Mountain Cryosphere Landscapes in South America: Value and Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context for a Changing Mountain Cryosphere
2.2. Formulation
3. Results
3.1. Shortcomings in Legislation
3.2. Landscape Protection in the Andes of Argentina–Chile?
4. Discussion
4.1. Cryosphere Value under Transformation
4.2. Shortcomings in Policy Development
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakker, K. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.; Bakker, K. Water security: Debating an emerging paradigm. Glob. Environ. Chang. 2012, 22, 94–102. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Intrinsic value and landscape evaluation. Geogr. Rev. 1993, 83, 473–476. [Google Scholar] [CrossRef]
- Otero Pastor, I.; Martínez, M.A.C.; Canalejoa, A.E.; Mariño, P.E. Landscape evaluation: Comparison of evaluation methods in a region of Spain. J. Environ. Manag. 2007, 85, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Lliboutry, L.; Corte, A.E. Glaciers of South America: Glaciers of Chile and Argentina. In US Geological Survey Professional Paper; U.S. Geological Survey, Information Services: Denver, CO, USA, 1998. [Google Scholar]
- Tol, R.S.J. Comment on “Valuing or pricing natural and environmental resources” by Yaoqi Zhang and Yiqing Li, Environmental Science and Policy, 8, 189–190. Environ. Sci. Policy 2005, 8, 187–188. [Google Scholar] [CrossRef]
- Schirpke, U.; Timmermann, F.; Tappeiner, U.; Tasser, E. Cultural ecosystem services of mountain regions: Modelling the aesthetic value. Ecol. Indic. 2016, 69, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bütler, M. Glaciers–Objects of Law and International Treaties. Alpine Space—Man & Environment; Innsbruck University Press: Innsbruck, Austria, 2007; pp. 19–31. [Google Scholar]
- Su, B.; Xiao, C.; Chen, D.; Qin, D.; Ding, Y. Cryosphere services and human well-being. Sustainability 2019, 11, 4365. [Google Scholar] [CrossRef] [Green Version]
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two decades of glacier mass loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- Gagné, K.; Rasmussen, M.B.; Orlove, B. Glaciers and society: Attributions, perceptions, and valuations. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 793–808. [Google Scholar] [CrossRef]
- Mill, J.S. Principles of Political Economy; Riley, J., Ed.; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Therme, T. Les services d’usage indirect fournis par les écosystèmes marins et côtiers: L’exemple de la Guadeloupe (Indirect use services provided by marine and coastal ecosystems: The example of Guadeloupe). Études Caribéennes 2014. [Google Scholar] [CrossRef]
- Cook, D.; Malinauskaite, L.; Davíðsdóttir, B.; Ögmundardóttir, H. Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change. Ecosyst. Serv. 2021, 50, 101342. [Google Scholar] [CrossRef]
- Norberg, J.; Blenckner, T.; Cornell, S.E.; Petchey, O.L.; Hillebrand, H. Failures to disagree are essential for environmental science to effectively influence policy development. Ecol. Lett. 2021, 25, 1075–1093. [Google Scholar] [CrossRef]
- Iribarren Anacona, P.I.; Kinney, J.; Schaefer, M.; Harrison, S.; Wilson, R.; Segovia, A.; Mazzorana, B.; Guerra, F.; Farías, D.; Reynolds, J.M.; et al. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change. Ambio 2018, 47, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Funtowicz, S.O.; Ravetz, J.R. The worth of a songbird: Ecological economics as a post-normal science. Ecol. Econ. 1994, 10, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Bertazzo, S. Los acuíferos y las aguas subterráneas en el Derecho internacional público (Aquifers and groundwater in public international law). Rev. Derecho Adm. Econ. 2019, 27, 41–66. [Google Scholar]
