, 18, 3117–3134. [Google Scholar] [CrossRef]
- Lo Faro, M.; Modafferi, V.; Frontera, P.; Antonucci, P.; Aricò, A.S. Catalytic Behavior of Ni-Modified Perovskite and Doped Ceria Composite Catalyst for the Conversion of Odorized Propane to Syngas. Fuel Process. Technol. 2013, 113, 28–33. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Z.; Jiang, B.; Hongmanorom, P.; Zhong, W.; Kawi, S. A Review on Perovskite Catalysts for Reforming of Methane to Hydrogen Production. Renew. Sustain. Energy Rev. 2020, 134, 110291. [Google Scholar] [CrossRef]
- Ding, H.; Xu, Y.; Luo, C.; Wang, Q.; Shen, C.; Xu, J.; Zhang, L. A Novel Composite Perovskite-Based Material for Chemi-cal-Looping Steam Methane Reforming to Hydrogen and Syngas. Energy Convers. Manag. 2018, 171, 12–19. [Google Scholar] [CrossRef]
- Bobrova, L.N.; Sadykov, V.A.; Mezentseva, N.V.; Pelipenko, V.V.; Vernikovskaya, N.V.; Klenov, O.P.; Smorygo, O.L. Catalytic Performance of Structured Packages Coated with Perovskite-Based Nanocomposite in the Methane Steam Reforming Reaction. Int. J. Hydrogen Energy 2016, 41, 4632–4645. [Google Scholar] [CrossRef]
- Araújo, P.M.; da Costa, K.M.; Passos, F.B. Hydrogen Production from Methane Autothermal Reforming over CaTiO3, BaTiO3 and SrTiO3 Supported Nickel Catalysts. Int. J. Hydrogen Energy 2021, 46, 24107–24116. [Google Scholar] [CrossRef]
- Chen, L.; Pradhan, S. Low Temperature Synthesis of Metal Doped Perovskites Catalyst for Hydrogen Production by Autothermal Reforming of Methane. Int. J. Hydrogen Energy 2016, 41, 14605–14614. [Google Scholar] [CrossRef]
- Su, Y.-J.; Pan, K.-L.; Chang, M.-B. Modifying Perovskite-Type Oxide Catalyst LaNiO3 with Ce for Carbon Dioxide Reforming of Methane. Int. J. Hydrogen Energy 2014, 39, 4917–4925. [Google Scholar] [CrossRef]
- Niakolas, D.K. Sulfur Poisoning of Ni-Based Anodes for Solid Oxide Fuel Cells in H/C-Based Fuels. Appl. Catal. A Gen. 2014, 486, 123–142. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Lin, Y.; Yang, Z.; Su, D.; Han, M.; Chen, F. Direct-Methane Solid Oxide Fuel Cells with Hierarchically Porous Ni-Based Anode Deposited with Nanocatalyst Layer. Nano Energy 2014, 10, 1–9. [Google Scholar] [CrossRef]
- Ormerod, R.M. Solid Oxide Fuel Cells. Chem. Soc. Rev. 2003, 32, 17–28. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, X.; Zhou, Y.; Luo, Z.; Nam, G.; Ding, Y.; Li, T.; Liu, Z.; Ahn, Y.; Kane, N. A Solid Oxide Fuel Cell Runs on Hydrocarbon Fuels with Exceptional Durability and Power Output. Adv. Energy Mater. 2022, 12, 2202928. [Google Scholar] [CrossRef]
- Yu, N.; Liu, T.; Chen, X.; Miao, M.; Ni, M.; Wang, Y. Co-Generation of Liquid Chemicals and Electricity over Co-Fe Alloy/Perovskite Anode Catalyst in a Propane Fueled Solid Oxide Fuel Cell. Sep. Purif. Technol. 2022, 291, 120890. [Google Scholar] [CrossRef]
- Wang, W.; Ran, R.; Shao, Z. Combustion-Synthesized Ru–Al2O3 Composites as Anode Catalyst Layer of a Solid Oxide Fuel Cell Operating on Methane. Int. J. Hydrogen Energy 2011, 36, 755–764. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Yang, W.; Peng, R.; Lu, Y. Carbon-Tolerant Solid Oxide Fuel Cells Using NiTiO3 as an Anode Internal Reforming Layer. J. Power Sources 2014, 255, 404–409. [Google Scholar] [CrossRef]
- Wang, L.; Fan, Y.; Li, J.; Shao, L.; Xi, X.; Fu, X.-Z.; Luo, J.-L. La0.5Sr0.5Fe0.9Mo0.1O3−δ-CeO2 Anode Catalyst for Co-Producing Electricity and Ethylene from Ethane in Proton-Conducting Solid Oxide Fuel Cells. Ceram. Int. 2021, 47, 24106–24114. [Google Scholar] [CrossRef]
- Cui, S.-H.; Li, J.-H.; Luo, J.-L.; Chuang, K.T.; Qiao, L.-J. Co-Generation of Energy and Ethylene in Hydrocarbon Fueled SOFCs with Cr3C2 and WC Anode Catalysts. Ceram. Int. 2014, 40, 11781–11786. [Google Scholar] [CrossRef]
- Zhao, K.; Lee, K.-S.; Chen, M.; Kim, B.-H.; Xu, Q.; Ahn, B.-G. Electrochemical Performance of a Copper-Impregnated Ni–Ce0.8Sm0.2O1.9 Anode Running on Methane. Int. J. Hydrogen Energy 2013, 38, 3750–3756. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, N.; Hu, X.; Liu, M.; Yang, Y.; Huan, D.; Pan, Y.; Peng, R.; Xia, C. Novel In-Situ MgO Nano-Layer Decorated Carbon-Tolerant Anode for Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2020, 45, 11791–11801. [Google Scholar] [CrossRef]
