Potential of Canna indica in Constructed Wetlands for Wastewater Treatment: A Review
Abstract
:1. Introduction
1.1. Plants Used in CW
1.2. About Canna indica L.
2. Materials and Methods
3. Removal of Nutrients, COD, BOD5, TDS and TSS
4. Removal of Fluoride
5. Removal of Heavy Metals
6. Removal of Emerging Contaminants
6.1. Pesticides
6.2. Pharmaceuticals
6.3. Industrial Chemicals
7. Greenhouse Gases Emission
8. Conclusions
- i.
- The mechanism through which different forms of pollutants are removed should be investigated more especially for emerging contaminants.
- ii.
- More research on the microbial diversity of Canna indica-planted CWs is required. This should concentrate on investigating plant-microbial interactions and their impact on CW performance.
- iii.
- The effects of toxic pollutants present in wastewater on Canna indica should be investigated. This is especially for the pollutants with potential of bioaccumulation and bioconcentration in the plant’s tissues.
- iv.
- Competitiveness among the plants affects the performance in investigations when Canna indica was mixed with other plants. Whether to use a monoculture or a mixed system is thus determined by the performance of the plants individually and in the mixed system. This suggests that further research is required to determine the ideal combination of plants for improved wastewater treatment performance.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, L.; Ouyang, Y.; Lou, Q.; Yang, F.; Chen, Y.; Zhu, W.; Luo, S. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol. Eng. 2010, 36, 1083–1088. [Google Scholar] [CrossRef]
- Chavan, R.; Mutnuri, S. Domestic wastewater treatment by constructed wetland and microalgal treatment system for the production of value-added products. Environ. Technol. 2021, 42, 3304–3317. [Google Scholar] [CrossRef] [PubMed]
- Jamwal, P.; Raj, A.V.; Raveendran, L.; Shirin, S.; Connelly, S.; Yeluripati, J.; Richards, S.; Rao, L.; Helliwell, R.; Tamburini, M. Evaluating the performance of horizontal sub-surface flow constructed wetlands: A case study from southern India. Ecol. Eng. 2021, 162, 106170. [Google Scholar] [CrossRef]
- Barya, M.P.; Gupta, D.; Thakur, T.K.; Shukla, R.; Singh, G.; Mishra, V.K. Phytoremediation performance of Acorus calamus and Canna indica for the treatment of primary treated domestic sewage through vertical subsurface flow constructed wetlands: A field-scale study. Water Pract. Technol. 2020, 15, 528–539. [Google Scholar] [CrossRef]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef]
- Kaseva, M.E. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater—A tropical case study. Water Res. 2004, 38, 681–687. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Gong, Z.; Li, X. Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate. Ecol. Eng. 2013, 53, 39–45. [Google Scholar] [CrossRef]
- Pinninti, R.; Kasi, V.; Sallangi, L.P.; Landa, S.R.; Rathinasamy, M.; Sangamreddi, C.; Dandu Radha, P.R. Performance of Canna indica based microscale vertical flow constructed wetland under tropical conditions for domestic wastewater treatment. Int. J. Phytoremediation 2022, 24, 684–694. [Google Scholar] [CrossRef]
- Wang, W.; Ding, Y.; Wang, Y.; Song, X.; Ambrose, R.F.; Ullman, J.L.; Winfrey, B.K.; Wang, J.; Gong, J. Treatment of rich ammonia nitrogen wastewater with polyvinyl alcohol immobilized nitrifier biofortified constructed wetlands. Ecol. Eng. 2016, 94, 7–11. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, J.; Chen, W.; Chen, Z. Medium clogging and the dynamics of organic matter accumulation in constructed wetlands. Ecol. Eng. 2013, 60, 393–398. [Google Scholar] [CrossRef]
- Yadav, A.K.; Kumar, N.; Sreekrishnan, T.R.; Satya, S.; Bishnoi, N.R. Removal of chromium and nickel from aqueous solution in constructed wetland: Mass balance, adsorption-desorption and FTIR study. Chem. Eng. J. 2010, 160, 122–128. [Google Scholar] [CrossRef]
- Liang, M.Q.; Zhang, C.F.; Peng, C.L.; Lai, Z.L.; Chen, D.F.; Chen, Z.H. Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecol. Eng. 2011, 37, 309–316. [Google Scholar] [CrossRef]