- Kollmair, M.; Gurung, G.S.; Hurni, K.; Maselli, D. Mountains: Special places to be protected? An analysis of worldwide nature conservation efforts in mountains. Int. J. Biodivers. Sci. Manag. 2005, 1, 181–189. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cineca: Casalecchio di Reno, Italy, 2019. [Google Scholar]
- Arenson, L.U.; Harrington, J.S.; Koenig, C.E.M.; Wainstein, P.A. Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes. Geosciences 2022, 12, 48. [Google Scholar] [CrossRef]
- Navarro, G.; MacDonell, S.; Valois, R. A conceptual hydrological model of semiarid Andean headwater systems in Chile. Prog. Phys. Geogr. Earth Environ. 2023, 03091333221147649. [Google Scholar] [CrossRef]
- Council of Europe. European landscape convention. Eur. Treaty Ser. 2000, 176, 1–7. [Google Scholar]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- UN Department of Economic and Social Affairs. World Population Prospects: The 2012 Revision; Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat: New York, NY, USA, 2013; Volume 18, pp. 620–626. [Google Scholar]
- Wutich, A. Water insecurity: An agenda for research and call to action for human biology. Am. J. Hum. Biol. 2020, 32, e23345. [Google Scholar] [CrossRef] [Green Version]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975. [Google Scholar] [CrossRef]
- Trombotto Liaudat, D.; Bottegal, E. Recent evolution of the active layer in the Morenas Coloradas rock glacier, Central Andes, Mendoza, Argentina and its relation with kinematics. Cuad. Investig. Geogr. Geogr. Res. Lett. 2020, 46, 159–185. [Google Scholar] [CrossRef] [Green Version]
- Trombotto, D.; Borzotta, E. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Reg. Sci. Technol. 2009, 55, 321–330. [Google Scholar] [CrossRef]
- Ruiz Pereira, S.; Marquardt, C.; Beriain, E.; Lambert, F. Permafrost evolution in a mountain catchment near Santiago de Chile. J. South Am. Earth Sci. 2021, 109, 103293. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Kääb, A.; Bartsch, A. Ground Temperature Map, 2000–2016, Andes, New Zealand and East African Plateau Permafrost. University of Oslo 2019. Available online: https://doi.org/10.1594/PANGAEA.905512 (accessed on 19 November 2022).
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Frans, C.; Istanbulluoglu, E.; Lettenmaier, D.P.; Naz, B.S.; Clarke, G.K.C.; Condom, T.; Burns, P.; Nolin, A.W. Predicting glacio-hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia. Water Resour. Res. 2015, 51, 9029–9052. [Google Scholar] [CrossRef]
- Polk, M.H.; Young, K.R.; Baraer, M.; Mark, B.G.; McKenzie, J.M.; Bury, J.; Carey, M. Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Appl. Geogr. 2017, 78, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Bown, F.; Rivera, A.; Acuña, C. Recent glacier variations at the Aconcagua basin, central Chilean Andes. Ann. Glaciol. 2008, 48, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Pereira, S.; Veettil, B.K. Glacier decline in the Central Andes (33° S): Context and magnitude from satellite and historical data. J. South Am. Earth Sci. 2019, 94, 102249. [Google Scholar] [CrossRef]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [Green Version]
- Boisier, J.P.; Alvarez-Garretón, C.; Cordero, R.R.; Damiani, A.; Gallardo, L.; Garreaud, R.D.; Lambert, F.; Ramallo, C.; Rojas, M.; Rondanelli, R. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem. Sci. Anthr. 2018, 6, 74. [Google Scholar] [CrossRef]
- Bozkurt, D.; Rojas, M.; Boisier, J.P.; Valdivieso, J. Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios. Clim. Chang. 2018, 150, 131–147. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Boisier, J.P.; Garreaud, R.; Seibert, J.; Vis, M. Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrol. Earth Syst. Sci. 2021, 25, 429–446. [Google Scholar] [CrossRef]