- Thieu, C.; Park, S.; Kim, H.; Ji, H.; Lee, J.; Yoon, K.J.; Yang, S.; Son, J. Improved Electrochemical Performance and Durability of Butane-operating Low-temperature Solid Oxide Fuel Cell through Palladium Infiltration. Int. J. Energy Res. 2020, 44, 9995–10007. [Google Scholar] [CrossRef]
- Yang, L.; Choi, Y.; Qin, W.; Chen, H.; Blinn, K.; Liu, M.; Liu, P.; Bai, J.; Tyson, T.A.; Liu, M. Promotion of Water-Mediated Carbon Removal by Nanostructured Barium Oxide/Nickel Interfaces in Solid Oxide Fuel Cells. Nat. Commun. 2011, 2, 357. [Google Scholar] [CrossRef]
- Liu, S.; Chuang, K.T.; Luo, J.-L. Double-Layered Perovskite Anode with in Situ Exsolution of a Co–Fe Alloy to Cogenerate Ethylene and Electricity in a Proton-Conducting Ethane Fuel Cell. Acs Catal. 2016, 6, 760–768. [Google Scholar] [CrossRef]
- Li, J.; Hou, J.; Xi, X.; Lu, Y.; Li, M.; Fan, Y.; Wang, L.; Wang, L.; Fu, X.-Z.; Luo, J.-L. Cogeneration of Ethylene and Electricity in Symmetrical Protonic Solid Oxide Fuel Cells Based on a La0.6Sr0.4Fe0.8Nb0.1Cu0.1O3−δ Electrode. J. Mater. Chem. A 2020, 8, 25978–25985. [Google Scholar] [CrossRef]
- Ye, X.-F.; Huang, B.; Wang, S.R.; Wang, Z.R.; Xiong, L.; Wen, T.L. Preparation and Performance of a Cu–CeO2–ScSZ Composite Anode for SOFCs Running on Ethanol Fuel. J. Power Sources 2007, 164, 203–209. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Wang, F.; Tade, M.O.; Shao, Z. Enhanced Electrochemical Performance, Water Storage Capability and Coking Resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3−δ Anode for Solid Oxide Fuel Cells Operating on Ethanol. Chem. Eng. Sci. 2015, 126, 22–31. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Wang, J.; Guan, W.; Chi, B.; Jia, L.; Chen, J.; Muroyama, H.; Matsui, T.; Eguchi, K. Low–Temperature Ammonia Decomposition Catalysts for Direct Ammonia Solid Oxide Fuel Cells. J. Electrochem. Soc. 2020, 167, 64501. [Google Scholar] [CrossRef]
- Hashinokuchi, M.; Zhang, M.; Doi, T.; Inaba, M. Enhancement of Anode Activity and Stability by Cr Addition at Ni/Sm-Doped CeO2 Cermet Anodes in NH3-Fueled Solid Oxide Fuel Cells. Solid State Ion. 2018, 319, 180–185. [Google Scholar] [CrossRef]
- Sunarso, J.; Hashim, S.S.; Zhu, N.; Zhou, W. Perovskite Oxides Applications in High Temperature Oxygen Separation, Solid Oxide Fuel Cell and Membrane Reactor: A Review. Prog. Energy Combust. Sci. 2017, 61, 57–77. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Review of Perovskite-Structure Related Cathode Materials for Solid Oxide Fuel Cells. Ceram. Int. 2020, 46, 5521–5535. [Google Scholar] [CrossRef]
- Burnwal, S.K.; Bharadwaj, S.; Kistaiah, P. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells. J. Mol. Eng. Mater. 2016, 4, 1630001. [Google Scholar] [CrossRef]
- Navarrete, L.; Balaguer, M.; Vert, V.B.; Serra, J.M. Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)0.95MnO3+δ and Doped Cerias Ce1−XLnxO2−δ (Ln = Gd, La, Er, Pr, Tb and x = 0.1–0.2). Fuel Cells 2017, 17, 100–107. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Huang, Y.-H. Alternative Anode Materials for Solid Oxide Fuel Cells. J. Power Sources 2007, 173, 1–10. [Google Scholar] [CrossRef]
- Shu, L.; Sunarso, J.; Hashim, S.S.; Mao, J.; Zhou, W.; Liang, F. Advanced Perovskite Anodes for Solid Oxide Fuel Cells: A Review. Int. J. Hydrogen Energy 2019, 44, 31275–31304. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.-H.; Choi, Y.; Yang, L.; Lin, M.-C.; Liu, M. From Ni-YSZ to Sulfur-Tolerant Anode Materials for SOFCs: Electrochemical Behavior, in Situ Characterization, Modeling, and Future Perspectives. Energy Environ. Sci. 2011, 4, 4380–4409. [Google Scholar] [CrossRef]
- Kim, T.W.; Park, J.C.; Lim, T.-H.; Jung, H.; Chun, D.H.; Lee, H.T.; Hong, S.; Yang, J.-I. The Kinetics of Steam Methane Reforming over a Ni/γ-Al2O3 Catalyst for the Development of Small Stationary Reformers. Int. J. Hydrogen Energy 2015, 40, 4512–4518. [Google Scholar] [CrossRef]
- Zeppieri, M.; Villa, P.L.; Verdone, N.; Scarsella, M.; De Filippis, P. Kinetic of Methane Steam Reforming Reaction over Nickel- and Rhodium-Based Catalysts. Appl. Catal. A Gen. 2010, 387, 147–154. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Garbarino, G.; Pugliese, F.; Cavattoni, T.; Busca, G.; Costamagna, P. A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts. Energies 2020, 13, 2792. [Google Scholar] [CrossRef]