- Sandoval, L.; Zamora-Castro, S.A.; Vidal-Álvarez, M.; Marín-Muñiz, J.L. Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: A review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef]
- Türker, O.C.; Türe, C.; Böcük, H.; Çiçek, A.; Yakar, A. Role of plants and vegetation structure on boron (B) removal process in constructed wetlands. Ecol. Eng. 2016, 88, 143–152. [Google Scholar] [CrossRef]
- Fraser, L.H.; Carty, S.M.; Steer, D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour. Technol. 2004, 94, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, G.; Goel, M.; Das, A. A study on comparison of horizontal and vertical flow wetland system in treating domestic wastewater. Int. J. Civ. Eng. Technol. 2017, 8, 1302–1310. [Google Scholar]
- Yang, Q.; Chen, Z.H.; Zhao, J.G.; Gu, B.H. Contaminant removal of domestic wastewater by constructed wetlands: Effects of plant species. J. Integr. Plant Biol. 2007, 49, 437–446. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Q.W.; Yan, B.X.; Liang, Y.X.; Yu, X.F.; Gerchman, Y.; Cheng, X.W. Influence of vegetation type and temperature on the performance of constructed wetlands for nutrient removal. Water Sci. Technol. 2018, 77, 829–837. [Google Scholar] [CrossRef]
- Heike, H.; Winker, M.; von Muench, E.; Platzer, C. Technology Review of Constructed Wetlands. Subsurface Flow Constructed Wetlands for Greywater and Domestic Wastewater Treatment. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ). Eschborn, Germany. February, 2011. Available online: www.gtz.de/ecosan (accessed on 1 April 2022).
- Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. 2014, 468–469, 908–932. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L.; Liu, X. A Review of Research on Substrate Materials for Constructed Wetlands A Review of Research on Substrate Materials for Constructed Wetlands. Mater. Sci. Forum 2018, 913, 917–929. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Hernández, M.E.; Gallegos-Pérez, M.P.; Amaya-Tejeda, S.I. Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol. Eng. 2020, 147, 105658. [Google Scholar] [CrossRef]
- Mburu, N.; Rousseau, D.P.L.; van Bruggen, J.J.A.; Lens, P.N.L. The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape; Springer: Cham, Switzerland, 2015; pp. 1–326. ISBN 9783319081779. [Google Scholar]
- Wu, Y.; He, T.; Chen, C.; Fang, X.; Wei, D.; Yang, J.; Zhang, R.; Han, R. Impacting microbial communities and absorbing pollutants by Canna Indica and Cyperus Alternifolius in a full-scale constructed wetland system. Int. J. Environ. Res. Public Health 2019, 16, 802. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, H.; Yan, B.; Shutes, B.; Xing, D.; Banuelos, G.; Cheng, R.; Wang, X. Greenhouse gas emissions and wastewater treatment performance by three plant species in subsurface flow constructed wetland mesocosms. Chemosphere 2020, 239, 124795. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Priya; Brighu, U. Performance Analysis of Vertical Up-flow Constructed Wetlands for Secondary Treated Effluent. APCBEE Procedia 2014, 10, 110–114. [Google Scholar] [CrossRef]
- Purshottam, D.K.; Srivastava, R.K.; Misra, P. Low-cost shoot multiplication and improved growth in different cultivars of Canna indica. 3 Biotech 2019, 9, 67. [Google Scholar] [CrossRef]
- Datta, A.; Singh, H.O.; Raja, S.K.; Dixit, S. Constructed wetland for improved wastewater management and increased water use efficiency in resource scarce SAT villages: A case study from Kothapally village, in India. Int. J. Phytoremediation 2021, 23, 1067–1076. [Google Scholar] [CrossRef]
- Ayusman, S.; Duraivadivel, P.; Gowtham, H.G.; Sharma, S.; Hariprasad, P. Bioactive constituents, vitamin analysis, antioxidant capacity and α-glucosidase inhibition of Canna indica L. rhizome extracts. Food Biosci. 2020, 35, 100544. [Google Scholar] [CrossRef]
- Wafa, S.N.; Mat Taha, R.; Mohajer, S.; Mahmad, N.; Ahmed, A.B.A. Organogenesis and Ultrastructural Features of in Vitro Grown Canna indica L. Biomed Res. Int. 2016, 2016, 2820454. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Bioactive components and pharmacological effects of Canna indica—An overview. Int. J. Pharmacol. Toxicol. 2015, 5, 71–75. [Google Scholar]