- Baraer, M.; Mark, B.G.; McKenzie, J.M.; Condom, T.; Bury, J.; Huh, K.-I.; Portocarrero, C.; Gómez, J.; Rathay, S. Glacier recession and water resources in Peru’s Cordillera Blanca. J. Glaciol. 2012, 58, 134–150. [Google Scholar] [CrossRef] [Green Version]
- Musselman, K.N.; Clark, M.P.; Liu, C.; Ikeda, K.; Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Chang. 2017, 7, 214–219. [Google Scholar] [CrossRef]
- Condon, L.E.; Atchley, A.L.; Maxwell, R.M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Keys, P.W.; Porkka, M.; Wang-Erlandsson, L.; Fetzer, I.; Gleeson, T.; Gordon, L.J. Invisible water security: Moisture recycling and water resilience. Water Secur. 2019, 8, 100046. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Chang. 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Taylor, R.G.; Favreau, G.; Todd, M.C.; Shamsudduha, M.; Villholth, K.G.; MacDonald, A.M.; Scanlon, B.R.; Kotchoni, D.O.V.; Vouillamoz, J.-M.; et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 2019, 572, 230–234. [Google Scholar] [CrossRef]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The global volume and distribution of modern groundwater. Nat. Geosci. 2016, 9, 161–167. [Google Scholar] [CrossRef]
- Halla, C.; Blöthe, J.H.; Baldis, C.T.; Liaudat, D.T.; Hilbich, C.; Hauck, C.; Schrott, L. Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina. Cryosphere 2021, 15, 1187–1213. [Google Scholar] [CrossRef]
- Van Lanen, H.A.J.; Wanders, N.; Tallaksen, L.M.; van Loon, A.F. Hydrological drought across the world: Impact of climate and physical catchment structure. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 12145–12192. [Google Scholar] [CrossRef] [Green Version]
- Grenier, C.; Régnier, D.; Mouche, E.; Benabderrahmane, H.; Costard, F.; Davy, P. Impact of permafrost development on groundwater flow patterns: A numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river-plain system. Hydrogeol. J. 2013, 21, 257–270. [Google Scholar] [CrossRef]
- Cox, J. Finding a place for glaciers within environmental law: An analysis of ambiguous legislation and impractical common law. Appeal Rev. Curr. L L Reform 2016, 21, 21. [Google Scholar]
- Langsdorf, S.; Löschke, S.; Möller, V.; Okem, A.; Officer, S.; Rama, B. Climate Change 2022 Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2022; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Nino, F.S. Sustainable Development Goals—United Nations; United Nations Sustainable Development: Incheon, Republic of Korea, 2015. [Google Scholar]
- Saito, K.; Trombotto Liaudat, D.; Yoshikawa, K.; Mori, J.; Sone, T.; Marchenko, S.; Romanovsky, V.; Walsh, J.; Hendricks, A.; Bottegal, E. Late Quaternary Permafrost Distributions Downscaled for South America: Examinations of GCM-based Maps with Observations. Permafr. Periglac. Process. 2016, 27, 43–55. [Google Scholar] [CrossRef]
- Ballantyne, C.K. Paraglacial geomorphology. Q Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Sauer, C. The morphology of landscape. Univ. Calif. Publ. Geogr. 1963, 2, 19–54. [Google Scholar]
- Ruiz Pereira, S.F. Hydrological Role of Frozen Grounds near Santiago de Chile; Instituto de Geografía, Pontificia Universidad Católica de Chile: Santiago, Chile, 2021. [Google Scholar]
- Sjöberg, Y.; Jan, A.; Painter, S.L.; Coon, E.T.; Carey, M.P.; O’Donnell, J.A.; Koch, J.C. Permafrost promotes shallow groundwater flow and warmer headwater streams. Water Resour. Res. 2021, 57, e2020WR027463. [Google Scholar] [CrossRef]
- Pereira, S.R.; Fernández, J.; Herrera, J.; Olea, J. Assessment of landscape transformation in protected areas. Environ. Impact Assess. Rev. 2021, 86, 106472. [Google Scholar] [CrossRef]
- Óskarsdóttir, A.V. Náttúruvernd, Hvítbók um Löggjöf til Verndar Náttúru Íslands; (Nature Conservation, White Book on Legislation for the Protection of Nature in Iceland); Umhverfisráðuneytið (Ministry of the Environment): Reykjavík, Iceland, 2011.
