Confronting the Challenge: Integrated Approaches to Mitigate the Impact of Free-Ranging Dogs on Wildlife Conservation
Abstract
1. Introduction
- Feral dogs are domestic dogs that have reverted to a wild state, living entirely independently of humans. They often form packs and subsist by hunting or scavenging, with no direct reliance on people for food, shelter, or care.
- Stray dogs are those that have been lost or abandoned by their owners and now live in human-dominated environments, such as urban or peri-urban areas. While not owned, they may still interact with people, seek food from humans, and, in some cases, may be re-adopted or return to domesticated life.
- Street dogs specifically refers to unowned dogs that inhabit urban areas and survive primarily by scavenging for food or relying on indirect support from human settlements. While they may tolerate human presence, they typically lack a primary caregiver or owner.
- Free-ranging dogs is an umbrella term that includes any dog not confined to a household or property and allowed to move freely through the environment. This category encompasses feral, stray, and street dogs, as well as owned dogs that are permitted to roam unsupervised. Hence, in this review, I have chosen this term to represent all dogs, whether solitary or in packs, as free-ranging.
- Pet dogs are companion animals entirely dependent on humans for food, shelter, and veterinary care. They live within households and are generally confined and supervised by their owners.
- Shepherd and hunting dogs are working animals kept for specific utilitarian purposes, such as herding livestock or assisting in hunting. These dogs are typically under the direct supervision and control of their owners and are trained to perform specific tasks.
2. Methods
3. Results
3.1. Predation
3.2. Disease Transmission
3.3. Competition and Spatial Displacement
3.4. Hybridization
3.5. Behavioral Changes
4. Discussion
5. Conclusions
- Reliable population data: There is a global scarcity of accurate estimates for the abundance, distribution, and ecological impact of free-ranging dogs, especially in biodiversity hotspots and low-income regions.
- Ecological and regional variability: Dog–wildlife dynamics differ across ecological zones and cultural landscapes, necessitating locally tailored research and intervention models.
- Complex ecological roles: Free-ranging dogs act as predators, competitors, behavioral disruptors, and disease vectors. Interdisciplinary research is necessary to comprehend these complex, multi-layered interactions fully.
- Evaluation of management efficacy: Many existing strategies are implemented without rigorous or long-term assessments of their ecological success or social acceptability.
- Socioeconomic drivers, including urbanization, poverty, land-use changes, and cultural practices, strongly influence dog proliferation and conflict dynamics, necessitating targeted socio-ecological approaches.
- Overcoming professional biases: Overcoming professional and societal biases is essential, as veterinarians, policymakers, and segments of the general public who sympathize with “man’s best friend” may not fully recognize or appreciate the ecological impacts of free-ranging dogs on native wildlife and ecosystems. This lack of awareness can hinder the development and implementation of effective management strategies aimed at mitigating the environmental consequences associated with uncontrolled dog populations.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gompper, M.E. Free-Ranging Dogs and Wildlife Conservation; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Thomas, R.L.; Papworth, S.K.; Fellowes, M.D. Unleashed: Walking dogs off the lead greatly increases habitat disturbance in UK lowland heathlands. Urban Ecosyst. 2024, 27, 2037–2046. [Google Scholar] [CrossRef]
- Beasley, R.; Carbone, C.; Brooker, A.; Rowcliffe, M.; Waage, J. Investigating the impacts of humans and dogs on the spatial and temporal activity of wildlife in urban woodlands. Urban Ecosyst. 2023, 26, 1843–1852. [Google Scholar] [CrossRef]