- Bachheti, R.K.; Rawat, G.S.; Joshi, A.; Pandey, D.P. Phytochemical investigation of aerial parts of Canna indica collected from Uttarakhand India. Int. J. PharmTech Res. 2013, 5, 294–300. [Google Scholar]
- Enyoh, C.E.; Isiuku, B.O. Competitive biosorption and phytotoxicity of chlorophenols in aqueous solution to Canna indica L. Curr. Res. Green Sustain. Chem. 2021, 4, 100094. [Google Scholar] [CrossRef]
- Mishra, S.; Yadav, A.; Singh, E.K. A review on Canna indica Linn: Pharmacognostic and pharmacological profile. J. Harmon. Res. 2013, 2, 131–144. [Google Scholar]
- Kumbhar, S.T.; Patil, S.P.; Une, H.D. Phytochemical analysis of Canna indica L. roots and rhizomes extract. Biochem. Biophys. Rep. 2018, 16, 50–55. [Google Scholar] [CrossRef]
- Sasaerila, Y.H.; Tajuddin, T.; Pengkajian, B.; Teknologi, P. Study on the survival and adaptation of Canna indica L. to different light environments and herbivore attacks. Int. J. Adv. Sci. Technol. 2019, 7, 2321–9009. [Google Scholar]
- Imai, K. Edible canna: A prospective plant resource from South America. Jpn. J. Plant Sci. 2008, 2, 46–53. [Google Scholar]
- Pandey, S.; Bhandari, M. Hidden Potential of Canna Indica—Anamazing Ornamental Herb. Int. J. Tech. Res. Sci. 2021, Special, 112–118. [Google Scholar] [CrossRef]
- De Las Mercedes Ciciarelli, M. Life Cycle in Natural Populations of Canna indica L. from Argentina. In Phenology and Climate Change; Intech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, X.; Zhu, H.; Bañuelos, G.; Shutes, B.; Wu, H. Influence of salt stress on propagation, growth and nutrient uptake of typical aquatic plant species. Nord. J. Bot. 2019, 37, 12. [Google Scholar] [CrossRef]
- Talukdar, D. Studies on antioxidant enzymes in Canna indica plant under copper stress. J. Environ. Biol. 2013, 34, 93–98. [Google Scholar]
- Dong, X.; Yang, F.; Yang, S.; Yan, C. Subcellular distribution and tolerance of cadmium in Canna indica L. Ecotoxicol. Environ. Saf. 2019, 185, 109692. [Google Scholar] [CrossRef]
- Sasaerila, Y.H.; Sakinah, S.; Noriko, N.; Wijihastuti, R.S. Effects of Light Environments on Leaf Traits and Phenotypic Plasticity of Canna indica. Biosaintifika J. Biol. Biol. Educ. 2021, 13, 169–177. [Google Scholar] [CrossRef]
- Konnerup, D.; Brix, H. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquat. Bot. 2010, 92, 142–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Rengel, Z.; Meney, K. Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms. Aquat. Bot. 2008, 89, 317–323. [Google Scholar] [CrossRef]
- Thepouyporn, A.; Yoosook, C.; Chuakul, W.; Thirapanmethee, K.; Napaswad, C.; Wiwat, C. Purification and characterization of anti-HIV-1 protein from Canna indica L. leaves. Southeast Asian J. Trop. Med. Public Health 2012, 43, 1153–1159. [Google Scholar] [PubMed]
- Awosan, E.A.; Lawal, I.O.; Ajekigbe, J.M.; Borokini, T.I. Antimicrobial potential of Rothmannia longiflora Salisb and Canna indica Linn extracts against selected strains of fungi and bacteria. Afr. J. Microbiol. Res. 2014, 8, 2376–2380. [Google Scholar] [CrossRef]
- Fahim, R.; Xiwu, L.; Jilani, G. Feasibility of using divergent plantation to aggrandize the pollutants abatement from sewage and biomass production in treatment wetlands. Ecohydrol. Hydrobiol. 2021, 21, 731–746. [Google Scholar] [CrossRef]
- Singh, R.; Bachheti, R.K.; Saini, C.K.; Singh, U. In-vitro antioxidant activity of Canna indica extracts using different solvent system. Asian J. Pharm. Clin. Res. 2016, 9, 53–56. [Google Scholar] [CrossRef]
- Samal, K.; Dash, R.R.; Bhunia, P. Performance assessment of a Canna indica assisted vermifilter for synthetic dairy wastewater treatment. Process Saf. Environ. Prot. 2017, 111, 363–374. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Song, X.S.; Wang, G.; Wang, Y.H. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland. Chemosphere 2014, 117, 502–505. [Google Scholar] [CrossRef]
