Probing Nuclear Dipole Moments and Magnetic Shielding Constants through 3-Helium NMR Spectroscopy
Abstract
:1. Introduction
2. Methodology of Measurements of Nuclear Magnetic Moments
2.1. Methodology of Gas-Phase NMR Experiments
2.2. Nuclear Magnetic Dipole Moments and Shielding Constants
3. Results and Discussion
3.1. 3He Chemical Properties
3.2. Other Noble Gases: 21Ne, 83Kr, and 129/131Xe
3.3. Simple Hydrides: 13CH4, 14NH3, H217O, 29SiH4, 31PH3, and H35/37Cl
3.4. Fluoride Compounds: 10/11BF3, 33SF6, and 183WF6
3.5. Water Solutions: 6/7Li and 23Na Salts
3.6. 3He Atoms in Different Chemical Environments
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grochala, W. On the position of helium and neon in the Periodic Table of Elements. Found. Chem. 2018, 20, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Van Sciver, S.W. Helium Cryogenics, 2nd ed.; Springer: New York, NY, USA, 2012; ISBN 978-1-4419-9978-8. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.M. The extraordinary phases of liquid 3He. Rev. Mod. Phys. 1997, 69, 645–665. [Google Scholar] [CrossRef] [Green Version]
- Jackowski, K.; Jaszuński, M.; Kamieński, B.; Wilczek, M. NMR frequency and magnetic dipole moment of 3He nucleus. J. Magn. Reson. 2008, 193, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Garbacz, P.; Piszczatowski, K.; Jackowski, K.; Moszyński, R.; Jaszuński, M. Weak intermolecular interactions in gas-phase nuclear magnetic resonance. J. Chem. Phys. 2011, 135, 084310. [Google Scholar] [CrossRef]
- Parnell, S.R.; Woolley, E.; Boag, S.; Frost, C.D. Digital pulsed NMR spectrometer for nuclear spin-polarized 3He and other hyperpolarized gases. Meas. Sci. Technol. 2008, 19, 045601. [Google Scholar] [CrossRef]
- Jackowski, K.; Jaszuński, M.; Wilczek, M. Alternative Approach to the Standardization of NMR spectra. Direct Measurement of Nuclear Magnetic Shielding in Molecules. J. Phys. Chem. A 2010, 114, 2471–2475. [Google Scholar] [CrossRef]
- Jameson, C.J. Chapter 1: Fundamental Intramolecular and Intermolecular Information from NMR in the Gas Phase. In Gas Phase NMR; Jackowski, K., Jaszuński, M., Eds.; RSC: London, UK, 2016; pp. 1–51. [Google Scholar]
- Rabi, I.I.; Zacharias, J.R.; Millman, S.; Kusch, P. A New Method of Measuring Nuclear Magnetic Moment. Phys. Rev. 1938, 53, 318. [Google Scholar] [CrossRef]
- Schneider, G.; Mooser, A.; Bohman, M.; Schön, N.; Harrington, J.; Higuchi, T.; Nagahama, H.; Sellner, S.; Smorra, C.; Blaum, K.; et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 2017, 358, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.P.; Holder, B.E. Determination of the Sign of the He3 Nuclear Magnetic Moment. Phys. Rev. 1957, 106, 837–838. [Google Scholar] [CrossRef]
- Anderson, H.L.; Novick, A. Magnetic moment of He3. Phys. Rev. 1948, 73, 919. [Google Scholar] [CrossRef]
- Williams, W.L.; Hughes, V.W. Magnetic Moment and hfs Anomaly for He3. Phys. Rev. 1969, 185, 1251–1255. [Google Scholar] [CrossRef]
- Neronov, Y.I.; Barzakh, A.E. Determination of the magnetic moment of the He3 nucleus with an error of 2 × 10−6%. Zh. Eksp. Teor. Fiz. 1978, 75, 1521–1540. [Google Scholar]
- Belyi, V.A.; Il’ina, E.A.; Shifrin, V.Y. Experimental determination of the magnetic moments ratio for helium-3 and proton nuclei. Meas. Tech. 1986, 29, 613–616. [Google Scholar] [CrossRef]
- Hoffman, R.E.; Becker, E.D. Temperature dependence of the 1H chemical shift of tetramethylsilane in chloroform, methanol, and dimethylsulfoxide. J. Magn. Reson. 2005, 176, 87–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aruev, N.N.; Neronov, Y.I. Gas Samples with a Mixture of Hydrogen Isotopes and 3He for NMR Spectroscopy and Estimation of the Magnetic Moment of the 3He Nucleus. Zh. Tekh. Fiz. 2012, 82, 116–121. [Google Scholar] [CrossRef]
- Makulski, W. Explorations of Magnetic Properties of Noble Gases: The Past, Present, and Future. Magnetochemistry 2020, 6, 65. [Google Scholar] [CrossRef]
- Flowers, J.L.; Petley, B.W.; Richards, M.G. A measurement of the nuclear magnetic moment of the helium-3 atom in terms of that of the proton. Metrologia 1993, 30, 75–87. [Google Scholar] [CrossRef]
- Rudziński, A.; Puchalski, M.; Pachucki, K. Relativistic, QED, and mass effects in the magnetic shielding of 3He. J. Chem. Phys. 2009, 130, 244102. [Google Scholar] [CrossRef] [Green Version]
- Stone, N.J. Table of Recommended Nuclear Magnetic Dipole Moments; INDC 2019; IAEA Nuclear Data Section, Vienna International Centre: Vienna, Austria, 2019; Available online: http://www-nds.iaea.org/publications (accessed on 1 November 2019).
