Toward Computational Accuracy in Realistic Systems to Aid Understanding of Field-Level Water Quality Issues
Abstract
:1. Introduction
2. When Horses Are Actually Zebras: Physicochemical Properties of Novel Molecules
3. Will It Stay or Will It Go? Contaminant Binding Affinities on Water-Adjacent Surfaces
4. Cheap and Disposable (and in Fourteen Years Decomposable?): Aging of Microplastics
5. I’ll Be Here ‘til the End of Time: Dealing New Fates to Forever Chemicals
6. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- Krylov, A.; Windus, T.L.; Barnes, T.; Marin-Rimoldi, E.; Nash, J.A.; Pritchard, B.; Smith, D.G.A.; Altarawy, D.; Saxe, P.; Clementi, C.; et al. Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J. Chem. Phys. 2018, 149, 180901. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Jonathan Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thackston, R.; Fortenberry, R.C. The performance of low-cost commercial cloud computing as an alternative in computational chemistry. J. Comput. Chem. 2015, 36, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Weidhaas, J.L.; Dietrich, A.M.; DeYonker, N.J.; Ryan Dupont, R.; Foreman, W.T.; Gallagher, D.; Gallagher, J.E.; Whelton, A.J.; Alexander, W.A. Enabling Science Support for Better Decision-Making when Responding to Chemical Spills. J. Environ. Qual. 2006, 45, 1490–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA. Final 2015 Workplan: National Water Program, Response to Climate Change; United States Environmental Protection Agency, Office of Water: Washington, DC, USA, 2015. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/final_2015_nwp_climate_change_workplan.pdf (accessed on 30 September 2021).
- Wilson, M.P.; Schwarzman, M.R. Toward a new U.S. chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health. Environ. Health Perspect. 2009, 117, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA. List of Lists: Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act. EPA 550-B-15-001; United States Environmental Protection Agency: Washington, DC, USA, 2015. Available online: https://www.epa.gov/sites/default/files/2015-03/documents/list_of_lists.pdf (accessed on 30 September 2021).
- US EPA. 2017 EPI Suite™—Estimation Program Interface; United States Environmental Protection Agency: Washington, DC, USA, 2021. Available online: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (accessed on 30 September 2021).
- DeYonker, N.J.; Charbonnet, K.A.; Alexander, W.A. Dipole moments of trans- and cis-(4-methylcyclohexyl)methanol (4-MCHM): Obtaining the right conformer for the right reason. Phys. Chem. Chem. Phys. 2016, 18, 17856–17867. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A.M.; Thomas, A.; Zhao, Y.; Smiley, E.; Shanaiah, N.; Ahart, M.; Charbonnet, K.A.; De Yonker, N.J.; Alexander, W.A.; Gallagher, D.L. Partitioning, Aqueous Solubility, and Dipole Moment Data for cis- and trans-(4-Methylcyclohexyl)methanol, Principal Contaminants of the West Virginia Chemical Spill. Environ. Sci. Technol. Lett. 2015, 2, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Alexander, W.A. Methyl-Cyclohexane Methanol (MCHM) Isomer-Dependent Binding on Amorphous Carbon Surfaces. Molecules 2021, 26, 3411. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Osmont, A.; Chetehouna, K.; Chaumeix, N.; DeYonker, N.J.; Catoire, L.J. Thermodynamic data of known volatile organic compounds (VOCs) in Rosmarinus officinalis: Implications for forest fire modeling. Comput. Theor. Chem. 2015, 1073, 27–33. [Google Scholar] [CrossRef]
- Alexander, W.A. CDS&E: Development of Computational Library for Accurate Binding Energies of Emerging Organic Contaminants on Environmental Interfaces. US National Science Foundation Award Abstract #1905207. 2019. Available online: https://www.nsf.gov/awardsearch/showAward?AWD_ID=1905207 (accessed on 30 September 2021).
- Metro Waste Authority. Toby Keith’s Red Solo Cups Debunked. Metro Waste Authority Today. 26 June 2019. Available online: https://www.mwatoday.com/waste-recycling/recycling/news/red-solo-cups/ (accessed on 30 September 2021).
- New Hampshire Department of Environmental Services. Time It Takes for Garbage to Decompose in the Environment. Available online: https:/www.des.nh.gov/organization/divisions/water/wmb/coastal/trash/documents/marine_debris.pdf (accessed on 30 September 2021).
- NOAA. Microplastics | OR&R’s Marine Debris Program; National Oceanic and Atmospheric Administration, United State Department of Commerce: Washington, DC, USA, 2021. Available online: https://marinedebris.noaa.gov/what-marine-debris/microplastics (accessed on 30 September 2021).
- Novotna, K.; Cermakova, L.; Pivokonska, L.; Cajthaml, T.; Pivokonsky, M. Microplastics in drinking water treatment—Current knowledge and research needs. Sci. Total Environ. 2019, 667, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 2016, 113, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zemlyanov, D.Y.; Diaz-Amaya, S.; Salehi, M.; Stanciu, L.; Whelton, A.J. Competitive heavy metal adsorption onto new and aged polyethylene under various drinking water conditions. J. Hazard. Mater. 2020, 385, 121585. [Google Scholar] [CrossRef] [PubMed]
- Aghilinasrollahabadi, K.; Salehi, M.; Fujiwara, T. Investigate the influence of microplastics weathering on their heavy metals uptake in stormwater. J. Hazard. Mater. 2021, 408, 124439. [Google Scholar] [CrossRef] [PubMed]
- Kempisty, D.M.; Racz, L. Forever Chemicals: Environmental, Economic, and Social Equity Concerns with PFAS in the Environment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Beans, C. News Feature: How “forever chemicals” might impair the immune system. Proc. Natl. Acad. Sci. USA 2021, 118, e2105018118. [Google Scholar] [CrossRef] [PubMed]
- US EPA. List of PFAS Added to the TRI by the NDAA United States Environmental Protection Agency, Washington, DC. 2021. Available online: https://www.epa.gov/toxics-release-inventory-tri-program/list-pfas-added-tri-ndaa (accessed on 30 September 2021).
- Zaleśny, R.; Papadopoulos, M.G.; Mezey, P.G.; Leszczynski, J. (Eds.) Linear-Scaling Techniques in Computational Chemistry and Physics; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexander, W.A. Toward Computational Accuracy in Realistic Systems to Aid Understanding of Field-Level Water Quality Issues. Physchem 2021, 1, 243-249. https://doi.org/10.3390/physchem1030018
Alexander WA. Toward Computational Accuracy in Realistic Systems to Aid Understanding of Field-Level Water Quality Issues. Physchem. 2021; 1(3):243-249. https://doi.org/10.3390/physchem1030018
Chicago/Turabian StyleAlexander, William A. 2021. "Toward Computational Accuracy in Realistic Systems to Aid Understanding of Field-Level Water Quality Issues" Physchem 1, no. 3: 243-249. https://doi.org/10.3390/physchem1030018
APA StyleAlexander, W. A. (2021). Toward Computational Accuracy in Realistic Systems to Aid Understanding of Field-Level Water Quality Issues. Physchem, 1(3), 243-249. https://doi.org/10.3390/physchem1030018