- Ghezali, K.; Bentahar, N.; Barsan, N.; Nedeff, V.; Moșneguțu, E. Potential of Canna indica in Vertical Flow Constructed Wetlands for Heavy Metals and Nitrogen Removal from Algiers Refinery Wastewater. Sustain. 2022, 14, 4394. [Google Scholar] [CrossRef]
- Zhimiao, Z.; Xiao, Z.; Zhufang, W.; Xinshan, S.; Mengqi, C.; Mengyu, C.; Yinjiang, Z. Enhancing the pollutant removal performance and biological mechanisms by adding ferrous ions into aquaculture wastewater in constructed wetland. Bioresour. Technol. 2019, 293, 122003. [Google Scholar] [CrossRef]
- Suganya, K.; Paul Sebastian, S. Phytoremediation prospective of Indian shot (Canna indica) in treating the sewage effluent through hybrid reed bed (HRB) technology. Int. J. Chem. Stud. 2017, 5, 102–105. [Google Scholar]
- Haritash, A.K.; Sharma, A.; Bahel, K. The potential of Canna lily for wastewater treatment under indian conditions. Int. J. Phytoremediation 2015, 17, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Pal, H. Removal of various pollutants from grey waste water using Canna lily plants: A concise review. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1190–1193. [Google Scholar] [CrossRef]
- Brisson, J.; Chazarenc, F. Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection? Sci. Total Environ. 2009, 407, 3923–3930. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tai, Y.; Man, Y.; Wang, R.; Feng, X.; Yang, Y.; Fan, J.; Guo, J.J.; Tao, R.; Yang, Y.; et al. Capacity of various single-stage constructed wetlands to treat domestic sewage under optimal temperature in Guangzhou City, South China. Ecol. Eng. 2018, 115, 35–44. [Google Scholar] [CrossRef]
- Hdidou, M.; Necibi, M.C.; Labille, J.; El Hajjaji, S.; Dhiba, D.; Chechbouni, A.; Roche, N. Potential use of constructed wetland systems for rural sanitation and wastewater reuse in agriculture in the moroccan context. Energies 2022, 15, 156. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, H.; Bañuelos, G.; Yan, B.; Shutes, B.; Cheng, X.; Chen, X. Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors. Chemosphere 2017, 187, 52–61. [Google Scholar] [CrossRef]
- Guittonny-Philippe, A.; Masotti, V.; Höhener, P.; Boudenne, J.L.; Viglione, J.; Laffont-Schwob, I. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environ. Int. 2014, 64, 1–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Rengel, Z.; Meney, K. Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono- and mixed-culture in wetland microcosms. Water. Air. Soil Pollut. 2007, 183, 95–105. [Google Scholar] [CrossRef]
- Zhang, Z.; Rengel, Z.; Meney, K. Growth and resource allocation of Canna indica and Schoenoplectus validus as affected by interspecific competition and nutrient availability. Hydrobiologia 2007, 589, 235–248. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, S.S.; Wang, P.F.; Qian, J. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. 2014, 26, 497–511. [Google Scholar] [CrossRef]
- Kitalika, A.J.; Machunda, R.L.; Komakech, H.C.; Njau, K.N. Physicochemical and Microbiological Variations in Rivers on the Foothills of Mount Meru, Tanzania. Int. J. Sci. Eng. Res. 2017, 8, 1320–1346. [Google Scholar] [CrossRef]
- Kitalika, A.J.; Machunda, R.L.; Komakech, H.C.; Njau, K.N. Assessment of water quality variation in rivers through comparative index technique and its reliability for decision making. Tanzan. J. Sci. 2016, 44, 163–191. [Google Scholar]
- Sengupta, P. Potential health impacts of hard water. Int. J. Prev. Med. 2013, 4, 866–875. [Google Scholar]
- Khandare, R.V.; Watharkar, A.D.; Pawar, P.K.; Jagtap, A.A.; Desai, N.S. Hydrophytic plants Canna indica, Epipremnum aureum, Cyperus alternifolius and Cyperus rotundus for phytoremediation of fluoride from water. Environ. Technol. Innov. 2021, 21, 101234. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Yu, Z.; Yi, X.; Ju, Y.; Huang, J.; Liu, R. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate. Water Sci. Technol. 2014, 70, 620–626. [Google Scholar] [CrossRef]