- Smith, L.M.; Quinnell, R.J.; Goold, C.; Munteanu, A.M.; Hartmann, S.; Collins, L.M. Assessing the impact of free-roaming dog population management through systems modelling. Sci. Rep. 2022, 12, 11452. [Google Scholar] [CrossRef]
- Berteselli, G.V.; Rapagnà, C.; Salini, R.; Badagliacca, P.; Bellucci, F.; Iannino, F.; Dalla Villa, P. A pilot study to develop an assessment tool for dogs undergoing trap-neuter-release (TNR) in Italy. An overview on the national implementation of TNR programmes. Animals 2021, 11, 3107. [Google Scholar] [CrossRef]
- Boitani, L. Wolf research and conservation in Italy. Biol. Cconserv. 1992, 61, 125–132. [Google Scholar] [CrossRef]
- Costanzi, L.; Brambilla, A.; Di Blasio, A.; Dondo, A.; Goria, M.; Masoero, L.; Gennero, M.S.; Bassano, B. Beware of dogs! Domestic animals as a threat for wildlife conservation in Alpine protected areas. Eur. J. Wildl. Res. 2021, 67, 70. [Google Scholar] [CrossRef]
- Lambertucci, S.A.; Zamora-Nasca, L.B.; Sengupta, A.; de la Reta, M.; Plaza, P.I. Evidence-based legislation, strong institutions and consensus needed to mitigate the negative impacts of free-ranging dogs. Ambio 2024, 53, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Home, C.; Bhatnagar, Y.V.; Vanak, A.T. Canine Conundrum: Domestic dogs as an invasive species and their impacts on wildlife in India. Anim. Conserv. 2018, 21, 275–282. [Google Scholar] [CrossRef]
- Cayot, L.J.; Campbell, K.; Carrión, V. Invasive species: Impacts, control, and eradication. In Galapagos Giant Tortoises; Academic Press: New York, NY, USA, 2021; pp. 381–399. [Google Scholar]
- Spatola, G.J.; Feuerborn, T.R.; Betz, J.A.; Buckley, R.M.; Ostrander, G.K.; Dutrow, E.V.; Velez, A.; Pinto, C.M.; Harris, A.C.; Hale, J.M.; et al. Genomic reconstruction reveals impact of population management strategies on modern Galápagos dogs. Current Biol. 2025, 35, 208–216. [Google Scholar] [CrossRef]
- Cairns, K.M.; Crowther, M.S.; Nesbitt, B.; Letnic, M. The myth of wild dogs in Australia: Are there any out there? Aust. Mamm. 2021, 44, 67–75. [Google Scholar] [CrossRef]
- Stephens, D.; Wilton, A.N.; Fleming, P.J.; Berry, O. Death by sex in an Australian icon: A continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol. Ecol. 2015, 24, 5643–5656. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.K.; Bräuer, J. Exploring Levels of Interspecies Interaction: Expectations, Knowledge, and Empathy in Human–Dog Relationships. Animals 2024, 14, 2509. [Google Scholar] [CrossRef] [PubMed]
- Khattak, R.H.; Xin, Z.; Ahmad, S.; Bari, F.; Khan, A.; Nabi, G.; Shah, A.A.; Khan, S.; Rehman, E.U. Feral dogs in Chitral gol national park, Pakistan: A potential threat to the future of threatened Kashmir Markhor (Capra falconeri cashmiriensis). Braz. J. Biol. 2021, 83, e245867. [Google Scholar] [CrossRef]
- Cortés-Calva, P.; Gallo-Reynoso, J.P.; Delgadillo-Rodríguez, J.; Lorenzo, C.; Álvarez-Castañeda, S.T. The effect of feral dogs and other alien species on native mammals of Isla de Cedros, Mexico. Nat. Areas J. 2013, 33, 466–473. [Google Scholar] [CrossRef]
- Ghimire, R.; Mohanty, P.; Hiby, E.; Larkins, A.; Dürr, S.; Hartnack, S. Socio-economic assessment of dog population management systems: A scoping review. Front. Vet. Sci. 2025, 12, 1519913. [Google Scholar] [CrossRef]
- Varsha, P.S.; Chakraborty, A.; Kar, A.K. How to undertake an impactful literature review: Understanding review approaches and guidelines for high-impact systematic literature reviews. South Asian J. Bus. Manag. Cases 2024, 13, 18–35. [Google Scholar] [CrossRef]
- Snyder, H. Designing the literature review for a strong contribution. J. Decis. Syst. 2024, 33, 551–558. [Google Scholar] [CrossRef]
- Hughes, J.; Macdonald, D.W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Conserv. 2013, 157, 341–351. [Google Scholar] [CrossRef]