- Trombotto, D.; Buk, E.; Hernández, J. Rock glaciers in the southern central Andes (approx. 33–34 S), Cordillera Frontal, Mendoza, Argentina. Bamb. Geogr. Schr. 1999, 19, 145–173. [Google Scholar]
- Heritage, S.N. Siting and Designing Wind Farms in the Landscape; Scotland’s Nature Agency: Inverness, UK, 2017. [Google Scholar]
- Washington, H.; Gomez-Baggethun, E.; Piccolo, J.J.; Kopnina, H.; Alberro, H. Harmony in Conservation. Conservation 2022, 2, 682–693. [Google Scholar] [CrossRef]
- Krutilla, J.V. Conservation reconsidered. Am. Econ. Rev. 1967, 57, 777–786. [Google Scholar]
- Lynn, M. Scarcity effects on value: A quantitative review of the commodity theory literature. Psychol. Mark. 1991, 8, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Batabyal, A.A.; Kahn, J.R.; O’Neill, R.V. On the scarcity value of ecosystem services. J. Environ. Econ. Manag. 2003, 46, 334–352. [Google Scholar] [CrossRef]
- Jansson, P.; Hock, R.; Schneider, T. The concept of glacier storage: A review. J. Hydrol. 2003, 282, 116–129. [Google Scholar] [CrossRef]
- Bense, V.F.; Kooi, H.; Ferguson, G.; Read, T. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J. Geophys. Res. Earth Surf. 2012, 117, F3. [Google Scholar] [CrossRef] [Green Version]
- Trombotto-Liaudat, D.; Sileo, N.; Dapeña, C. Periglacial water paths within a rock glacier-dominated catchment in the Stepanek area, Central Andes, Mendoza, Argentina. Permafr. Periglac. Process. 2020, 31, 311–323. [Google Scholar] [CrossRef]
- Haase, G.; Richter, H. Current trends in landscape research. GeoJournal 1983, 7, 107–119. [Google Scholar] [CrossRef]
- Bauduceau, N.; Berry, P.; Cecchi, C.; Elmqvist, T.; Fernandez, M.; Hartig, T.; Krull, W.; Mayerhofer, E.; Sandra, N.; Noring, L.; et al. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’; Publications Office of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- Baumgärtner, S.; Strunz, S. The economic insurance value of ecosystem resilience. Ecol. Econ. 2014, 101, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Olbrich, M.; Quill, T.; Rapp, D.J. Business valuation inspired by the Austrian school. J. Bus. Valuat. Econ. Loss Anal. 2015, 10, 1–43. [Google Scholar] [CrossRef]
- Anderson, E. Value in Ethics and Economics; Harvard University Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Morgenstern, O. Das Zeitmoment in der Wertlehre. Z. Natl. 1934, 5, 433–458. [Google Scholar] [CrossRef]
- Quaas, M.; Baumgärtner, S.; De Lara, M. Insurance value of natural capital. Ecol. Econ. 2019, 165, 106388. [Google Scholar] [CrossRef]
- Sankey, H.; Hoyningen-Huene, P. Introduction: Incommensurability and related matters. Boston Stud. Philos. Sci. 2001, 216, 7–34. [Google Scholar]
- Adler, M. Law and Imcommensurability: Introduction. U. Pa. L. Rev. 1997, 146, 1169. [Google Scholar]
- Perry, J.; Easter, K.W. Resolving the scale incompatibility dilemma in river basin management. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- McCann, L. Transaction costs and environmental policy design. Ecol. Econ. 2013, 88, 253–262. [Google Scholar] [CrossRef]
- Green, N. Looking at the Landscape: Class Formation and the Visual. In The Anthropology of Landscape: Perspective on Place and Space; Hirsch, E., O’Hanlon, M., Eds.; Clarendon Press: Oxford, UK, 1995; pp. 31–42. [Google Scholar]
- Bailey, D.W. Impermanence and Flux in the Landscape of Early Agricultural South Eastern Europe; Oxbow: Oxford, UK, 1997. [Google Scholar]
- Hayek, F.A. The Road to Serfdom, 2nd ed.; Routledge: Abingdon, UK, 2001. [Google Scholar]
- Xue, M.; Zhao, Y.; Wang, Z.; Zhang, B. Behavioural determinants of an individual’s intention to adapt to climate change: Both internal and external perspectives. Environ. Impact Assess. Rev. 2021, 91, 106672. [Google Scholar] [CrossRef]