- Matsumura, Y.; Nakamori, T. Steam Reforming of Methane over Nickel Catalysts at Low Reaction Temperature. Appl. Catal. A Gen. 2004, 258, 107–114. [Google Scholar] [CrossRef]
- Rakass, S.; Oudghiri-Hassani, H.; Rowntree, P.; Abatzoglou, N. Steam Reforming of Methane over Unsupported Nickel Catalysts. J. Power Sources 2006, 158, 485–496. [Google Scholar] [CrossRef]
- Hasanat, A.U.; Khoja, A.H.; Naeem, N.; Al-Anazi, A.; Liaquat, R.; Khan, B.A.; Din, I.U. Thermocatalytic Partial Oxidation of Methane to Syngas (H2, CO) Production Using Ni/La2O3 Modified Biomass Fly Ash Supported Catalyst. Results Eng. 2023, 19, 101333. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Vicidomini, M. Chapter 9-Applications of Solar PV Systems in Hydrogen Production. In Photovoltaic Solar Energy Conversion; Academic Press: Cambridge, MA, USA, 2020; pp. 275–312. ISBN 978-0-12-819610-6. [Google Scholar]
- Araújo, J.C.S.; Oton, L.F.; Oliveira, A.C.; Lang, R.; Otubo, L.; Bueno, J.M.C. On the Role of Size Controlled Pt Particles in Nanostructured Pt-Containing Al2O3 Catalysts for Partial Oxidation of Methane. Int. J. Hydrogen Energy 2019, 44, 27329–27342. [Google Scholar] [CrossRef]
- Costa, D.S.; Gomes, R.S.; Rodella, C.B.; da Silva, R.B.; Fréty, R.; Teixeira Neto, É.; Brandão, S.T. Study of Nickel, Lanthanum and Niobium-Based Catalysts Applied in the Partial Oxidation of Methane. Catal. Today 2020, 344, 15–23. [Google Scholar] [CrossRef]
- Özdemir, H.; Öksüzömer, M.F. Synthesis of Al2O3, MgO and MgAl2O4 by Solution Combustion Method and Investigation of Performances in Partial Oxidation of Methane. Powder Technol. 2020, 359, 107–117. [Google Scholar] [CrossRef]
- Moral, A.; Reyero, I.; Llorca, J.; Bimbela, F.; Gandía, L.M. Partial Oxidation of Methane to Syngas Using Co/Mg and Co/Mg-Al Oxide Supported Catalysts. Catal. Today 2019, 333, 259–267. [Google Scholar] [CrossRef]
- Figen, H.E.; Baykara, S.Z. Hydrogen Production by Partial Oxidation of Methane over Co Based, Ni and Ru Monolithic Catalysts. Int. J. Hydrogen Energy 2015, 40, 7439–7451. [Google Scholar] [CrossRef]
- Faria, E.C.; Neto, R.C.R.; Colman, R.C.; Noronha, F.B. Hydrogen Production through CO2 Reforming of Methane over Ni/CeZrO2/Al2O3 Catalysts. Catal. Today 2014, 228, 138–144. [Google Scholar] [CrossRef]
- Kurdi, A.N.; Ibrahim, A.A.; Al-Fatesh, A.S.; Alquraini, A.A.; Abasaeed, A.E.; Fakeeha, A.H. Hydrogen Production from CO2 Reforming of Methane Using Zirconia Supported Nickel Catalyst. RSC Adv. 2022, 12, 10846–10854. [Google Scholar] [CrossRef]
- Rahmani, F.; Haghighi, M.; Vafaeian, Y.; Estifaee, P. Hydrogen Production via CO2 Reforming of Methane over ZrO2-Doped Ni/ZSM-5 Nanostructured Catalyst Prepared by Ultrasound Assisted Sequential Impregnation Method. J. Power Sources 2014, 272, 816–827. [Google Scholar] [CrossRef]
- Sajjadi, S.M.; Haghighi, M.; Eslami, A.A.; Rahmani, F. Hydrogen Production via CO2-Reforming of Methane over Cu and Co Doped Ni/Al2O3 Nanocatalyst: Impregnation versus Sol–Gel Method and Effect of Process Conditions and Promoter. J. Sol-Gel Sci. Technol. 2013, 67, 601–617. [Google Scholar] [CrossRef]
- Kumar, N.; Shojaee, M.; Spivey, J.J. Catalytic Bi-Reforming of Methane: From Greenhouse Gases to Syngas. Curr. Opin. Chem. Eng. 2015, 9, 8–15. [Google Scholar] [CrossRef]
- He, D.; Zhang, Y.; Wang, Z.; Mei, Y.; Jiang, Y. Bi-Reforming of Methane with Carbon Dioxide and Steam on Nickel-Supported Binary Mg–Al Metal Oxide Catalysts. Energy Fuels 2020, 34, 4822–4827. [Google Scholar] [CrossRef]
- Singh, S.; Bahari, M.B.; Abdullah, B.; Phuong, P.T.T.; Truong, Q.D.; Vo, D.-V.N.; Adesina, A.A. Bi-Reforming of Methane on Ni/SBA-15 Catalyst for Syngas Production: Influence of Feed Composition. Int. J. Hydrogen Energy 2018, 43, 17230–17243. [Google Scholar] [CrossRef]
- Yang, X. An Experimental Investigation on the Deactivation and Regeneration of a Steam Reforming Catalyst. Renew. Energy 2017, 112, 17–24. [Google Scholar] [CrossRef]