- Contreras-Abarca, R.; Crespin, S.J.; Moreira-Arce, D.; Simonetti, J.A. Redefining feral dogs in biodiversity conservation. Biol. Conserv. 2022, 265, 109434. [Google Scholar] [CrossRef]
- Gonçalves, L.S.; de Souza Machado, D.; Caçador, M.E.; Ferreira, G.A.; Dickman, C.R.; Ceballos, M.C.; Prezoto, F.; Sant’Anna, A.C. The Wildcat That Lives in Me: A Review on Free-Roaming Cats (Felis catus) in Brazil, Focusing on Research Priorities, Management, and Their Impacts on Cat Welfare. Animals 2025, 15, 190. [Google Scholar] [CrossRef]
- Gingold, G.; Yom-Tov, Y.; Kronfeld-Schor, N.; Geffen, E. Effect of guard dogs on the behavior and reproduction of gazelles in cattle enclosures on the Golan Heights. Anim. Conserv. 2009, 12, 155–162. [Google Scholar] [CrossRef]
- Oğurlu, İ.; Ünal, Y.; Yelsiz, M.Ş.; Pekin, B. The effects of feral dogs on wildlife in a nature reserve in southern Turkey. Polish J. Ecol. 2022, 70, 56–67. [Google Scholar] [CrossRef]
- Genovesi, P. Impact of free ranging dogs on wildlife in Italy. In Proceedings of the Vertebrate Pest Conference, San Diego, CA, USA, 6–9 March 2000; University of California: California, CA, USA, 2000; Volume 19. [Google Scholar] [CrossRef]
- Sogliani, D.; Mori, E.; Lovari, S.; Lazzeri, L.; Longoni, A.; Tabarelli De Fatis, K.; Sabatini, P.; Di Nicola, M.R.; Russo, D. Citizen science and diet analysis shed light on dog-wildlife interactions in Italy. Biodiv. Conserv. 2023, 32, 4461–4479. [Google Scholar] [CrossRef]
- Goodman, S.M. Les carnivora de Madagascar; Association Vahatra, Madagascar Flora & Fauna Group: Antananarivo, Madagascar, 2012; 158p. [Google Scholar]
- Farris, Z.J.; Golden, C.D.; Karpanty, S.; Murphy, A.; Stauffer, D.; Ratelolahy, F.; Andrianjakarivelo, V.; Holmes, C.M.; Kelly, M.J. Hunting, exotic carnivores, and habitat loss: Anthropogenic effects on a native carnivore community, Madagascar. PLoS ONE 2015, 10, e0136456. [Google Scholar] [CrossRef] [PubMed]
- Barcala, S. Impact of feral dogs on fosa populations in Madagascar. Endanger. Species Res. 2009, 10, 177–182. [Google Scholar]
- Sadhukhan, S.; Khan, S.; Habib, B. Silencing the call of the wild–howling behaviour and responses of the wolf to Anthropocene in India. Anim. Conserv. 2024, 27, 98–111. [Google Scholar] [CrossRef]
- Ashok, M. Preliminary Assessment of the Impact of Feral Dogs on Blackbuck (Antilope cervicapra) in Western Haryana, India. CABI Abstracts. 2020. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20203391036 (accessed on 10 May 2025).
- Meena, R.; Saran, R.P.; Chourasia, V. Assessment of threats to blackbuck Antilope cervicapra (Linn) in Sorsan grassland, Rajasthan, India. Int. J. Zool. Stud. 2017, 2, 194–198. [Google Scholar]
- Dar, S.A.; Sharief, A.; Kumar, V.; Singh, H.; Joshi, B.D.; Bhattacharjee, S.; Dutta, R.; Dolker, S.; Singh, A.P.; Singh, V.K.; et al. Free-ranging dogs are seriously threatening Himalayan environment: Delineating the high-risk areas for curbing free-ranging dog infestation in the Trans-Himalayan region. Environ. Monitor. Assess. 2023, 195, 1386. [Google Scholar] [CrossRef]
- Carrasco-Román, E.; Medina, J.P.; Salgado-Miranda, C.; Soriano-Vargas, E.; Sánchez-Jasso, J.M. Contributions on the diet of free-ranging dogs (Canis lupus familiaris) in the Nevado de Toluca Flora and Fauna Protection Area, Estado de México, Mexico. Rev. Mex. De Biodivers. 2021, 92, 11. [Google Scholar] [CrossRef]
- Camacho-Giles, V.; Hortelano-Moncada, Y.; Torres-Carrera, G.; Gil-Alarcón, G.; Oceguera-Figueroa, A.; García-Prieto, L.; Osorio-Sarabia, D.; Cervantes, A.F.; Arenas, P. Helminths of free-ranging dogs and cats in an urban natural reserve in Mexico City and their potential risk as zoonotic agents. PLoS ONE 2024, 19, e0310302. [Google Scholar] [CrossRef]
- Rewilding Europe. Bison Herd in the Southern Carpathians Attacked by a Pack of Feral Stray Dogs. 2015. Available online: https://rewildingeurope.com/news/bison-herd-in-the-southern-carpathians-attacked-by-a-pack-of-feral-stray-dogs/ (accessed on 10 May 2025).
