Comprehensive Study of Equilibrium Structure of Trans-Azobenzene: Gas Electron Diffraction and Quantum Chemical Calculations
Abstract
:1. Introduction
2. Methods
2.1. Computational Details
2.2. Structural Analysis
2.2.1. Approaches
2.2.2. One-Dimensional Dynamic Models
2.2.3. 2D Pseudoconformer Model
3. Results and Discussion
3.1. Multireference Nature of the Electronic Wave Function
3.2. Evaluation of Optimized Geometries
3.3. E-AB vs. Z-AB: Capabilities of GED Method
3.4. Does the Quality of Starting Parameters for GED Analysis Strongly Depend on the Choice of DFT Functional?
3.4.1. Internuclear Distances
3.4.2. Vibrational Amplitudes
3.5. GED Analysis: Semirigid, One-Dimensional Dynamic and Two-Dimensional Dynamic Models
3.6. Semiexperimental Equilibrium Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fedele, C.; Ruoko, T.-P.; Kuntze, K.; Virkki, M.; Priimagi, A. New tricks and emerging applications from contemporary azobenzene research. Photochem. Photobiol. Sci. 2022, 21, 1719–1734. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.W.; Faul, C.F.J.; Tabor, R.F. Azobenzene isomerization in condensed matter: Lessons for the design of efficient light-responsive soft-matter systems. Mater. Adv. 2021, 2, 4152–4164. [Google Scholar] [CrossRef]
- Purkait, M.K.; Sinha, M.K.; Mondal, P.; Singh, R. (Eds.) Chapter 4—Photoresponsive Membranes. In Stimuli Responsive Polymeric Membranes; Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 25, pp. 115–144. [Google Scholar] [CrossRef]
- Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4176. [Google Scholar] [CrossRef] [PubMed]
- Manickasundaram, S.; Kannan, P.; Hassan, Q.M.A.; Palanisamy, P.K. Azo dye based poly(alkyloxymethacrylate)s and their spacer effect on optical data storage. J. Mater. Sci. Mater. Electron. 2008, 19, 1045–1053. [Google Scholar] [CrossRef]
- Beharry, A.A.; Woolley, G.A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437. [Google Scholar] [CrossRef] [PubMed]
- Mohr, G.J.; Müller, H.; Bussemer, B.; Stark, A.; Carofiglio, T.; Trupp, S.; Heuermann, R.; Henkel, T.; Escudero, D.; González, L. Design of acidochromic dyes for facile preparation of pH sensor layers. Anal. Bioanal. Chem. 2008, 392, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Shikhaliyev, N.Q.; Kuznetsov, M.L.; Maharramov, A.M.; Gurbanov, A.V.; Ahmadova, N.E.; Nenajdenko, V.G.; Mahmudov, K.T.; Pombeiro, A.J.L. Noncovalent interactions in the design of bis-azo dyes. CrystEngComm 2019, 21, 5032–5038. [Google Scholar] [CrossRef]
- Vapaavuori, J.; Bazuin, C.G.; Priimagi, A. Supramolecular design principles for efficient photoresponsive polymer–azobenzene complexes. J. Mater. Chem. C 2018, 6, 2168–2188. [Google Scholar] [CrossRef]
- Walther, M.; Kipke, W.; Schultzke, S.; Ghosh, S.; Staubitz, A. Modification of Azobenzenes by Cross-Coupling Reactions. Synthesis 2021, 53, 1213–1228. [Google Scholar] [CrossRef]
- Concilio, S.; Sessa, L.; Petrone, A.M.; Porta, A.; Diana, R.; Iannelli, P.; Piotto, S. Structure Modification of an Active Azo-Compound as a Route to New Antimicrobial Compounds. Molecules 2017, 22, 875. [Google Scholar] [CrossRef]
- Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: Design, properties, and applications. Chem. Soc. Rev. 2018, 47, 7339–7368. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-C.; Lee, B.M.; Yoon, J.; Yoon, M. Synthesis and Surface-Active Properties of New Photosensitive Surfactants Containing the Azobenzene Group. J. Colloid Interface Sci. 2000, 231, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Biswas, N.; Umapathy, S. Density Functional Calculations of Structures, Vibrational Frequencies, and Normal Modes of trans- and cis-Azobenzene. J. Phys. Chem. A 1997, 101, 5555–5566. [Google Scholar] [CrossRef]