- Pirahmadian, M.H.; Ghahramany, N. Helium-3 magnetic dipole moment determination by using quark constituents for all possible baryon formations. Results Phys. 2017, 7, 2771–2774. [Google Scholar] [CrossRef]
- Harris, R.K.; Becker, E.D.; Cabral de Menezes, S.; Granger, P.; Hoffman, R.E.; Zilm, K.W. Further conventions for NMR shielding and chemical shifts (IUPAC Reccomendantions 2008). Magn. Reson. Chem. 2008, 46, 582–598. [Google Scholar] [CrossRef]
- Makulski, W.; Garbacz, P. Gas-phase 21Ne NMR studies and the nuclear magnetic dipole moment of neon-21. Magn. Reson. Chem. 2020, 58, 648–652. [Google Scholar] [CrossRef]
- Makulski, W. 83Kr nuclear magnetic moment in terms of that of 3He. Magn. Reson. Chem. 2014, 52, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Makulski, W. 129Xe and 131Xe Nuclear Magnetic Dipole Moments from Gas Phase NMR Spectra. Magn. Reson. Chem. 2015, 53, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Chupp, T.E.; Oteiza, E.R.; Richardson, J.M.; White, T.R. Precision Measurements with polarized 3He, 21Ne and 129Xe atoms. Phys. Rev. A 1988, 38, 3998–4003. [Google Scholar] [CrossRef]
- Garbacz, P.; Jackowski, K.; Makulski, W.; Wasylishen, R.E. Nuclear Magnetic Shielding for Hydrogen in Selected Isolated Molecules. J. Phys. Chem. A 2012, 116, 11896–11904. [Google Scholar] [CrossRef] [PubMed]
- Kaupp, M.; Bühl, M.; Malkin, V.G. (Eds.) Calculation of NMR and EPR Parameters: Theory and Applications; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Makulski, W.; Szyprowska, A.; Jackowski, K. Precise determination of the 13C nuclear magnetic moment from 13C, 3He and 1H NMR measurements in the gas phase. Chem. Phys. Lett. 2011, 511, 224–228. [Google Scholar] [CrossRef]
- Makulski, W.; Aucar, J.J.; Aucar, G. Ammonia: Molecule for establishing 14N and 15N absolute shielding scales and a source of information on nuclear magnetic moments. J. Chem. Phys. 2022; sent to publish. [Google Scholar]
- Makulski, W.; Garbacz, P. Gas-phase NMR of other nuclei than 1H and 13C. Chemistry, Molecular Sciences and Chemical Engineering. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–16. [Google Scholar] [CrossRef]
- Lantto, P.; Jackowski, K.; Makulski, W.; Olejniczak, M.; Jaszuński, M. NMR shielding constants in PH3, absolute shielding scale and the nuclear magnetic moment of 31. J. Phys. Chem. A 2011, 115, 10617–10623. [Google Scholar] [CrossRef]
- Jaszuński, M.; Repisky, M.; Demissie, T.B.; Komorovsky, S.; Malkin, E.; Ruud, K.; Garbacz, P.; Jackowski, K.; Makulski, W. Spin-rotation and NMR shielding constants in HCl. J. Chem. Phys. 2013, 139, 234302. [Google Scholar] [CrossRef] [Green Version]
- Makulski, W.; Wilczek, M.; Jackowski, K. 17O and 1H NMR Spectral Parameters in Isolated Water Molecule. Phys. Chem. Chem. Phys. 2018, 20, 22468–22476. [Google Scholar] [CrossRef]
- Makulski, W. Deuterium isotope effects on 17O nuclear shielding in a single molecule from NMR gas phase measurements. Phys. Chem. Chem. Phys. 2020, 22, 17777–17780. [Google Scholar] [CrossRef]