- Eschemann, T.O.; de Jong, K.P. Deactivation Behavior of Co/TiO2 Catalysts during Fischer–Tropsch Synthesis. ACS Catal. 2015, 5, 3181–3188. [Google Scholar] [CrossRef]
- Pham Minh, D.; Pham, X.-H.; Siang, T.J.; Vo, D.V.N. Review on the Catalytic Tri-Reforming of Methane-Part I: Impact of Operating Conditions, Catalyst Deactivation and Regeneration. Appl. Catal. A Gen. 2021, 621, 118202. [Google Scholar] [CrossRef]
- Zhou, L.; Li, L.; Wei, N.; Li, J.; Basset, J. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane. ChemCatChem 2015, 7, 2508–2516. [Google Scholar] [CrossRef]
- Theofanidis, S.-A.; Pieterse, J.A.Z.; Poelman, H.; Longo, A.; Sabbe, M.K.; Virginie, M.; Detavernier, C.; Marin, G.B.; Galvita, V. V Effect of Rh in Ni-Based Catalysts on Sulfur Impurities during Methane Reforming. Appl. Catal. B Environ. 2020, 267, 118691. [Google Scholar] [CrossRef]
- Gallego, J.; Batiot-Dupeyrat, C.; Barrault, J.; Mondragón, F. Severe Deactivation of a LaNiO3 Perovskite-Type Catalyst Precursor with H2S during Methane Dry Reforming. Energy & Fuels 2009, 23, 4883–4886. [Google Scholar] [CrossRef]
- Aznam, I.; Muchtar, A.; Somalu, M.R.; Baharuddin, N.A.; Rosli, N.A.H. Advanced Materials for Heterogeneous Catalysis: A Comprehensive Review of Spinel Materials for Direct Internal Reforming of Methane in Solid Oxide Fuel Cell. Chem. Eng. J. 2023, 471, 144751. [Google Scholar] [CrossRef]
- Nakagawa, N.; Sagara, H.; Kato, K. Catalytic Activity of Ni–YSZ–CeO2 Anode for the Steam Reforming of Methane in a Direct Internal-Reforming Solid Oxide Fuel Cell. J. Power Sources 2001, 92, 88–94. [Google Scholar] [CrossRef]
- Saebea, D.; Authayanun, S.; Patcharavorachot, Y. Performance Analysis of Direct Steam Reforming of Methane in SOFC with SDC-Based Electrolyte. Energy Rep. 2020, 6, 391–396. [Google Scholar] [CrossRef]
- Kawano, M.; Matsui, T.; Kikuchi, R.; Yoshida, H.; Inagaki, T.; Eguchi, K. Direct Internal Steam Reforming at SOFC Anodes Composed of NiO–SDC Composite Particles. J. Electrochem. Soc. 2007, 154, B460. [Google Scholar] [CrossRef]
- Arpornwichanop, A.; Chalermpanchai, N.; Patcharavorachot, Y.; Assabumrungrat, S.; Tade, M. Performance of an Anode-Supported Solid Oxide Fuel Cell with Direct-Internal Reforming of Ethanol. Int. J. Hydrogen Energy 2009, 34, 7780–7788. [Google Scholar] [CrossRef]
- Wongchanapai, S.; Iwai, H.; Saito, M.; Yoshida, H. Selection of Suitable Operating Conditions for Planar Anode-Supported Direct-Internal-Reforming Solid-Oxide Fuel Cell. J. Power Sources 2012, 204, 14–24. [Google Scholar] [CrossRef]
- Fu, Q.; Li, Z.; Wei, W.; Liu, F.; Xu, X.; Liu, Z. Performance Degradation Prediction of Direct Internal Reforming Solid Oxide Fuel Cell Due to Ni-Particle Coarsening in Composite Anode. Energy Convers. Manag. 2021, 233, 113902. [Google Scholar] [CrossRef]
- Wei, T.; Liu, B.; Jia, L.; Li, R. Perovskite Materials for Highly Efficient Catalytic CH4 Fuel Reforming in Solid Oxide Fuel Cell. Int. J. Hydrogen Energy 2021, 46, 24441–24460. [Google Scholar] [CrossRef]
- Chang, H.; Chen, H.; Yang, G.; Shi, J.; Zhou, W.; Bai, J.; Wang, Y.; Li, S. Enhanced Coking Resistance of Ni Cermet Anodes for Solid Oxide Fuel Cells Based on Methane On-cell Reforming by a Redox-stable Double-perovskite Sr2MoFeO6−δ. Int. J. Energy Res. 2019, 43, 2527–2537. [Google Scholar] [CrossRef]
- Yin, Y.; Li, S.; Xia, C.; Meng, G. Electrochemical Performance of IT-SOFCs with a Double-Layer Anode. J. Power Sources 2007, 167, 90–93. [Google Scholar] [CrossRef]
- Zhan, Z.; Barnett, S.A. An Octane-Fueled Solid Oxide Fuel Cell. Science 2005, 308, 844–847. [Google Scholar] [CrossRef]
- Yan, J.; Guo, W.; Chen, H.; Shi, J.; Cheng, F.; Li, S.; Shao, Z. Improvement of Solid Oxide Fuel Cell Performance by a Core-shell Structured Catalyst Using Low Concentration Coal Bed Methane Fuel. Int. J. Energy Res. 2020, 44, 5516–5526. [Google Scholar] [CrossRef]