- Kurita, N.; Tanaka, S.; Itoh, S. Ab Initio Molecular Orbital and Density Functional Studies on the Stable Structures and Vibrational Properties of trans- and cis-Azobenzenes. J. Phys. Chem. A 2000, 104, 8114–8120. [Google Scholar] [CrossRef]
- Fliegl, H.; Köhn, A.; Hättig, C.; Ahlrichs, R. Ab Initio Calculation of the Vibrational and Electronic Spectra of trans- and cis-Azobenzene. J. Am. Chem. Soc. 2003, 125, 9821–9827. [Google Scholar] [CrossRef] [PubMed]
- Hättig, C.; Hald, K. Implementation of RI-CC2 triplet excitation energies with an application to trans-azobenzene. Phys. Chem. Chem. Phys. 2002, 4, 2111–2118. [Google Scholar] [CrossRef]
- Briquet, L.; Vercauteren, D.P.; Perpète, E.A.; Jacquemin, D. Is solvated trans-azobenzene twisted or planar? Chem. Phys. Lett. 2006, 417, 190–195. [Google Scholar] [CrossRef]
- Duarte, L.; Fausto, R.; Reva, I. Structural and spectroscopic characterization of E- and Z-isomers of azobenzene. Phys. Chem. Chem. Phys. 2014, 16, 16919–16930. [Google Scholar] [CrossRef] [PubMed]
- Pogonin, A.E.; Kurochkin, I.Y.; Malyasova, A.S.; Ksenofontova, K.V.; Koifman, O.I. Molecular Structure and Vibrational Spectra of 4-(4-Hydroxyphenylazo)phthalonitrile: DFT Study. Macroheterocycles 2023, 16, 156–167. [Google Scholar] [CrossRef]
- Chen, P.C.; Chieh, Y.C. Azobenzene and stilbene: A computational study. J. Mol. Struct. THEOCHEM 2003, 624, 191–200. [Google Scholar] [CrossRef]
- Giricheva, N.I.; Lebedev, I.S.; Fedorov, M.S.; Bubnova, K.E.; Girichev, G.V. Structural aspects of trans–cis isomerization of azobenzene, 4,4′-azopyridine, and azoxybenzene. J. Struct. Chem. 2021, 62, 1976–1987. [Google Scholar] [CrossRef]
- De Lange, J.J.; Robertson, J.M.; Woodward, I.; Bragg, W.H. X-ray crystal analysis of trans-azobenzene. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1939, 171, 398–410. [Google Scholar] [CrossRef]
- Brown, C.J. A refinement of the crystal structure of azobenzene. Acta Crystallogr. 1966, 21, 146–152. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Schouten, A.; Kroon, J. Structural studies of the system trans-azobenzene/trans-stilbene. I. A reinvestigation of the disorder in the crystal structure of trans-azobenzene, C12H10N2. Acta Crystallogr. Sect. C 1983, 39, 1121–1123. [Google Scholar] [CrossRef]
- Harada, J.; Ogawa, K.; Tomoda, S. Molecular Motion and Conformational Interconversion of Azobenzenes in Crystals as Studied by X-ray Diffraction. Acta Crystallogr. Sect. B 1997, 53, 662–672. [Google Scholar] [CrossRef]
- Harada, J.; Ogawa, K. Invisible but Common Motion in Organic Crystals: A Pedal Motion in Stilbenes and Azobenzenes. J. Am. Chem. Soc. 2001, 123, 10884–10888. [Google Scholar] [CrossRef] [PubMed]
- Traetteberg, M.; Hillmo, I.; Hagen, K. A gas electron diffraction study of the molecular structure of trans-azobenzene. J. Mol. Struct. 1977, 39, 231–239. [Google Scholar] [CrossRef]
- Lin, M.M.; Shorokhov, D.; Zewail, A.H. Conformations and Coherences in Structure Determination by Ultrafast Electron Diffraction. J. Phys. Chem. A 2009, 113, 4075–4093. [Google Scholar] [CrossRef]
- Tsuji, T.; Takashima, H.; Takeuchi, H.; Egawa, T.; Konaka, S. Molecular Structure and Torsional Potential of trans-Azobenzene. A Gas Electron Diffraction Study. J. Phys. Chem. A 2001, 105, 9347–9353. [Google Scholar] [CrossRef]
- Demaison, J.; Vogt, N. Molecular Structures from Gas-Phase Electron Diffraction. In Accurate Structure Determination of Free Molecules; Springer International Publishing: Cham, Switzerland, 2020; pp. 167–204. ISBN 978-3-030-60492-9. [Google Scholar]