- Jackowski, K.; Makulski, W.; Szyprowska, A.; Antušek, A.; Jaszuński, M.; Jusélius, J. NMR shielding constants in BF3 and magnetic dipole moments of 10B and 11B nuclei. J. Chem. Phys. 2009, 130, 044309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makulski, W.; Garbacz, P. Determination of 33-sulfur nuclear magnetic moment from gas phase NMR studies of 3He and SF6. In Proceedings of the 17-th EUROMAR, Ljubljana, Slovenia, 5–8 July 2021. [Google Scholar]
- Antušek, A.; Jackowski, K.; Jaszuński, W.; Makulski, W.; Wilczek, M. Nuclear magnetic dipole moments from NMR spectra. Chem. Phys. Lett. 2005, 411, 11–116. [Google Scholar] [CrossRef]
- Jaszuński, M.; Antušek, A.; Garbacz, P.; Jackowski, K.; Makulski, W.; Wilczek, M. The determination of accurate nuclear magnetic dipole moments and direct measurement of NMR shielding constants. Prog. NMR Spectrosc. 2012, 67, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Ruud, K.; Demissie, T.B.; Jaszuński, M. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF6 molecules, X=S, Se, Te, Mo, and W. J. Chem. Phys. 2014, 140, 194308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbacz, P.; Makulski, W. 183W nuclear dipole moment determined by gas-phase NMR spectroscopy. Chem. Phys. 2017, 498–499, 7–11. [Google Scholar] [CrossRef]
- Hindermann, D.K.; Cornwell, C.D. Fluorine and proton NMR Study of gaseous Hydrogen Fluoride. J. Chem. Phys. 1968, 48, 2017–2025. [Google Scholar] [CrossRef]
- Jameson, C.J.; Jameson, A.K. Absolute shielding scale for 29Si. Chem. Phys. Lett. 1988, 149, 300–305. [Google Scholar] [CrossRef]
- Tariq, N.; Al Taisan, N.; Singh, V.; Weinstein, J.D. Spectroscopic Detection of the LiHe Molecule. Phys. Rev. Lett. 2013, 110, 153201. [Google Scholar] [CrossRef] [Green Version]
- Antušek, A.; Kędziera, D.; Kaczmarek-Kędziera, A.; Jaszuński, M. Coupled cluster study of NMR shielding of alkali metal ions in water complexes and magnetic moments of alkali metal nuclei. Chem. Phys. Lett. 2012, 532, 1–8. [Google Scholar] [CrossRef]
- Makulski, W. The Radiofrequency NMR Spectra of Lithium Salts in Water; Reevaluation of Nuclear Magnetic Moments for 6Li and 7Li Nuclei. Magnetochemistry 2018, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Makulski, W. Multinuclear Magnetic Resonance Study of Sodium Salts in Water Solutions. Magnetochemistry 2019, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Boero, M.; Terakura, K. Hydration of alkali ions from first principles molecular dynamics revisited. J. Chem. Phys. 2007, 126, 01B611. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, A.; Böklen, K.D.; Elke, D. Precision measurements of the nuclear magnetic dipole moments of 6Li, 7Li, 23Na, 39K and 41K. Z. Phys. 1974, 270, 173–186. [Google Scholar] [CrossRef]
- Neronov, Y.I. Simultaneous Determination of the Magnetic Moments of 6Li and 7Li Nuclei Using an NMR Spectrometer. Meas. Tech. 2020, 63, 667–673. [Google Scholar] [CrossRef]
- Neronov, Y.I. Determination of the Magnetic Moment of a 23Na Nucleus Using an NMR Spectrometer with Simultaneous Detection of Signals from Two Nuclei. Tech. Phys. 2021, 66, 93–97. [Google Scholar] [CrossRef]
- Saunders, M.; Jiménez-Vázquez, H.A.; Cross, R.J.; Mroczkowski, S.; Freedberg, D.I.; Anet, F.A.L. Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70. Nature 1994, 367, 256–258. [Google Scholar] [CrossRef]