- Bindu, T.; Sumi, M.M.; Ramasamy, E.V. Decontamination of water polluted by heavy metals with Taro (Colocasia esculenta) cultured in a hydroponic NFT system. Environmentalist 2010, 30, 35–44. [Google Scholar] [CrossRef]
- Kayombo, S.; Ladegaard, N. Waste Stabilization Ponds and Constructed Wetlands Design Manual; International Environmental Technology Centre: Osaka, Japan, 2004. [Google Scholar]
- Karthikeyan, S.; Palaniappan, P.R.; Sabhanayakam, S. Influence of pH and water hardness upon nickel accumulation in edible fish Cirrhinus mrigala. J. Environ. Biol. 2007, 28, 489–492. [Google Scholar]
- Dhiman, J.; Prasher, S.O.; ElSayed, E.; Patel, R.M.; Nzediegwu, C.; Mawof, A. Effect of hydrogel based soil amendments on heavy metal uptake by spinach grown with wastewater irrigation. J. Clean. Prod. 2021, 311, 127644. [Google Scholar] [CrossRef]
- Obinnaa, I.B.; Ebere, E.C. A Review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Anal. Methods Environ. Chem. J. 2019, 2, 5–38. [Google Scholar] [CrossRef]
- Elrashid, A.N.A. A Survey of Naturally Occurring Radioactivenuclides in Food Samples Collected from Nuba Mountains West-Central Sudan (South Kordofan State). Ph.D. Thesis, University of Khartoum, Khartoum, Sudan, 2015. [Google Scholar]
- Dixit, S.; Dixit, A.; CS, G. Eco-friendly Alternatives for the Removal of Heavy Metal Using Dry Biomass of Weeds and Study the Mechanism Involved. J. Bioremediation Biodegrad. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Mohotti, A.J.; Geeganage, K.T.; Mohotti, K.M.; Ariyarathne, M.; Karunaratne, C.L.S.M.; Chandrajith, R. Phytoremedial potentials of Ipomoea aquatica and Colocasia esculenta in soils contaminated with heavy metals through automobile painting, repairing and service centres. Sri Lankan J. Biol. 2016, 1, 27. [Google Scholar] [CrossRef]
- Barya, M.P.; Gupta, D.; Shukla, R.; Thakur, T.K.; Mishra, V.K. Phytoremediation of Heavy Metals From Mixed Domestic Sewage Through Vertical- Flow Constructed Wetland Planted with Canna Indica and Acorus Calamus. Curr. World Environ. 2020, 15, 430–440. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavas, I.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Xu, Z.; Zhang, L.; Dai, Y.; Tang, X.; Tao, R.; Li, R.; Yang, Y.; Tai, Y. Effect of heavy metals in mixed domestic-industrial wastewater on performance of recirculating standing hybrid constructed wetlands (RSHCWs) and their removal. Chem. Eng. J. 2020, 379, 122363. [Google Scholar] [CrossRef]
- Jha, P.; Samal, A.C.; Santra, S.C.; Dewanji, A. Heavy Metal Accumulation Potential of Some Wetland Plants Growing Naturally in the City of Kolkata, India. Am. J. Plant Sci. 2016, 7, 2112–2137. [Google Scholar] [CrossRef]
- Subhashini, V.; Swamy, A. Phytoremediation of Metal (Pb, Ni, Zn, Cd and Cr) Contaminated Soils Using Canna Indica. Curr. World Environ. 2014, 9, 780–784. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Soda, S.; Kanayama, A.; Hamai, T. Effects of cattails and hydraulic loading on heavy metal removal from closed mine drainage by pilot-scale constructed wetlands. Water 2021, 13, 1937. [Google Scholar] [CrossRef]
- Šíma, J.; Svoboda, L.; Šeda, M.; Krejsa, J.; Jahodová, J. The fate of selected heavy metals and arsenic in a constructed wetland. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2019, 54, 56–64. [Google Scholar] [CrossRef]
- Taufikurahman, T.; Pradisa, M.A.S.; Amalia, S.G.; Hutahaean, G.E.M. Phytoremediation of chromium (Cr) using Typha angustifolia L., Canna indica L. and Hydrocotyle umbellata L. in surface flow system of constructed wetland. IOP Conf. Ser. Earth Environ. Sci. 2019, 308, 012020. [Google Scholar] [CrossRef]
- Maine, M.A.; Hadad, H.R.; Camaño Silvestrini, N.E.; Nocetti, E.; Sanchez, G.C.; Campagnoli, M.A. Cr, Ni, and Zn removal from landfill leachate using vertical flow wetlands planted with Typha domingensis and Canna indica. Int. J. Phytoremediation 2022, 24, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhu, H.; Bañuelos, G.; Xu, Y.; Yan, B.; Cheng, X. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag. Environ. Sci. Pollut. Res. 2019, 26, 33804–33815. [Google Scholar] [CrossRef]