- Lino, S.; Fonseca, C.; Álvares, F. Dog in sheep’s clothing: Livestock depredation by free-ranging dogs may pose new challenges to wolf conservation. European J. Wildl. Res. 2023, 69, 27. [Google Scholar] [CrossRef]
- Zamora-Nasca, L.B.; di Virgilio, A.; Lambertucci, S.A. Online survey suggests that dog attacks on wildlife affect many species and every ecoregion of Argentina. Biol. Conserv. 2021, 256, 109041. [Google Scholar] [CrossRef]
- Carmena, D.; Cardona, G.A. Echinococcosis in wild carnivorous species: Epidemiology, genotypic diversity, and implications for veterinary public health. Vet. Parasitol. 2014, 202, 69–94. [Google Scholar] [CrossRef]
- Sigurdarson, S. Dogs and echinococcosis in Iceland. Acta Vet. Scand. 2010, 52 (Suppl. 1), S6. [Google Scholar] [CrossRef]
- Saarma, U.; Skirnisson, K.; Björnsdottir, T.S.; Laurimäe, T.; Kinkar, L. Cystic echinococcosis in Iceland: A brief history and genetic analysis of a 46-year-old Echinococcus isolate collected prior to the eradication of this zoonotic disease. Parasitology 2023, 150, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.S.; Hegglin, D.; Lightowlers, M.W.; Torgerson, P.R.; Wang, Q. Echinococcosis: Control and prevention. Adv. Parasitol. 2017, 96, 55–158. [Google Scholar]
- Beard, T.C. The elimination of echinococcosis from Iceland. Bull. World Health Org. 1973, 48, 653. [Google Scholar] [PubMed]
- Tenney, T.D.; Curtis-Robles, R.; Snowden, K.F.; Hamer, S.A. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas. Emerg. Infect. Dis. 2014, 20, 1323. [Google Scholar] [CrossRef]
- Curtis-Robles, R.; Snowden, K.F.; Dominguez, B.; Dinges, L.; Rodgers, S.; Mays, G.; Hamer, S.A. Epidemiology and molecular typing of Trypanosoma cruzi in naturally-infected hound dogs and associated triatomine vectors in Texas, USA. PLoS Neglected Trop. Dis. 2017, 11, e0005298. [Google Scholar] [CrossRef]
- Busselman, R.E.; Hamer, S.A. Chagas disease ecology in the United States: Recent advances in understanding Trypanosoma cruzi transmission among triatomines, wildlife, and domestic animals and a quantitative synthesis of vector–host interactions. Ann. Rev. Anim. Biosci. 2022, 10, 325–348. [Google Scholar] [CrossRef]
- Bern, C.; Kjos, S.; Yabsley, M.J.; Montgomery, S.P. Trypanosoma cruzi and Chagas’ disease in the United States. Clin. Microbiol. Rev. 2011, 24, 655–681. [Google Scholar] [CrossRef]
- Rodriguez, F.; Luna, B.S.; Calderon, O.; Manriquez-Roman, C.; Amezcua-Winter, K.; Cedillo, J.; Garcia-Vazquez, R.; Tejeda, I.A.; Romero, A.; Waldrup, K.; et al. Surveillance of Trypanosoma cruzi infection in Triatomine vectors, feral dogs and cats, and wild animals in and around El Paso county, Texas, and New Mexico. PLoS Neglected Trop. Dis. 2021, 15, e0009147. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Woldemeskel, M.; Ligett, A.; Snider, R.; Cobb, R.; Rajeev, S. Brucella suis infection in dogs, Georgia, USA. Emerg. Infect. Dis. 2011, 17, 2386–2387. [Google Scholar] [CrossRef] [PubMed]
- Woldemeskel, M. Zoonosis due to Brucella suis with special reference to infection in dogs (Carnivores): A brief review. Open J. Vet. Med. 2013, 3, 213–221. [Google Scholar] [CrossRef]
- Hubbard, K.; Wang, M.; Smith, D.R. Seroprevalence of brucellosis in Mississippi shelter dogs. Prev. Vet. Med. 2018, 159, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Helms, A.B.; Balogh, O.; Franklin-Guild, R.; Lahmers, K.; Caswell, C.C.; Cecere, J.T. Presumptive identification of smooth Brucella strain antibodies in canines. Front. Vet. Sci. 2021, 8, 697479. [Google Scholar] [CrossRef]
- Kneipp, C.C.; Marshall, D.; Westman, M.E.; Malik, R.; Stevenson, M.A.; Mor, S.M.; Wiethoelter, A.K. Brucella suis in feral pigs in Australia: What is the risk? Aust. Vet. J. 2025, 1–9. [Google Scholar] [CrossRef]
- Adhikari, S.; Rijal, S.; Shrestha, R.K.; Khanal, S. Prevalence of zoonotic intestinal parasites in street dogs of Nepal. J. Vet. Sci. 2023, 45, 124–131. [Google Scholar]