- Steil, M.C.; Nobrega, S.D.; Georges, S.; Gelin, P.; Uhlenbruck, S.; Fonseca, F.C. Durable Direct Ethanol Anode-Supported Solid Oxide Fuel Cell. Appl. Energy 2017, 199, 180–186. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Z.; Jin, Y.; Liu, C.; Lei, Z.; Chen, F.; Peng, S. Progress Report on the Catalyst Layers for Hydrocarbon-Fueled SOFCs. Int. J. Hydrogen Energy 2021, 46, 39369–39386. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, X.; Li, M.; Zhou, W.; Liu, S.; Zhu, Z. Coking-Resistant Ce0.8Ni0.2O2−δ Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells. Electrochim. Acta 2018, 282, 402–408. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, H.; Tian, W.; Shi, J.; Zhou, W.; Cheng, F.; Li, S.-D.; Shao, Z. Utilization of Low-Concentration Coal-Bed Gas to Generate Power Using a Core-Shell Catalyst-Modified Solid Oxide Fuel Cell. Renew. Energy 2020, 147, 602–609. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Ran, R.; Cai, R.; Shao, Z. Methane-Fueled SOFC with Traditional Nickel-Based Anode by Applying Ni/Al2O3 as a Dual-Functional Layer. Electrochem. Commun. 2009, 11, 194–197. [Google Scholar] [CrossRef]
- Futamura, S.; Muramoto, A.; Tachikawa, Y.; Matsuda, J.; Lyth, S.M.; Shiratori, Y.; Taniguchi, S.; Sasaki, K. SOFC Anodes Impregnated with Noble Metal Catalyst Nanoparticles for High Fuel Utilization. Int. J. Hydrogen Energy 2019, 44, 8502–8518. [Google Scholar] [CrossRef]
- Wang, W.; Su, C.; Ran, R.; Shao, Z. A New Gd-Promoted Nickel Catalyst for Methane Conversion to Syngas and as an Anode Functional Layer in a Solid Oxide Fuel Cell. J. Power Sources 2011, 196, 3855–3862. [Google Scholar] [CrossRef]
- Dewa, M.; Elharati, M.A.; Hussain, A.M.; Miura, Y.; Song, D.; Fukuyama, Y.; Furuya, Y.; Dale, N.; Zhang, X.; Marin-Flores, O.G.; et al. Metal-Supported Solid Oxide Fuel Cell System with Infiltrated Reforming Catalyst Layer for Direct Ethanol Feed Operation. J. Power Sources 2022, 541, 231625. [Google Scholar] [CrossRef]
- Park, E.K.; Lee, S.; Yun, J.W. Characteristics of Sr0.92Y0.08Ti1-YNiyO3−δ Anode and Ni-Infiltrated Sr0.92Y0.08TiO3−δ Anode Using CH4 Fuel in Solid Oxide Fuel Cells. Appl. Surf. Sci. 2018, 429, 171–179. [Google Scholar] [CrossRef]
- Kong, X.; Tian, Y.; Zhou, X.; Wu, X.; Zhang, J. Surface Tuned La0.9Ca0.1Fe0.9Nb0.1O3−δ Based Anode for Direct Methane Solid Oxide Fuel Cells by Infiltration Method. Electrochim. Acta 2017, 234, 71–81. [Google Scholar] [CrossRef]
- Xiao, P.; Ge, X.; Zhang, L.; Lee, J.-M.; Wang, J.-Y.; Wang, X. H2 and CH4 Oxidation on Gd0.2Ce0.8O1.9 Infiltrated SrMoO3–Yttria-Stabilized Zirconia Anode for Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2012, 37, 18349–18356. [Google Scholar] [CrossRef]
- Mo, B.; Rix, J.; Pal, U.; Basu, S.; Gopalan, S. Improving SOFC Anode Electrocatalytic Activity Using Nanoparticle Infiltration into MIEC Compositions. J. Electrochem. Soc. 2020, 167, 134506. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.; Shin, J.Y.; Corre, G.; Irvine, J.T.S.; Vohs, J.M.; Gorte, R.J. Investigation of the Structural and Catalytic Requirements for High-Performance SOFC Anodes Formed by Infiltration of LSCM. Electrochem. Solid-State Lett. 2009, 12, B48. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Dong, X.; Pan, L.; Sun, K. Catalytic Activity of Infiltrated La0.3Sr0.7Ti0.3Fe0.7O3−δ–CeO2 as a Composite SOFC Anode Material for H2 and CO Oxidation. Int. J. Hydrogen Energy 2017, 42, 15632–15640. [Google Scholar] [CrossRef]
- Hussain, J.; Ali, R.; Akhtar, M.N.; Jaffery, M.H.; Shakir, I.; Raza, R. Modeling and Simulation of Planar SOFC to Study the Electrochemical Properties. Curr. Appl. Phys. 2020, 20, 660–672. [Google Scholar] [CrossRef]
- Bertei, A.; Nucci, B.; Nicolella, C. Microstructural Modeling for Prediction of Transport Properties and Electrochemical Performance in SOFC Composite Electrodes. Chem. Eng. Sci. 2013, 101, 175–190. [Google Scholar] [CrossRef]
- Yan, Z.; He, A.; Hara, S.; Shikazono, N. Modeling of Solid Oxide Fuel Cell (SOFC) Electrodes from Fabrication to Operation: Correlations between Microstructures and Electrochemical Performances. Energy Convers. Manag. 2019, 190, 1–13. [Google Scholar] [CrossRef]
- Grew, K.N.; Chiu, W.K.S. A Review of Modeling and Simulation Techniques across the Length Scales for the Solid Oxide Fuel Cell. J. Power Sources 2012, 199, 1–13. [Google Scholar] [CrossRef]
- Fan, L.; Li, C.; Aravind, P.V.; Cai, W.; Han, M.; Brandon, N. Methane Reforming in Solid Oxide Fuel Cells: Challenges and Strategies. J. Power Sources 2022, 538, 231573. [Google Scholar] [CrossRef]