- Subhashini, V.; Swamy, A.V.V.S. Phytoremediation of Pb and Ni Contaminated Soils Using Catharanthus roseus (L.). Univers. J. Environ. Res. Technol. 2013, 3, 465–472. [Google Scholar]
- Olawale, O.; Raphael, D.O.; Akinbile, C.O.; Ishuwa, K. Comparison of heavy metal and nutrients removal in Canna indica and Oryza sativa L. based constructed wetlands for piggery effluent treatment in north-central Nigeria. Int. J. Phytoremediation 2021, 23, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Bayabil, H.K.; Teshome, F.T.; Li, Y.C. Emerging Contaminants in Soil and Water. Front. Environ. Sci. 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Visanji, Z.; Sadr, S.M.K.; Memon, F.A. An Implementation of a Decision Support Tool to Assess Treatment of Emerging Contaminants in India. J. Water Resour. Prot. 2018, 10, 422–440. [Google Scholar] [CrossRef]
- Richardson, S.D.; Ternes, T.A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90, 398–428. [Google Scholar] [CrossRef]
- Taheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag. 2018, 10, 122–126. [Google Scholar] [CrossRef]
- Ávila, C.; Nivala, J.; Olsson, L.; Kassa, K.; Headley, T.; Mueller, R.A.; Bayona, J.M.; García, J. Emerging organic contaminants in vertical subsurface flow constructed wetlands: Influence of media size, loading frequency and use of active aeration. Sci. Total Environ. 2014, 494–495, 211–217. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Ilyas, H.; van Hullebusch, E.D. Role of design and operational factors in the removal of pharmaceuticals by constructed wetlands. Water 2019, 11, 2356. [Google Scholar] [CrossRef]
- Macci, C.; Peruzzi, E.; Doni, S.; Iannelli, R.; Masciandaro, G. Ornamental plants for micropollutant removal in wetland systems. Environ Sci Pollut Res. 2014, 22, 2406–2415. [Google Scholar] [CrossRef]
- Srivastava, A.; Jangid, N.K.; Srivastava, M.; Rawat, V. Pesticides as water pollutants. In Groundwater for Sustainable Development: Problems, Perspectives and Challenges; CRC Press: Boca Raton, FL, USA, 2008; pp. 95–101. ISBN 9780203894569. [Google Scholar]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in drinking water—A review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef]
- Zhu, H.; Yu, X.; Xu, Y.; Yan, B.; Bañuelos, G.; Shutes, B.; Wen, Z. Removal of chlorpyrifos and its hydrolytic metabolite in microcosm-scale constructed wetlands under soda saline-alkaline condition: Mass balance and intensification strategies. Sci. Total Environ. 2021, 777, 145956. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Wu, L.; Zhong, F.; Cui, N.; Dai, Y.; Cheng, S. Triazophos (TAP) removal in horizontal subsurface flow constructed wetlands (HSCWs) and its accumulation in plants and substrates. Sci. Rep. 2017, 7, 5468. [Google Scholar] [CrossRef]
- Cheng, S.; Xiao, J.; Xiao, H.; Zhang, L.; Wu, Z. Phytoremediation of triazophos by Canna indica Linn. in a hydroponic system. Int. J. Phytoremediation 2007, 9, 453–463. [Google Scholar] [CrossRef]
- Chen, Q.; Zeng, H.; Liang, Y.; Qin, L.; Peng, G.; Huang, L.; Song, X. Purification effects on β-hch removal and bacterial community differences of vertical-flow constructed wetlands with different vegetation plantations. Sustain. 2021, 13, 13244. [Google Scholar] [CrossRef]
- Mahapatra, M.K.; Kumar, A. Studies on the Adsorption of 2-Chlorophenol onto Rice Straw Activated Carbon from Aqueous Solution and its Regeneration. Chem. Biochem. Eng. Q. 2022, 36, 51–65. [Google Scholar] [CrossRef]
- Al-Farsi, R.; Ahmed, M.; Al-Busaidi, A.; Choudri, B.S. Assessing the presence of pharmaceuticals in soil and plants irrigated with treated wastewater in Oman. Int. J. Recycl. Org. Waste Agric. 2018, 7, 165–172. [Google Scholar] [CrossRef]
- Cunningham, V.L.; Buzby, M.; Hutchinson, T.; Mastrocco, F.; Parke, N.; Roden, N. Effects of human pharmaceuticals on aquatic life: Next steps. Environ. Sci. Technol. 2006, 40, 3456–3462. [Google Scholar] [CrossRef]
- Feng, L.; van Hullebusch, E.D.; Rodrigo, M.A.; Esposito, G.; Oturan, M.A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 2013, 228, 944–964. [Google Scholar] [CrossRef]