- Milstein, M.S.; Shaffer, C.A.; Suse, P.; Marawanaru, A.; Heinrich, D.A.; Larsen, P.A.; Wolf, T.M. A mixed-methods approach to understanding domestic dog health and disease transmission risk in an indigenous reserve in Guyana, South America. PLoS Neglected Trop. Dis. 2022, 16, e0010469. [Google Scholar] [CrossRef]
- Paladsing, Y.; Khanh, B.M.T.; Thinphovong, C.; Ketwang, S.; Chaisiri, K.; Carcy, B.; De Garine-Wichatitsky, M.; Morand, S.; Inpankaew, T.; Kritiyakan, A. Dog blood parasite infection in upland and lowland communities of northern Thailand: The role of environment and care of dog owners. Vet. Parasitol. Reg. Stud. Rep. 2024, 51, 101024. [Google Scholar] [CrossRef]
- Sirasoonthorn, P.; Suesat, W. Important Considerations for Implementing Oral Rabies Vaccination of Free-roaming Dogs in Thailand Urban Communities. J. Comm. Develop. Res. (Humanit. Soc. Sci.) 2023, 16, 88–99. [Google Scholar]
- Vanak, A.T.; Gompper, M.E. Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Rev. 2009, 39, 4. [Google Scholar] [CrossRef]
- Harris, S. The food of suburban foxes (Vulpes vulpes), with special reference to London. Mammal Rev. 1981, 11, 151–168. [Google Scholar] [CrossRef]
- Vanak, A.T.; Thaker, M.; Gompper, M.E. Experimental examination of behavioural interactions between free-ranging wild and domestic canids. Behav. Ecol. Sociobiol. 2009, 64, 279–287. [Google Scholar] [CrossRef]
- Wooster, E.I.; Ramp, D.; Lundgren, E.J.; O’Neill, A.J.; Wallach, A.D. Red foxes avoid apex predation without increasing fear. Behav. Ecol. 2021, 32, 895–902. [Google Scholar] [CrossRef]
- Moseby, K.E.; Neilly, H.; Read, J.L.; Crisp, H.A. Interactions between a top order predator and exotic mesopredators in the Australian rangelands. Int. J. Ecol. 2012, 2012, 250352. [Google Scholar] [CrossRef]
- Hunter, D.O.; Letnic, M. Dingoes have greater suppressive effect on fox populations than poisoning campaigns. Aust. Mammal. 2022, 44, 387–396. [Google Scholar] [CrossRef]
- Fleming, P.A.; Stobo-Wilson, A.M.; Crawford, H.M.; Dawson, S.J.; Dickman, C.R.; Doherty, T.S.; Fleming, P.J.; Newsome, T.M.; Palmer, R.; Thompson, J.A.; et al. Distinctive diets of eutherian predators in Australia. R. Soc. Open Sci. 2022, 9, 220792. [Google Scholar] [CrossRef]
- Mason, R.T.; Rendall, A.R.; Sinclair, R.D.; Pestell, A.J.; Ritchie, E.G. What’s on the menu? Examining native apex-and invasive meso-predator diets to understand impacts on ecosystems. Ecol. Solut. Evid. 2025, 6, e70032. [Google Scholar] [CrossRef]
- Lessa, I.; Guimarães, T.C.S.; de Godoy Bergallo, H.; Cunha, A.; Vieira, E.M. Domestic dogs in protected areas: A threat to Brazilian mammals? Nat. Conserv. 2016, 14, 46–56. [Google Scholar] [CrossRef]
- Silva Rochefort, B.; Root-Bernstein, M. History of canids in Chile and impacts on prey adaptations. Ecol. Evol. 2021, 11, 9892–9903. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Ríos, G.; Branch, L.C. Mammalian carnivore occupancy is inversely related to presence of domestic dogs in the high Andes of Ecuador. PLoS ONE 2018, 13, e0192346. [Google Scholar] [CrossRef]
- George, S.L.; Crooks, K.R. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 2006, 133, 107–117. [Google Scholar] [CrossRef]
- Reed, S.E.; Merenlender, A.M. Effects of management of domestic dogs and recreation on carnivores in protected areas in northern California. Conserv. Biol. 2011, 25, 504–513. [Google Scholar] [CrossRef]
- Stronen, A.V.; Aspi, J.; Caniglia, R.; Fabbri, E.; Galaverni, M.; Godinho, R.; Kvist, L.; Mattucci, F.; Nowak, C.; von Thaden, A.; et al. Wolf-dog admixture highlights the need for methodological standards and multidisciplinary cooperation for effective governance of wild x domestic hybrids. Biol. Conserv. 2022, 266, 109467. [Google Scholar] [CrossRef]
- Santostasi, N.L.; Bauduin, S.; Grente, O.; Gimenez, O.; Ciucci, P. Simulating the efficacy of wolf–dog hybridization management with individual-based modeling. Conserv. Biol. 2025, 39, e14312. [Google Scholar] [CrossRef]
- Pacheco, C.; López-Bao, J.V.; García, E.J.; Lema, F.J.; Llaneza, L.; Palacios, V.; Godinho, R. Spatial assessment of wolf-dog hybridization in a single breeding period. Sci. Rep. 2017, 7, 42475. [Google Scholar] [CrossRef] [PubMed]