- Chiu, N.S.; Ewbank, J.D.; Askari, M.; Schäfer, L. Molecular orbital constrained gas electron diffraction studies. J. Mol. Struct. 1979, 54, 185–195. [Google Scholar] [CrossRef]
- Kurochkin, I.Y.; Otlyotov, A.A.; Girichev, G.V.; Pogonin, A.E.; Kiselev, A.N. DFT study of molecular structure of 5,10,15,20-tetrakis(4′-halogenophenyl)porphyrins and their isomers. Izv. Vyss. Uchebnykh Zaved. Seriya Khimiya Khimicheskaya Tekhnologiya 2020, 63, 51–57. [Google Scholar] [CrossRef]
- Pogonin, A.E.; Tverdova, N.V.; Ischenko, A.A.; Rumyantseva, V.D.; Koifman, O.I.; Giricheva, N.I.; Girichev, G.V. Conformation analysis of copper(II) etioporphyrin-II by combined gas electron diffraction/mass-spectrometry methods and DFT calculations. J. Mol. Struct. 2015, 1085, 276–285. [Google Scholar] [CrossRef]
- Tverdova, N.V.; Pogonin, A.E.; Ischenko, A.A.; Rumyantseva, V.D.; Koifman, O.I.; Giricheva, N.I.; Girichev, G.V. Combined gas-phase electron diffraction/mass spectrometry and DFT study of the molecular structure of zinc(II) etioporphyrin-II. Struct. Chem. 2015, 26, 1521–1530. [Google Scholar] [CrossRef]
- Pogonin, A.E.; Postnikova, D.A.; Shagurin, A.Y.; Marfin, Y.S.; Girichev, G.V. Analysis of the sensitivity of the gas electron diffraction method to the determination of the conformational composition of phenyl and thiophenyl substituted aza-BODIPY: Theoretical study. ChemChemTech [Izv. Vyss. Uchebn. Zaved. Khim. Khim. Tekhnol.] 2022, 65, 29–37. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Schmider, H.L.; Becke, A.D. Optimized density functionals from the extended G2 test set. J. Chem. Phys. 1998, 108, 9624–9631. [Google Scholar] [CrossRef]
- Boese, A.D.; Martin, J.M.L. Development of density functionals for thermochemical kinetics. J. Chem. Phys. 2004, 121, 3405–3416. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Vydrov, O.A.; Scuseria, G.E. Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 2006, 125, 234109. [Google Scholar] [CrossRef] [PubMed]
- Vydrov, O.A.; Scuseria, G.E.; Perdew, J.P. Tests of functionals for systems with fractional electron number. J. Chem. Phys. 2007, 126, 154109. [Google Scholar] [CrossRef]
- Vydrov, O.A.; Heyd, J.; Krukau, A.V.; Scuseria, G.E. Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem. Phys. 2006, 125, 74106. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J. Chem. Phys. 2005, 123, 161103. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Comparative DFT Study of van der Waals Complexes: Rare-Gas Dimers, Alkaline-Earth Dimers, Zinc Dimer, and Zinc-Rare-Gas Dimers. J. Phys. Chem. A 2006, 110, 5121–5129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A 2006, 110, 13126–13130. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta--Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [PubMed]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119, 12129, Erratum in J. Chem. Phys. 2004, 121, 11507. [Google Scholar] [CrossRef]
- Van Voorhis, T.; Scuseria, G.E. A novel form for the exchange-correlation energy functional. J. Chem. Phys. 1998, 109, 400–410. [Google Scholar] [CrossRef]
- Xu, X.; Goddard, W.A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc. Natl. Acad. Sci. USA 2004, 101, 2673–2677. [Google Scholar] [CrossRef] [PubMed]
- Jensen, F. Unifying general and segmented contracted basis sets. segmented polarization consistent basis sets. J. Chem. Theory Comput. 2014, 10, 1074–1085. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
- Notes About the Jensen Basis Sets. Available online: https://www.basissetexchange.org/family_notes/jensen/ (accessed on 8 April 2024).