- Khong, A.; Jiménez-Vázquez, H.A.; Saunders, M.; Cross, R.J.; Laskin, J.; Peres, T.; Lifshitz, C.; Strongin, R.; Smith, A.B. An NMR Study of He2 Inside C70. J. Am. Chem. Soc. 1998, 120, 6380–6383. [Google Scholar] [CrossRef]
- Sternfeld, T.; Hoffman, R.E.; Saunders, M.; Cross, J.; Symala, M.S.; Rabinovitz, M. Two Helium Atoms Inside Fullerenes: Probing the Internal Magnetic Field in C606− and C706−. J. Am. Chem. Soc. 2002, 124, 8786–8787. [Google Scholar] [CrossRef] [Green Version]
- Kupka, T. Noble gases as magnetic probes in fullerene chemistry. Emagres 2016, 5, 959–966. [Google Scholar] [CrossRef]
- Kupka, T.; Stachów, M. 3He NMR: From free gas to its encapsulation in fullerene. Magn. Reson. Chem. 2013, 51, 463–468. [Google Scholar] [CrossRef]
- Hayashi, S. Probing the Micropores in Linde-type A Zeolites by Helium-3 NMR. Chem. Lett. 2006, 35, 92–93. [Google Scholar] [CrossRef]
- Garbacz, P.; Jackowski, K. NMR shielding of helium-3 in the micropores of zeolites. Microporous Mesoporous Mater. 2015, 205, 52–55. [Google Scholar] [CrossRef]
- Tastevin, G.; Nacher, P.-J. NMR measurements of hyperpolarized 3He gas diffusion in high porosity silica aerogels. J. Chem. Phys. 2005, 123, 064506. [Google Scholar] [CrossRef] [Green Version]
- Klochkov, A.V.; Naletov, V.V.; Tagirov, M.S.; Tayurskii, D.A.; Yudin, A.N.; Zhdanov, R.S.; Zhdanov, M.R.; Bukharaev, A.A.; Nurgazizov, N.I. NMR and AFM Investigations of Nanocavities on the Double Rare-Earth Fluoride Crystal Surface. Appl. Magn. Reson. 2000, 19, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Mooser, A.; Rischka, A.; Schneider, A.; Blaum, K.; Ulmer, S.; Walz, J. A New Experiment for the Measurement of the g-Factors of 3He+ and 3He2+. J. Phys. Conf. Ser. 2018, 1138, 012004. [Google Scholar] [CrossRef]
- Fan, X.; Fayer, S.E.; Gabrielse, G. Gaseous 3He nuclear magnetic resonance probe for cryogenic environments. Rev. Sci. Instrum. 2019, 90, 083107. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, V.; McKenna, J.; Maynard, J.D. The use of 3He NMR as a probe of the nature of the 4He solid/superfluid interface. Bull. Am. Phys. Soc. 1993, 38, BAPSA6. [Google Scholar]
- Seydoux, R.; Muenster, O.; Diehl, P. 3He NMR in Liquid Crystals: Measurement of Local Magnetic Fields. Mol. Cryst. Liq. Cryst. Sci. Technol. A 1994, 250, 99–108. [Google Scholar] [CrossRef]
- Middleton, H.; Black, R.D.; Saam, B.; Cates, G.D.; Cofer, G.P.; Guenther, R.; Happer, W.; Hedlund, W.; Johnson, G.A.; Juvan, K.; et al. MR Imaging with Hyperpolarized 3He Gas. Mag. Res. Med. 1995, 33, 271–275. [Google Scholar] [CrossRef]
- Wehrli, D.; Spyszkiewicz-Kaczmarek, A.; Puchalski, M.; Pachucki, K. QED Effect on the Nuclear Magnetic Shielding of 3He. Phys. Rev. Lett. 2021, 127, 263001. [Google Scholar] [CrossRef]
Property | Property | ||
---|---|---|---|
Spin | 1/2 | Natural abundances | 0.000137% |
Magnetic moment | −2.127625308 | Isotope mass | 3.0160293 u |
Chemical shift range | 58 ppm | Half life | stable |
Frequency ratio | 76.18% | Boiling point | 3.19 K |
Reference compound | 3He gas | Critical point | 3.35 K |
Linewidth of reference | 0.3 Hz | Heat of vaporization | 0.026 kJ/mol |
T1 of reference | 1000 s | Melting point | below 1 mK |
Receptivity rel.to 1H | 0.442 when enriched | Covalent radius | 32 pm |