- Hindrikson, M.; Männil, P.; Ozolins, J.; Krzywinski, A.; Saarma, U. Bucking the trend in wolf-dog hybridization: First evidence from europe of hybridization between female dogs and male wolves. PLoS ONE 2012, 7, e46465. [Google Scholar] [CrossRef]
- Cairns, K.M. What is a dingo–origins, hybridisation and identity. Aust. Zool. 2021, 41, 322–337. [Google Scholar] [CrossRef]
- Dănilă, G.; Simioniuc, V.; Duduman, M.L. Research on the Ethology and diet of the stray dog population in the areas bordering the municipality of Suceava, Romania. Vet. Sci. 2023, 10, 188. [Google Scholar] [CrossRef]
- Maslo, B.; Kwait, R.; Crosby, C.; Holman, P.; Zoccolo, I.; Kerwin, K.; Pover, T.; Schlacher, T.A. Dogs suppress a pivotal function in the food webs of sandy beaches. Sci. Rep. 2022, 12, 14069. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.B.; Bryant, J.V. Four-legged friend or foe? Dog walking displaces native birds from natural areas. Biol. Lett. 2007, 3, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.M.; Hartmann, S.; Munteanu, A.M.; Dalla Villa, P.; Quinnell, R.J.; Collins, L.M. The effectiveness of dog population management: A systematic review. Animals 2019, 9, 1020. [Google Scholar] [CrossRef]
- Cristescu, R.H.; Miller, R.L.; Frere, C.H. Sniffing out solutions to enhance conservation: How detection dogs can maximise research and management outcomes, through the example of koalas. Aust. Zool. 2020, 40, 416–432. [Google Scholar] [CrossRef]
- Bacon, H.; Vancia, V.; Walters, H.; Waran, N. Canine trap-neuter-return: A critical review of potential welfare issues. Anim. Welf. 2017, 26, 281–292. [Google Scholar] [CrossRef]
- Ruiz-Izaguirre, E.; Bokkers, E.A.; Ortolani, A.; Ortega-Pacheco, A.; de Boer, I.J. Human–dog interactions and behavioural responses of village dogs in coastal villages in Michoacán, Mexico. Appl. Anim. Behav. Sci. 2014, 154, 57–65. [Google Scholar] [CrossRef]
- Baker, T.; Rock, M.; Bondo, K.; van der Meer, F.; Kutz, S. 11 years of regular access to subsidized veterinary services is associated with improved dog health and welfare in remote northern communities. Prev. Vet. Med. 2021, 196, 105471. [Google Scholar] [CrossRef]
- Young, J.K.; Bergman, D.L.; Ono, M. Bad dog: Feral and free-roaming dogs as agents of conflict. Anim. Conserv. 2018, 21, 285–286. [Google Scholar] [CrossRef]
- Crawford, H.M.; Calver, M.C.; Fleming, P.A. A case of letting the cat out of the bag—Why Trap-Neuter-Return is not an ethical solution for stray cat (Felis catus) management. Animals 2019, 9, 171. [Google Scholar] [CrossRef]
- Boone, J.D. Better trap–neuter–return for free-roaming cats: Using models and monitoring to improve population management. J. Feline Med. Surg. 2015, 17, 800–807. [Google Scholar] [CrossRef]
- Ramírez Riveros, D.; González-Lagos, C. Community engagement and the effectiveness of free-roaming cat control techniques: A systematic review. Animals 2024, 14, 492. [Google Scholar] [CrossRef]
- Asa, C.; Moresco, A. Fertility Control in Wildlife: Review of Current Status, Including Novel and Future Technologies. In Reproductive Sciences in Animal Conservation; Advances in Experimental Medicine and Biology; Comizzoli, P., Brown, J., Holt, W., Eds.; Springer: Cham, Switzerland, 2019; Volume 1200. [Google Scholar] [CrossRef]
- Luzardo, O.P.; Vara-Rascón, M.; Dufau, A.; Infante, E.; Travieso-Aja, M.D.M. Four Years of Promising Trap–Neuter–Return (TNR) in Córdoba, Spain: A Scalable Model for Urban Feline Management. Animals 2025, 15, 482. [Google Scholar] [CrossRef]
- Gunther, I.; Levin, D.; Klement, E. Navigating the Controversy: Public Perspectives on Free-Roaming Cat Populations and Control Strategies in Israel. Prev. Vet. Med. 2025, 237, 106448. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Kartal, T.; Rawat, S.; Chaudhari, A.; Kumar, A.; Pandey, R.K.; Quinnell, R.J.; Collins, L. Changes in free-roaming dog population demographics and health associated with a catch-neuter-vaccinate-release program in Jamshedpur, India. bioRxiv 2025. [Google Scholar] [CrossRef]