- Shraim, A.; Diab, A.; Alsuhaimi, A.; Niazy, E.; Metwally, M.; Amad, M.; Sioud, S.; Dawoud, A. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arab. J. Chem. 2017, 10, S719–S729. [Google Scholar] [CrossRef]
- Fabbri, E.; Franzellitti, S. Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. Environ. Toxicol. Chem. 2016, 35, 799–812. [Google Scholar] [CrossRef]
- Kar, S.; Roy, K.; Leszczynski, J. Impact of Pharmaceuticals on the Environment: Risk Assessment Using QSAR Modeling Approach. In Computational Toxicology: Methods and Protocols, Methods in Molecular Biology; Humana: Louisville, KY, USA, 2018; Volume 1800, ISBN 9781493978991. [Google Scholar]
- Hey, G.; Vega, S.R.; Fick, J.; Tysklind, M.; Ledin, A.; la Cour Jansen, J.; Andersen, H.R. Removal of pharmaceuticals in WWTP effluents by ozone and hydrogen peroxide. Water SA 2014, 40, 165–173. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, X.; Wu, F.; Deng, N. Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. React. Kinet. Mech. Catal. 2011, 104, 61–73. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S.; Shahzad, K. A review on removal of pharmaceuticals from water by adsorption. Desalin. Water Treat. 2016, 57, 12842–12860. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Meng, G.; Zhang, C.; Guo, R. Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration. J. Environ. Manag. 2020, 273, 111120. [Google Scholar] [CrossRef]
- Tai, Y.; Fung-Yee Tam, N.; Ruan, W.; Yang, Y.; Yang, Y.; Tao, R.; Zhang, J. Specific metabolism related to sulfonamide tolerance and uptake in wetland plants. Chemosphere 2019, 227, 496–504. [Google Scholar] [CrossRef]
- Hongbin, L.U.; Wang, H.; Shaoyong, L.U.; Jiaxin, L.I.; Wang, T. Response mechanism of typical wetland plants and removal of water pollutants under different levofloxacin concentration. Ecol. Eng. 2020, 158, 106023. [Google Scholar] [CrossRef]
- Ravichandran, M.K.; Philip, L. Assessment of the contribution of various constructed wetland components for the removal of pharmaceutically active compounds. J. Environ. Chem. Eng. 2022, 10, 107835. [Google Scholar] [CrossRef]
- Ma, H.; Bonnie, N.A.; Yu, M.; Che, S.; Wang, Q. Biological treatment of ammonium perchlorate-contaminated wastewater: A review. J. Water Reuse Desalination 2016, 6, 82–107. [Google Scholar] [CrossRef]
- Li, D.; Li, B.; Gao, H.; Du, X.; Qin, J.; Li, H.; He, H.; Chen, G. Removal of perchlorate by a lab-scale constructed wetland using achira (Canna indica L.). Wetl. Ecol. Manag. 2022, 30, 35–45. [Google Scholar] [CrossRef]
- Shenoy, A.; Shukla, B.K.; Bansal, V. Materials Today: Proceedings Sustainable design of textile industry effluent treatment plant with constructed wetland. Mater. Today Proc. 2022, 61, 537–542. [Google Scholar] [CrossRef]
- Huang, C.M.; Yuan, C.S.; Yang, W.B.; Yang, L. Temporal variations of greenhouse gas emissions and carbon sequestration and stock from a tidal constructed mangrove wetland. Mar. Pollut. Bull. 2019, 149, 110568. [Google Scholar] [CrossRef]
- Flores, L.; Garfí, M.; Pena, R.; García, J. Promotion of full-scale constructed wetlands in the wine sector: Comparison of greenhouse gas emissions with activated sludge systems. Sci. Total Environ. 2021, 770, 145326. [Google Scholar] [CrossRef]
- Wu, S.; He, H.; Inthapanya, X.; Yang, C.; Lu, L.; Zeng, G.; Han, Z. Role of biochar on composting of organic wastes and remediation of contaminated soils—A review. Environ. Sci. Pollut. Res. 2017, 24, 16560–16577. [Google Scholar] [CrossRef]
- Mander, Ü.; Dotro, G.; Ebie, Y.; Towprayoon, S.; Chiemchaisri, C.; Nogueira, S.F.; Jamsranjav, B.; Kasak, K.; Truu, J.; Tournebize, J.; et al. Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2014, 66, 19–35. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
Characteristics | Description of Characteristics |
---|---|