Magnetic susceptibility | −1.88 cm3/mol | Van der Waals radius | 143 pm |
System | ν0(nX)/ν0(3He) | Correction Factor | μ(nX) | References |
---|---|---|---|---|
3He | 1.0000 | 1.000059965 | −2.127625308(10) | [19,20] |
−2.127625307(10) * | [25,26] | |||
21Ne/3He | 0.103638 | 1.000497422 | 0.66184(7) | [27] |
0.6617774(10) * | [24] | |||
83Kr/3He | 0.0505161561(5) | 1.003529996 | −0.97072965(32) | [25] |
−0.97072965(32) * | ||||
129Xe/3He | 0.36309748(3) | 1.007022726 | −0.777961(16) | [26] |
−0.777961(16) * | ||||
131Xe/3He | 0.107634919 | 1.007022726 | 0.691845(7) | [26] |
0.691845(7) * |
System | ν0(nX)/ν0(3He) | Correction Factor | μ(nX) | References |
---|---|---|---|---|
13CH4/3He | 0.330074361(2) | 1.00013507 | 0.70236944(68) | [30] |
0.70236945(68) * | ||||
14NH3/3He | 0.094821748(5) | 1.00020688 | 0.40357377(45) | [31] |
0.40357367(40) * | ||||
H217O/3He | 0.177949095(15) | 1.00026852 | 1.893553(3) | [36] |
1.893553(2) * | [35] | |||
29SiH4/3He | 0.260768297(3) | 1.00042308 | −0.5550520(3) | |
−0.5550520(3) * | [32] | |||
31PH3/3He | 0.531248246 | 1.000555132 | 1.1309247(50) | [33] |
1.1309246(50) * | ||||
H35Cl/3He | 0.12862043 | 1.000917130 | 0.821716(5) | [34] |
0.821721(4) * | ||||
H37Cl/3He | 0.07063037 | 1.000917130 | −0.683997(5) | |
−0.683997(4) * |
System | ν0(nX)/ν0(3He) | Correction Factor | μ(nX)μN | Reference |
---|---|---|---|---|
10BF3/3He | 0.141033238 | 1.000037916 | 1.8004636(8) | [37] |
1.80045428 * | ||||
11BF3/3He | 0.421170045 | 1.000037916 | 2.6883781(11) | |
2.6883642 * | ||||
33SF6/3He | 0.100744802 | 1.0003926 | 0.6432555(10) | [38] |
0.6432467(16) * | ||||
183WF6/3He | 0.054630264 | 1.0061996 | 0.116953(18) | [42] |
1.0062286 | 0.116953 * | |||
1.0061989 | 0.116950 ** |
System | ν(6Li)/ν(3He) | Correction Factor | μ(6Li) | Reference |
---|---|---|---|---|
Li+ water solution/3He | 0.193177745 | 1.000031563 | 0.8220456(25) | [47] |
0.95866015 | 1.000062459 | 0.8220432(25) * | 2H(D) | |
0.8220445(10) | [50] ABMR | |||
0.8220454(25) | [51] | |||
ν(7Li)/ν(3He) | ||||
0.510164303 | 1.000031563 | 3.2564182(98) | [47] | |
2.531731524 | 1.000062459 | 3.2564085(98) * | 2H(D) | |
3.2564157(2) | [50] ABMR | |||
3.2564171(98) | [51] | |||
Na+ water solution/3He | ν(23Na)/ν(3He) | |||
0.347233571 | 1.000520714 | 2.2174997(111) | [48] | |
1.723174611 | 1.000551603 | 2.2174962(111) * | 2H(D) | |
2.2175019(133) | ABMR | |||
2.2175065(55) | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makulski, W. Probing Nuclear Dipole Moments and Magnetic Shielding Constants through 3-Helium NMR Spectroscopy. Physchem 2022, 2, 116-130. https://doi.org/10.3390/physchem2020009
Makulski W. Probing Nuclear Dipole Moments and Magnetic Shielding Constants through 3-Helium NMR Spectroscopy. Physchem. 2022; 2(2):116-130. https://doi.org/10.3390/physchem2020009
Chicago/Turabian StyleMakulski, Włodzimierz. 2022. "Probing Nuclear Dipole Moments and Magnetic Shielding Constants through 3-Helium NMR Spectroscopy" Physchem 2, no. 2: 116-130. https://doi.org/10.3390/physchem2020009
APA StyleMakulski, W. (2022). Probing Nuclear Dipole Moments and Magnetic Shielding Constants through 3-Helium NMR Spectroscopy. Physchem, 2(2), 116-130. https://doi.org/10.3390/physchem2020009