- Su, S.; Zhou, P.; Fu, X.; Wang, L.; Hong, M.; Lu, G.; Sun, L.; Qi, W.; Ning, Z.; Jia, K.; et al. Virological and epidemiological evidence of avian influenza virus infections among feral dogs in live poultry markets, china: A threat to human health? Clin. Infect. Dis. 2014, 58, 1644–1646. [Google Scholar] [CrossRef] [PubMed]
- Padodara, R.J.; Singh, V.K.; Odedara, A.B.; Vasava, A.A.; Sharma, A.K.; Mehta, V.M. Modern approaches to contraception in domestic and wild animals: A review. J. Global Ecol. Environ. 2022, 16, 14–25. [Google Scholar] [CrossRef]
- Morrow, J. Feral, Free-Ranging, and Hybrid Dogs: Wildlife Damage Management Technical Guide Series. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2022. [Google Scholar]
- Kinzig, A.P.; McShane, T.O. Conservation in Africa: Exploring the impact of social, economic and political drivers on conservation outcomes. Environ. Res. Lett. 2015, 10, 090201. [Google Scholar] [CrossRef]
- Garde, E.; Marín-Vial, P.; Pérez, G.E.; Sandvig, E.M. A review and analysis of the national dog population management program in Chile. Animals 2022, 12, 228. [Google Scholar] [CrossRef]
- Kalra, S.; Poonia, A.; Sharma, R.; Kaur, R.; Sharma, P.; Kumar, A.; Gulia, N. Wildlife conservation through local community engagement in India. Uttar Pradesh J. Zool. 2023, 44, 13–24. [Google Scholar] [CrossRef]
- Hiby, E.; Pankaj, K.C.; Brum, E.; Hampson, K. The humane management of dog populations and the contribution to rabies elimination. In One Health for Dog-Mediated Rabies Elimination in Asia: A Collection of Local Experiences; Slack, V., Ed.; CAB International: Oxfordshire, UK, 2023; pp. 174–190. [Google Scholar] [CrossRef]
- Shiels, A.B.; Runte, J.; Ruell, E.W.; Eckery, D.C.; Witmer, G.W.; Salkeld, D.J. Treatment with the immunocontraceptive vaccine, GonaCon, induces temporary fertility control in free-ranging prairie dog populations in Colorado, USA. Wildl. Res. 2023, 51, WR22135. [Google Scholar] [CrossRef]
- Kays, R.; Lasky, M.; Parsons, A.W.; Pease, B.; Pacifici, K. Evaluation of the spatial biases and sample size of a statewide citizen science project. Citiz. Sci. Theory Pract. 2021, 6, 34. [Google Scholar] [CrossRef]
- Chandler, M.; See, L.; Copas, K.; Bonde, A.M.; López, B.C.; Danielsen, F.; Legind, J.K.; Masinde, S.; Miller-Rushing, A.J.; Newman, G.; et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 2017, 213, 280–294. [Google Scholar] [CrossRef]
- Wilson-Aggarwal, J.K.; Goodwin, C.E.; Léchenne, M.; Swan, G.J.; Sidouin, M.K.; Silk, M.J.; Moundai, T.; Ozella, L.; Tizzoni, M.; Cattuto, C.; et al. Spatial-temporal dynamics of contact among free-ranging domestic dogs Canis familiaris in rural Africa. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Torgerson, P.R. One Health: The Theory and Practice of Integrated Health Approaches; CABI Digital Library, CABI Publishing: Oxfordshire, UK, 2015. [Google Scholar]
- Cunningham, A.A.; Daszak, P.; Wood, J.L. One Health, emerging infectious diseases and wildlife: Two decades of progress? Phil. Transac. Royal Soc. B Biol. Sci. 2017, 372, 20160167. [Google Scholar] [CrossRef] [PubMed]
- Kumbhojkar, S.; Yosef, R.; Mehta, A.; Rakholia, S. Ecosystem services of Leopards (Panthera pardus fusca) to the conurbation of Jaipur, India. In Ecology of Tropical Cities: Nature & Social Sciences Applied to the Conservation of Urban Biodiversity; Angeoletto, F., Tryjanowski, P., Fellowes, K., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2025; Chapter 33; pp. 631–648. [Google Scholar]
- Braczkowski, A.R.; O’Bryan, C.J.; Stringer, M.J.; Watson, J.E.; Possingham, H.P.; Beyer, H.L. Leopards provide public health benefits in Mumbai, India. Front. Ecol. Environ. 2018, 16, 176–182. [Google Scholar] [CrossRef]
- Ćetković, J.; Žarković, M.; Knežević, M.; Cvetkovska, M.; Vujadinović, R.; Rutešić, S.; Beljkaš, Ž.; Grujić, M.; Adžić, B. Financial and socio-economic effects of investment in the context of dog population management. Animals 2022, 12, 3176. [Google Scholar] [CrossRef] [PubMed]
- Norouzzadeh, M.S.; Morris, D.; Beery, S.; Joshi, N.; Jojic, N.; Clune, J. A deep active learning system for species identification and counting in camera trap images. Methods Ecol. Evol. 2021, 12, 150–161. [Google Scholar] [CrossRef]