Plant description | Canna indica is a coarse perennial herb that grows to heights of 90 cm to 3 m. It owns large leaves similar to but not as large as those of the banana plant [30]. The flowers are red, solitary or in pairs, and the bract is about 1.3 cm long. The fruits are green oblong capsules that are spiny and 2 to 2.5 cm long. The silky coat protects the seeds, which are first white and then turn black with chestnut brown markings as they mature [31,32,33]. |
Botanical classification | Kingdom: Plantae, Subkingdom: Tracheobiont, Super division: Spermatophyta, Division: Magnoliophyta, Class: Liliopsida, Subclass: Zingiberidae, Order: Zingiberales, Family: Cannaceae Genus: Canna, Species: indica [31,34,35]. |
Habitat and geographical distribution | Canna indica is native to the tropical regions of America, but it is also found in other tropical countries across the world [36]. It prefers moist, shady environments in forests, savannahs, and swamps as well as areas along rivers or roads [30,35,37,38]. The plant is soft and easily uprooted. It is easily propagated by seeds or root cuttings [39]. Canna indica has a life cycle of roughly 9 months [34]. |
Tolerance | Canna indica can tolerate in environments with high salinity [40], high concentration of Cu [41] and Cd2+ up to 5 mg/L. Above 5 mg/L Cd2+ stress some damage can occur [42]. The plant can also tolerate excess moisture and pests although it is susceptible to rust (Puccinia thaliae) disease, as well as cut worm, Japanese beetles and grasshoppers [38]. It can grow in a wide range of light conditions. This includes both strong light intensity, such as direct sunlight, and low light zones caused by objects such as buildings and bridges [43]. It can also grow well in areas with fluctuating source of nutrients [44,45]. |
Uses | Due to high antimicrobial activity [32,46,47], different parts of this plant are used as traditional medicine to cure various diseases [48]. It contains palatable natural starch; thus, it can be used as food. The dried root powder of this plant is used to thicken sauces and improve the texture of foods [39]. It is used in CW systems to remove a range of contaminants from water and wastewater [49]. |
Removal Efficiency (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Type of CW | Substrate | Nature of Wastewater | COD | BOD5 | TDS | TSS | N | P | Reference |
VSSFCW | Gravels and sand | Domestic | 81.8 | 22.3 | 60.4 | 80.0 | [4] | ||
Microscale VSSFCW | Soil | Domestic | 87.0 | 91.0 | 97.0 | 98.0 | [8] | ||
Lab scale VSSFCW | Vermicompost, soil, sand, gravels | Synthetic | 75.8 | 80.6 | 84.8 | 42.6 | [50] | ||
HSSFCW | Gravels | ST effluent | 54 | 68.0 | 13.0 | [3] | |||
HSSFCW | Quartz sand | Synthetic | 65.0 | 43.0 | [9] | ||||
Pilot scale VSSFCW | Water quenched slag | Synthetic | 80.0 | [7] | |||||
VSSFCW | Sand slag Coal slag Blast furnace slag | Domestic Domestic Domestic | 24.1 29.9 21.6 | 88.9 60.1 44.7 | [1] [1] [1] | ||||
Lab scale aerated CW | Gravels and sand | Synthetic | 95.0 | 83.0 | [51] | ||||
VSSFCW | Stones, gravels, sand and clay | Industrial | 74.0 | 85.0 | 96.4 | [52] | |||
VSSFCW | Gravels | Synthetic | 62 | 95.0 | 77.0 | [53] | |||
Lab scale CW | Pebble, gravels, sand, and soil | Sewage | 61.8 | 68.0 | 71.7 | 73.3 | [54] | ||
Lab scale CW | Gravels and sand | Synthetic | 92.8 | 87.3 | 67.8 | 89 | 82.6 | [55] | |
Lab scale CW | Gravels and sand | Grey | 67.9 | 89 | 82.6 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karungamye, P.N. Potential of Canna indica in Constructed Wetlands for Wastewater Treatment: A Review. Conservation 2022, 2, 499-513. https://doi.org/10.3390/conservation2030034
Karungamye PN. Potential of Canna indica in Constructed Wetlands for Wastewater Treatment: A Review. Conservation. 2022; 2(3):499-513. https://doi.org/10.3390/conservation2030034
Chicago/Turabian StyleKarungamye, Petro Novert. 2022. "Potential of Canna indica in Constructed Wetlands for Wastewater Treatment: A Review" Conservation 2, no. 3: 499-513. https://doi.org/10.3390/conservation2030034
APA StyleKarungamye, P. N. (2022). Potential of Canna indica in Constructed Wetlands for Wastewater Treatment: A Review. Conservation, 2(3), 499-513. https://doi.org/10.3390/conservation2030034