- Shirazi, R.G.; Pantazis, D.A.; Neese, F. Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet–triplet state splittings of aryl-carbenes. Mol. Phys. 2020, 118, e1764644. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Liakos, D.G.; Guo, Y.; Neese, F. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. J. Phys. Chem. A 2020, 124, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E.F.; Neese, F. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J. Chem. Phys. 2017, 146, 164105. [Google Scholar] [CrossRef] [PubMed]
- Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 34106. [Google Scholar] [CrossRef] [PubMed]
- Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175–3183. [Google Scholar] [CrossRef]
- Martin, J.M.L. Ab initio total atomization energies of small molecules—Towards the basis set limit. Chem. Phys. Lett. 1996, 259, 669–678. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chemie Int. Ed. 2015, 54, 12308–12313. [Google Scholar] [CrossRef]
- Vishnevskiy, Y.V. UNEX Version 1.6 2023. Available online: https://unex.vishnevskiy.group/en/index.html (accessed on 23 March 2023).
- Vishnevskiy, Y.V.; Zhabanov, Y.A. New implementation of the first-order perturbation theory for calculation of interatomic vibrational amplitudes and corrections in gas electron diffraction. J. Phys. Conf. Ser. 2015, 633, 012076. [Google Scholar] [CrossRef]
- Mitzel, N.W.; Rankin, D.W.H. SARACEN—Molecular structures from theory and experiment: The best of both worlds. Dalt. Trans. 2003, 3650–3662. [Google Scholar] [CrossRef]
- Vishnevskiy, Y.V.; Abaev, M.A.; Rykov, A.N.; Gurskii, M.E.; Belyakov, P.A.; Erdyakov, S.Y.; Bubnov, Y.N.; Mitzel, N.W. Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1-boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction. Chem. A Eur. J. 2012, 18, 10585–10594. [Google Scholar] [CrossRef] [PubMed]
- Kochikov, I.V.; Tarasov, Y.I.; Kuramshina, G.M.; Spiridonov, V.P.; Yagola, A.G.; Strand, T.G. Regularizing algorithm for determination of equilibrium geometry and harmonic force field of free molecules from joint use of electron diffraction, vibrational spectroscopy and ab initio data with application to benzene. J. Mol. Struct. 1998, 445, 243–258. [Google Scholar] [CrossRef]
- Tikhonov, D.S.; Vishnevskiy, Y.V.; Rykov, A.N.; Grikina, O.E.; Khaikin, L.S. Semi-experimental equilibrium structure of pyrazinamide from gas-phase electron diffraction. How much experimental is it? J. Mol. Struct. 2017, 1132, 20–27. [Google Scholar] [CrossRef]
- Baše, T.; Holub, J.; Fanfrlík, J.; Hnyk, D.; Lane, P.D.; Wann, D.A.; Vishnevskiy, Y.V.; Tikhonov, D.; Reuter, C.G.; Mitzel, N.W. Icosahedral Carbaboranes with Peripheral Hydrogen–Chalcogenide Groups: Structures from Gas Electron Diffraction and Chemical Shielding in Solution. Chem. A Eur. J. 2019, 25, 2313–2321. [Google Scholar] [CrossRef] [PubMed]
- Morino, Y.; Hirota, E. Molecular Structure and Internal Rotation of Hexachloroethane, Hexachlorodisilane, and Trichloromethyl-Trichlorosilane. J. Chem. Phys. 1958, 28, 185–197. [Google Scholar] [CrossRef]
- Vishnevskiy, Y.V. UNEX User Manual. Available online: https://unex.vishnevskiy.group/files/unexdocs/manual.html (accessed on 10 March 2024).