- Phillips, J. The Sustainability Dynamics Framework—A holistic approach to define and evaluate sustainability and unsustainability in the Anthropocene. Environ. Impact Assess. Rev. 2020, 84, 106436. [Google Scholar] [CrossRef]
- Rothbard, M.N. For a New Liberty: The Libertarian Manifesto; Ludwig von Mises Institute: Auburn, AL, USA, 2006. [Google Scholar]
- Trombotto Liaudat, D.; Wainstein, P.; Arenson, L.U. Guía Terminológica de la Geocriología Sudamericana; Vazquez Mazzini: Buenos Aires, Argentina, 2014. [Google Scholar]
- Volk, M.; Steinhardt, U. Landscape balance. In Landscape Balance and Landscape Assessment; Springer: Berlin/Heidelberg, Germany, 2001; pp. 163–202. [Google Scholar]
Category | Purpose | Implementation |
---|---|---|
National park | Protection and conservation of value | Park-specific |
Natural reserve | Use and conservation (management) | The specific purpose of the reserve |
Natural monument | Absolute protection | Restricted to research and state inspection |
Country | Type | Cryosphere Protection | Name | Year of Appearance |
---|---|---|---|---|
Austria | Law | Not included | 37th Federal Law for Climate and Energy funding | 2007 |
Argentina | Law | Glacial and periglacial environments | Law 26639: “Minimal budgets for the preservation of glaciers and periglacial environment” | 2010 |
Austria | Law | Not included | 106th Federal Law on Climate Protection | 2011 |
Iceland | Passed | Not included | Act 70 on Climate Change | 2012 |
Chile | Strategic plan | Included | National Climate Change Adaptation Plan | 2014 |
Peru | Law | Mountain environments and glaciers | Law N° 30754 on Climate Change | 2018 |
Iceland | Strategic plan | Glaciers mentioned | Iceland’s Climate Action Plan for 2018–2030 | 2018 |
EU | Regulation in force | Not included | Regulation 842 | 2018 |
EU | Strategic plan | Arctic and Boreal environments are mentioned | A Clean Planet for all | 2018 |
Argentina | Law | Glacial and periglacial environments | Law 27520: “Minimal budgets for Adaptation and Mitigation to Global Climate Change” | 2019 |
Chile | Law project | Not included | Climate change framework Law | 2020 |
EU | Strategic plan | Indirectly mentioned through reference | Forging a climate-resilient Europe—the new EU Strategy on Adaptation to Climate Change | 2021 |
Aspects of Landscape | Description |
---|---|
A comprehensive view of nature and culture | Interaction of natural and/or cultural factors |
Internal vs. external perspective | Areas, as perceived by people |
Historical retrospection | Balance loss, fragmentation destruction, or transformation of landscape units |
Forms and processes | Action and interaction, human factors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Pereira, S.; Alvarado Peterson, V.; Trombotto Liaudat, D. Mountain Cryosphere Landscapes in South America: Value and Protection. Conservation 2023, 3, 232-246. https://doi.org/10.3390/conservation3010017
Ruiz-Pereira S, Alvarado Peterson V, Trombotto Liaudat D. Mountain Cryosphere Landscapes in South America: Value and Protection. Conservation. 2023; 3(1):232-246. https://doi.org/10.3390/conservation3010017
Chicago/Turabian StyleRuiz-Pereira, Sebastián, Voltaire Alvarado Peterson, and Darío Trombotto Liaudat. 2023. "Mountain Cryosphere Landscapes in South America: Value and Protection" Conservation 3, no. 1: 232-246. https://doi.org/10.3390/conservation3010017
APA StyleRuiz-Pereira, S., Alvarado Peterson, V., & Trombotto Liaudat, D. (2023). Mountain Cryosphere Landscapes in South America: Value and Protection. Conservation, 3(1), 232-246. https://doi.org/10.3390/conservation3010017