- Harun, N.F.; Tucker, D.; Adams, T.A., II. Impact of Fuel Composition Transients on SOFC Performance in Gas Turbine Hybrid Systems. Appl. Energy 2016, 164, 446–461. [Google Scholar] [CrossRef]
- Corigliano, O.; Fragiacomo, P. Extensive Analysis of SOFC Fed by Direct Syngas at Different Anodic Compositions by Using Two Numerical Approaches. Energy Convers. Manag. 2020, 209, 112664. [Google Scholar] [CrossRef]
- Zainon, A.N.; Somalu, M.R.; Kamarul Bahrain, A.M.; Muchtar, A.; Baharuddin, N.A.; Sa, M.A.; Osman, N.; Abdul Samat, A.; Azad, A.K.; Brandon, N.P. Challenges in Using Perovskite-Based Anode Materials for Solid Oxide Fuel Cells with Various Fuels: A Review. Int. J. Hydrogen Energy 2023, 48, 20441–20464. [Google Scholar] [CrossRef]
- Hadi, N.H.; Somalu, M.R.; Samat, A.A.; Muchtar, A.; Baharuddin, N.A.; Anwar, M. A Review on the Preparation of Anode Materials and Anode Films for Solid Oxide Fuel Cell Applications. Int. J. Energy Res. 2021, 45, 14357–14388. [Google Scholar] [CrossRef]
- Zeng, Z.; Qian, Y.; Zhang, Y.; Hao, C.; Dan, D.; Zhuge, W. A Review of Heat Transfer and Thermal Management Methods for Temperature Gradient Reduction in Solid Oxide Fuel Cell (SOFC) Stacks. Appl. Energy 2020, 280, 115899. [Google Scholar] [CrossRef]
- Pashchenko, D. Numerical Study of Steam Methane Reforming over a Pre-Heated Ni-Based Catalyst with Detailed Fluid Dynamics. Fuel 2019, 236, 686–694. [Google Scholar] [CrossRef]
- Varandas, B.; Oliveira, M.; Borges, A. Analytical and Numerical Thermodynamic Equilibrium Simulations of Steam Methane Reforming: A Comparison Study. Reactions 2024, 5, 246–259. [Google Scholar] [CrossRef]
- Pashchenko, D. Thermodynamic Equilibrium Analysis of Steam Methane Reforming Based on a Conjugate Solution of Material Balance and Law Action Mass Equations with the Detailed Energy Balance. Int. J. Energy Res. 2020, 44, 438–447. [Google Scholar] [CrossRef]
- Özkara-Aydınoğlu, Ş. Thermodynamic Equilibrium Analysis of Combined Carbon Dioxide Reforming with Steam Reforming of Methane to Synthesis Gas. Int. J. Hydrogen Energy 2010, 35, 12821–12828. [Google Scholar] [CrossRef]
- Pashchenko, D.; Mustafin, R.; Mustafina, A. Steam Methane Reforming in a Microchannel Reformer: Experiment, CFD-Modelling and Numerical Study. Energy 2021, 237, 121624. [Google Scholar] [CrossRef]
- Ngo, S.I.; Lim, Y.-I.; Kim, W.; Seo, D.J.; Yoon, W.L. Computational Fluid Dynamics and Experimental Validation of a Compact Steam Methane Reformer for Hydrogen Production from Natural Gas. Appl. Energy 2019, 236, 340–353. [Google Scholar] [CrossRef]
- Lao, L.; Aguirre, A.; Tran, A.; Wu, Z.; Durand, H.; Christofides, P.D. CFD Modeling and Control of a Steam Methane Reforming Reactor. Chem. Eng. Sci. 2016, 148, 78–92. [Google Scholar] [CrossRef]
Catalyst | Reaction Conditions | Performance | Stability | References |
---|---|---|---|---|
Ru+Ni/LaPrMnCr | Feed (18%CH4 + 36%H2O in Ar), residence time = 0.08 s, T = 750 °C | Concentration % (CH4 = 3.9, CO2 = 4, CO = 8.5, H2 = 40) | Stability testing of the Ni/YSZ anode was carried out at 650 °C for 26 h | [24] |
Ni/CaTiO3 | Feed (CH4:O2:H2O = 2:1:0.3), using 60 mg of mixture Si/catalyst (5:1), T = 800 °C and atmospheric pressure | Selectivity % (H2 = 49, CO = 89, CO2 = 10), CH4 Conversion (%) = 72 | 24 h as the reaction time | [25] |
Ni/BaTiO3 | Feed (CH4:O2:H2O = 2:1:0.3), using 60 mg of mixture Si/catalyst (5:1), T = 800 °C and atmospheric pressure | Selectivity % (H2 = 49, CO = 92, CO2 = 8), CH4 Conversion (%) = 72 | 24 h as the reaction time | [25] |
Ni/SrTiO3 | Feed (CH4:O2:H2O = 2:1:0.3), using 60 mg of mixture Si/catalyst (5:1), T = 800 °C and atmospheric pressure | Selectivity % (H2 = 38, CO = 85, CO2 = 12) CH4 Conversion (%) = 51 | 24 h as the reaction time | [25] |
Ce1.0Al0.98Rh0.02O3−ẟ | GHSV = 34,900 h−1, S/C = 1.2 and O2/C = 0.79, T = 650 °C | Yield % (H2 = 60, CO = 31, CO2 = 10), CH4 Conversion (%) = 75 | - | [26] |
Ce1.0Al0.975Rh0.02Pt0.005O3−ẟ | GHSV = 34,900 h−1, S/C = 1.2 and O2/C = 0.79, T = 650 °C | Yield % (H2 = 72, CO = 25, CO2 = 7), CH4 Conversion (%) = 100 | The stability test carried out over 72 h at 650 °C | [26] |