- Saranya, K.R.L.; Satish, K.V.; Reddy, C.S. Remote sensing enabled essential biodiversity variables for invasive alien species management: Towards the development of spatial decision support system. Biol. Invasions 2024, 26, 943–951. [Google Scholar] [CrossRef]
- Sharma, S.; Sato, K.; Gautam, B.P. A methodological literature review of acoustic wildlife monitoring using artificial intelligence tools and techniques. Sustainability 2023, 15, 7128. [Google Scholar] [CrossRef]
- Ullah, F.; Saqib, S.; Xiong, Y.C. Integrating artificial intelligence in biodiversity conservation: Bridging classical and modern approaches. Biodiv. Conserv. 2025, 34, 45–65. [Google Scholar] [CrossRef]
- Joshi, B.D.; Singh, S.K.; Singh, V.K.; Jabin, G.; Ghosh, A.; Dalui, S.; Singh, A.; Priyambada, P.; Dolker, S.; Mukherjee, T.; et al. From poops to planning: A broad non-invasive genetic survey of large mammals from the Indian Himalayan Region. Sci. Total Environ. 2022, 853, 158679. [Google Scholar] [CrossRef]
- Shehzad, W.; Riaz, T.; Nawaz, M.A.; Miquel, C.; Poillot, C.; Shah, S.A.; Pompanon, F.; Coissac, E.; Taberlet, P. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 2012, 21, 1951–1965. [Google Scholar] [CrossRef]
- Kartzinel, T.R.; Chen, P.A.; Coverdale, T.C.; Erickson, D.L.; Kress, W.J.; Kuzmina, M.L.; Rubenstein, D.I.; Wang, W.; Pringle, R.M. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Nat. Acad. Sci. USA 2015, 112, 8019–8024. [Google Scholar] [CrossRef] [PubMed]
- Deplazes, P.; Hegglin, D.; Gloor, S.; Romig, T. Wilderness in the city: The urbanization of Echinococcus multilocularis. Trends Parasitol. 2004, 20, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Cleaveland, S.; Matthiopoulos, J.; Halliday, J.O.; Packer, C.; Craft, M.E.; Hampson, K.; Czupryna, A.; Dobson, A.P.; Dubovi, E.J.; et al. Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proc. Nat. Acad. Sci. USA 2015, 112, 1464–1469. [Google Scholar] [CrossRef]
- Fooks, A.R.; Banyard, A.C.; Horton, D.L.; Johnson, N.; McElhinney, L.M.; Jackson, A.C. Current status of rabies and prospects for elimination. Lancet 2014, 384, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Cleaveland, S.; Laurenson, M.K.; Taylor, L.H. Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Phil. Transac. Royal Soc. London. Series B Biol. Sci. 2001, 356, 991–999. [Google Scholar] [CrossRef]
- Godinho, R.; Llaneza, L.; Blanco, J.C.; Lopes, S.; Álvares, F.; García, E.J.; Palacios, V.; Cortés, Y.; Talegón, J.; Ferrand, N. Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula. Mol. Ecol. 2011, 20, 5154–5166. [Google Scholar] [CrossRef]
- Waits, L.P.; Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. J. Wildl. Manag. 2005, 69, 1419–1433. [Google Scholar] [CrossRef]
- Newsome, S.D.; Garbe, H.M.; Wilson, E.C.; Gehrt, S.D. Individual variation in anthropogenic resource use in an urban carnivore. Oecologia 2015, 178, 115–128. [Google Scholar] [CrossRef]
- Doherty, T.S.; Dickman, C.R.; Glen, A.S.; Newsome, T.M.; Nimmo, D.G.; Ritchie, E.G.; Vanak, A.T.; Wirsing, A.J. The global impacts of domestic dogs on threatened vertebrates. Biol. Conserv. 2017, 210, 56–59. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yosef, R. Confronting the Challenge: Integrated Approaches to Mitigate the Impact of Free-Ranging Dogs on Wildlife Conservation. Conservation 2025, 5, 29. https://doi.org/10.3390/conservation5030029
Yosef R. Confronting the Challenge: Integrated Approaches to Mitigate the Impact of Free-Ranging Dogs on Wildlife Conservation. Conservation. 2025; 5(3):29. https://doi.org/10.3390/conservation5030029
Chicago/Turabian StyleYosef, Reuven. 2025. "Confronting the Challenge: Integrated Approaches to Mitigate the Impact of Free-Ranging Dogs on Wildlife Conservation" Conservation 5, no. 3: 29. https://doi.org/10.3390/conservation5030029
APA StyleYosef, R. (2025). Confronting the Challenge: Integrated Approaches to Mitigate the Impact of Free-Ranging Dogs on Wildlife Conservation. Conservation, 5(3), 29. https://doi.org/10.3390/conservation5030029