- Lee, T.J.; Taylor, P.R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. [Google Scholar] [CrossRef]
- Liakos, D.G.; Neese, F. Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)2+ Core Revisited. J. Chem. Theory Comput. 2011, 7, 1511–1523. [Google Scholar] [CrossRef]
- Jiang, W.; DeYonker, N.J.; Wilson, A.K. Multireference Character for 3d Transition-Metal-Containing Molecules. J. Chem. Theory Comput. 2012, 8, 460–468. [Google Scholar] [CrossRef]
- Chamkin, A.A.; Serkova, E.S. DFT, DLPNO-CCSD(T), and NEVPT2 benchmark study of the reaction between ferrocenium and trimethylphosphine. J. Comput. Chem. 2020, 41, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, D.S.; Sharapa, D.I.; Otlyotov, A.A.; Solyankin, P.M.; Rykov, A.N.; Shkurinov, A.P.; Grikina, O.E.; Khaikin, L.S. Nitroxoline Molecule: Planar or Not? A Story of Battle between π–π Conjugation and Interatomic Repulsion. J. Phys. Chem. A 2018, 122, 1691–1701. [Google Scholar] [CrossRef] [PubMed]
- Bauer, F.; Lukas, M.A. Comparingparameter choice methods for regularization of ill-posed problems. Math. Comput. Simul. 2011, 81, 1795–1841. [Google Scholar] [CrossRef]
- Vishnevskiy, Y.V.; Schwabedissen, J.; Rykov, A.N.; Kuznetsov, V.V.; Makhova, N.N. Conformational and Bonding Properties of 3,3-Dimethyl- and 6,6-Dimethyl-1,5-diazabicyclo [3.1.0]hexane: A Case Study Employing the Monte Carlo Method in Gas Electron Diffraction. J. Phys. Chem. A 2015, 119, 10871–10881. [Google Scholar] [CrossRef]
- Hamilton, W.C. Significance tests on the crystallographic R factor. Acta Crystallogr. 1965, 18, 502–510. [Google Scholar] [CrossRef]
B3LYP-D3/ /pcseg-2 | GED Our Refinement c, Experimental Data from Ref. [30] | GED Refinement and Experimental Data from Ref. [30] | GED Refinement and Experimental Data from Ref. [28] | |||
---|---|---|---|---|---|---|
re | re d | rg e | rg f | C2 rg f | Ci rg f | |
N1=N’1 | 1.248 | 1.255(8) | 1.260(9) | 1.260(8) | 1.261(12) | 1.270(12) |
N1-C2 | 1.417 | 1.417(9) | 1.427(10) | 1.427(8) | 1.423(12) | 1.430(12) |
C2-C3 | 1.400 | 1.397(3) | 1.403(2) | 1.405(1) | - | - |
C2-C7 | 1.395 | 1.393(3) | 1.401(2) | 1.401(1) | - | - |
C3-C4 | 1.384 | 1.382(3) | 1.392(2) | 1.393(1) | - | - |
C6-C7 | 1.389 | 1.386(3) | 1.393(2) | 1.396(1) | - | - |
C4-C5 | 1.395 | 1.392(3) | 1.399(2) | 1.402(1) | - | - |
C5-C6 | 1.390 | 1.387(3) | 1.397(2) | 1.397(1) | - | - |
C-C av | 1.394 | 1.391(3) | 1.398(2) | 1.399(1) | 1.398(3) | 1.398(3) |
C-H av | 1.081 | 1.076(7) | 1.098(8) | 1.102(7) | 1.087(9) | 1.093(9) |
N’1=N1-C2 | 115.6 | 114.2(9) | 114.2(9) | 113.6(8) | 116.0(12) | 114.5(12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogonin, A.E.; Kurochkin, I.Y.; Eroshin, A.V.; Zavalishin, M.N.; Zhabanov, Y.A. Comprehensive Study of Equilibrium Structure of Trans-Azobenzene: Gas Electron Diffraction and Quantum Chemical Calculations. Physchem 2024, 4, 131-145. https://doi.org/10.3390/physchem4020010
Pogonin AE, Kurochkin IY, Eroshin AV, Zavalishin MN, Zhabanov YA. Comprehensive Study of Equilibrium Structure of Trans-Azobenzene: Gas Electron Diffraction and Quantum Chemical Calculations. Physchem. 2024; 4(2):131-145. https://doi.org/10.3390/physchem4020010
Chicago/Turabian StylePogonin, Alexander E., Ivan Yu. Kurochkin, Alexey V. Eroshin, Maksim N. Zavalishin, and Yuriy A. Zhabanov. 2024. "Comprehensive Study of Equilibrium Structure of Trans-Azobenzene: Gas Electron Diffraction and Quantum Chemical Calculations" Physchem 4, no. 2: 131-145. https://doi.org/10.3390/physchem4020010
APA StylePogonin, A. E., Kurochkin, I. Y., Eroshin, A. V., Zavalishin, M. N., & Zhabanov, Y. A. (2024). Comprehensive Study of Equilibrium Structure of Trans-Azobenzene: Gas Electron Diffraction and Quantum Chemical Calculations. Physchem, 4(2), 131-145. https://doi.org/10.3390/physchem4020010