La0.9Ce0.1NiO3 | T = 800 °C, GHSV = 10,000 hr−1, CO2/CH4 = 1, atmospheric pressure | Selectivity % (H2 = 61, CO = 49), Conversion % (CO2 = 93, CH4 = 92) | Stability during the CO2 reforming with methane over 22 h | [27] |
Cell Configuration (Catalyst/Anode/Electrolyte/Cathode) | Fuel | Operating Temperature (°C) | Max Power Density (W/cm2) | Long-Term Stability Test | References |
---|---|---|---|---|---|
BZYNR/Ni-YSZ/YSZ-GDC/LSCF | Iso-octane | 650 | 0.20 | 500 h | [31] |
Co-Fe/SFMCo-SDC/SDC | 97%C3H8-3%H2O | 800 | 0.15 | 65 h | [32] |
Ru-Al2O3/NiO-YSZ/LSM-YSZ | 80%CH4-20%O2 | 750 | 0.7 | 400 min | [33] |
NiTiO3/NiO-YSZ/YSZ/LSM-YSZ | 3%H2O-CH4 | 700 | 0.23 | 90 h | [34] |
LSFM-CeO2/BZCY/LSFM-CeO2 | C2H6 | 750 | 0.18 | 22 h | [35] |
Cr3C2/BCZY/LSF | C2H6 | 750 | 0.18 | 80 h | [36] |
Cu-Ni-SDC/YSZ/SDC/LSCF | CH4 | 700 | 0.42 | 15 h | [37] |
Ni0.875Cu0.1Mg0.025O-SDC/SDC/LSCF-SDC | 3%H2O-CH4 | 700 | 0.67 | 100 h | [38] |
Pd-infiltrated Ni-YSZ/Ni-YSZ/YSZ/GDC/LSC | Butane–steam mixture (S/C: 3) | 600 | 0.94 | 100 h | [39] |
BaO-deposited Ni-YSZ/YSZ/SDC/LSCF | Propane | 750 | 0.88 | 100 h | [40] |
P-PSCFM/BCZY/GDC/LSCF-BCZY | Ethane | 750 | 0.34 | 100 h | [41] |
LSFNCu/BZCYYb/LSFNCu | Ethane | 750 | 0.09 | 40 h | [42] |
Cu-CeO2-ScSZ/ScSZ/PCM | Ethanol–steam mixture (volume ratio: 2:1) | 800 | 0.22 | 50 h | [43] |
Ni-BZCYYb/SDC/BSCF | Ethanol | 600 | 0.51 | 100 h | [44] |
Ba-Ni-YSZ/Ni-YSZ/YSZ/LSM-YSZ | Ammonia–nitrogen mixture | 750 | 0.25 | 50 h | [45] |
Ni97Cr3-SDC/LSGM/SSC | Ammonia–nitrogen mixture | 600 | 0.14 | 30 h | [46] |
Process | SMR | POM | DMR | BRM |
---|---|---|---|---|
Reaction | () | |||
Strength | High efficiency and industrially established technology with the highest hydrogen selectivity. | Identifies the process parameters influencing the lifetime of the adsorbent bed and the degree of the bed conversion. | Efficient greenhouse gases consumption and favorable syngas ratio for FTS. | Flexible syngas ratios and minimum carbon deposition. |
Weakness | High emission of carbon dioxide and need for a desulfurization unit, together with severe heat duty. | Pollutants are degraded by specific bacteria which grow on a wet inorganic solid packing material. | Quick catalyst deactivation due to carbon formation and active sites sintering, while also being energy intensive (highly endothermic). | High process temperature requirements and challenging for large-scale production |
Operating conditions | T(°C) = 700–1000; P(bar) = 3–25; CH4/H2O = 1/1 | T(°C) = 950–1100; P(bar) = 100; CH4/O2 = 2/1 | T(°C) = 650–850; P(bar) = 1; CH4/CO2 = 1/1 | T(°C) = 500–1000; P(bar) = 1; CH4/H2O/CO2 = 3/2/1 |
H2/CO ratio | >3 | 2 | <1 | 2 |
Catalyst | Preparation Method | Type of Reactor | Reaction Condition | Catalytic Activity | Reference |
---|---|---|---|---|---|
Ni/SiO2 (NS) | Incipient wetness impregnation | Fixed bed | T = 500 °C, P = 1 bar, Wcat = 0.1 g, H2O/CH4 = 2. | CH4 conv. = 86% | [18] |
Ni/Calcium aluminate | Wet impregnation | Packed bed | T = 546 °C, P = 1 bar, Wcat = 0.1 g, H2O/CH4 = 4. | CH4 conv. = 85% | [57] |
5wt%Ni/ZrO2 | Wet impregnation | Fixed bed | T = 500 °C, P = 1 bar, Wcat = 0.3 g, H2O/CH4 = 2. | CH4 conv. = 15.6% | [58] |
Unsupported nickel | Thermal decomposition | Seven-cell differential | T = 700 °C, P = 1 bar, Wcat = 0.25 g, H2O/CH4 = 2. | CH4 conv. = 95% | [59] |
Catalyst | Temperature (°C) | Weight Hourly Space Velocity (mL h−1 gcat−1) | Conversion CH4 (%) | H2/CO Ratio | Reference |
---|---|---|---|---|---|
Pt/Al2O3 | 800 | 1–2 × 105 | 63 | - | [62] |
LaNi1−xNbxO3 (x = 0,0.5) | 750 | 20 | 1.4 | [63] | |
Ni/MgAl2O4-2 | 800 | 157,500 Lkg−1h | 90 | 2 | [64] |
Co/Mg-Al | 800 | 300 LN CH4/(gcat h) | 91.3 | 2 | [65] |
Co-Ni-Ru | 800 | 1 × 104 h−1 | 98.7 | 2 | [66] |
Catalysts | CH4/H2O/CO2 Ratio | Temperature (°C) | GHSV (L gcat−1h−1) | TOS (h) | Conversion (%) | Reference | |
---|---|---|---|---|---|---|---|
CH4 | CO2 | ||||||
5 wt% Ni/Mg0.75Al0.25O | 15/0.012/6 | 800 | 6.3 | 0.5 | 63 | 58 | [72] |
10 wt% Ni/SBA-15 | 3/2/1 | 800 | 36 | - | 62 | 58 | [73] |
Catalytic Process | Gas/Vapor Composition | Catalytic Material | Deactivation Chemical Reaction | Reference |
Steam reforming | Various concentrations of H2S in the range of 20–150 ppm. | Ni-based catalyst | The deactivation of Ni/Al2O3 due to sulfur poisoning. | [74] |
Fischer–Tropsch Synthesis | H2/CO = 2 at 493 K, 20 bar | Co/TiO2 catalyst | Loss of active metal surface area and particle growth are the most important factors. | [75] |
Electrochemical Reaction | Equation | Type of Reaction |
---|---|---|
Methane dry reforming | Endothermic | |
Methane full dry reforming | Endothermic | |
Reverse water–gas shift | Exothermic | |
Methane pyrolysis/cracking | Endothermic | |
Hydrogen oxidation | Exothermic | |
CO oxidation | Exothermic | |
SMR | Endothermic | |
CH4 full steam reforming | Endothermic | |
CO2 carbon gasification | Endothermic | |
Steam carbon gasification | Endothermic | |
Boudouard reaction | Endothermic | |
Steam full carbon gasification | Endothermic | |
CH4 partial oxidation | Exothermic | |
CH4 full oxidation | Exothermic | |
Carbon oxidation | Exothermic | |
Carbon steam methanation | Endothermic | |
Carbon full steam methanation | Endothermic |
Anode Material | Operating Temperature (°C) | Gas Composition | PPD (mW/cm2) Current (mA/cm2) | Degradation rate@ j mAcm−2 | Remarks | Ref. |
---|---|---|---|---|---|---|
Ni-YSZ-CeO2 | 700–1000 | S/C = 2–7 | Current = 600 | CH4 conversion = 15% | [81] | |
Ni/SDC | 600–750 | S/C = 1 | Power density = 0.19–0.42 A/cm2 | CH4 conversion = 53–28% | [82] | |
NiO–SDC | 700–1000 | S/C = 1.2–2 | Current = 0.2 Acm2 | CH4 conversion = 1–40% | [83] | |
Ni/YSZ | 750–850 | Steam/ethanol = 7 | Current density = 0.79 A/cm2; Power density = 0.51 W/cm2 | Fuel-cell efficiency = 27.5% | [84] | |
Ni/YSZ | 800 | 17.10% CH4, 2.94% CO, 4.36% CO2, 26.26% H2 and 49.34% H2O | Current density = 7888 A/m2; Power density = 5747 W/A2 | Fuel cell efficiency = 46–62% | [85] | |
Ni/YSZ | 750 | S/C = 1 (20% H2O-20% CH4) | Current density = 0.3 A/cm2; Power density = 5747 W/m2 | Vde(/1000 h) = 1.10% | CH4 conversion = 45% | [86] |
Catalyst Layer | Preparation Method | Fuel | Anode Support | Temperature (°C) | PPD (mW cm−2) | Durability (h) | Reference |
---|---|---|---|---|---|---|---|
Ni-CeO2 | Mixed mechanical | Methane | Ni-SDC | 600 | 160 | 20 | [89] |
Ru/CeO2 | Impregnation | Iso-octane | Ni-YSZ | 770 | 600 | 50 | [90] |
Ni-BaO-CeO2/SiO2 | Sol–gel | Methane-air | Ni-YSZ | 800 | 830 | 180 | [91] |
Ir-CGO | Incipient wetness impregnation | Ethanol-air | Ni-YSZ | 850 | 420 | 600 | [92] |
Pd | Galvanic displacement reaction | Ethanol | Ni-YSZ | 750 | 196 | 59 | [93] |
Ce0.8Ni0.2O2−δ | Sol–gel | Wet methane | Ni-SDC | 650 | 664 | 40 | [94] |
CeO2-BaO-NiO/SiO2 | Sol–gel | CH4/air | Ni-YSZ | 800 | 938 | 163 | [95] |
Ni/Al2O3 | Dual dry pressing/sintering | CH4/O2 | Ni-ScSZ | 850 | 382 | 25 | [96] |
(Rh, Pt, and Pd)-GDC | Co-impregnation | CH4/H2O | Ni-zirconia | 800 | 150 | 1000 | [97] |
GdNi-Al2O3 | Sol–gel | CH4 | Ni-YSZ | 850 | 1068 | 300 | [98] |
Ru-Al2O3 | Glycine nitrite process (GNP) | CH4/O2 | Ni-YSZ | 850 | 929 | 10 | [33] |
Backbone (Anode) | Infiltrate | Cell Configuration | Performance of Infiltrate/Baseline (Rp, Ω cm2; Pmax, W cm−2) | Temperature (°C) | Ref |
---|---|---|---|---|---|
Ni/YSZ; Ni/MIEC | Ni, GDC, Ni/GDC Ni | Symmetric | Rp (no infiltrate) = 1.95 Rp (Ni) = 0.97 Rp (GDC) = 0.02 Rp (Ni-GDC) = 0.01 Rp (Ni) = 0.97 Rp (no infiltrate) = 4.86 Rp (Ni) = 0.65 | 800 | [103] |
YSZ | 0.5–1 wt% Pd, Rh, or Ni | Symmetric | Pmax = 500 mW/cm2 | 700 | [104] |
CeO2 | La0.3Sr0.7Ti0.3Fe0.7O3−δ | Symmetric | Rp,a (Ωcm2) = 0.086; Rp,c (Ωcm2) = 0.38; MPD (mWcm−2) = 612 | 800 | [105] |
Ni/YSZ | 2 wt% PdO | MPD (Wcm−2) = 0.792; degradation rate = 3.75 mVh−1 in 40 h | 600 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahyazadeh, A. A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges. Physchem 2025, 5, 25. https://doi.org/10.3390/physchem5030025
Yahyazadeh A. A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges. Physchem. 2025; 5(3):25. https://doi.org/10.3390/physchem5030025
Chicago/Turabian StyleYahyazadeh, Arash. 2025. "A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges" Physchem 5, no. 3: 25. https://doi.org/10.3390/physchem5030025
APA StyleYahyazadeh, A. (2025). A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges. Physchem, 5(3), 25. https://doi.org/10.3390/physchem5030025