Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Jequitinhonha River Hydrographic Basin: Physical Environment
2.2. Geo-Spatial Data Layers and Processing
2.3. Determination of Weight by AHP and Consistency Check
2.4. Input Data and Multi-Criteria Analysis (MCA)
3. Results
3.1. Plan Information’s Weights
3.2. Analytical Hierarchy Process (AHP)
3.3. Potential and Emergent Environmental Fragility
4. Discussion
4.1. Thematic Layer and AHP Model Analysis
4.2. PEF and EEF Practical Implications
4.3. Method Evaluation: Advances and Challenges
4.4. Recommendations for Environmental Management
5. Conclusions and Perspectives
- Models that improve our understanding of ecosystem fragility with or without human intervention can support environmental and territorial planning by allowing for the identification of suitable areas for human use and those that are a priority for conservation or restoration.
- Spatial models of environmental fragility, regardless of whether they include human intervention, are essential for understanding soil susceptibility. The PEF and EEF maps presented here configure territorial and environmental intelligence tools for the JRHB.
- The methodological framework was used efficiently, characterized the environmental fragility of the JRHB, and can be replicated in other world ecoregions according to specific characteristics and morphodynamic patterns.
- This methodology can support government agencies in decision-making processes for managing land use, environmental services, and subsidizing environmental zoning in hydrographic basins.
- Our results assist in prioritizing regions for comprehensive protection within the JRHB once part of the study area is considered a global hotspot for biodiversity with endemic and/or endangered species.
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Prăvălie, R. Major perturbations in the Earth’s forest ecosystems. Possible implications for global warming. Earth-Sci. Rev. 2018, 185, 544–571. [Google Scholar] [CrossRef]
- Baude, M.; Meyer, B.C.; Schindewolf, M. Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Sci. Total Environ. 2019, 659, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, S.; Song, S.; Wang, Y.; Musakwa, W. Detecting land degradation in Southern Africa using Time Series Segment and Residual Trend (TSS-RESTREND). J. Arid. Environ. 2021, 184, 104314. [Google Scholar] [CrossRef]
- Albaladejo, J.; Díaz-Pereira, E.; de Vente, J. Eco-Holistic Soil Conservation to Support Land Degradation Neutrality and the Sustainable Development Goals. Catena (Amst). Available online: https://doi.org/10.1016/j.catena.2020.104823 (accessed on 25 April 2022). [CrossRef]
- Tricart, J. Ecodinâmica. 1977. Available online: http://biblioteca.ibge.gov.br/visualizacao/monografias/GEBIS-RJ/ecodinamica.pdf (accessed on 2 March 2018).
- Ross, J.L.S. Análise Empírica da Fragilidade dos Ambientes Naturais Antropizados. Rev. Do Dep. De Geogr. 1994, 8, 63–74. [Google Scholar] [CrossRef] [Green Version]
- da Silva Anjinho, P.; Barbosa, M.A.G.A.; Costa, C.W.; Mauad, F.F. Environmental fragility analysis in reservoir drainage basin land use planning: A Brazilian basin case study. Land Use Policy 2021, 100, 104946. [Google Scholar] [CrossRef]
- Chakhar, S.; Mousseau, V. An algebra for multicriteria spatial modeling. Comput. Environ. Urban Syst. 2007, 31, 572–596. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process. McGraw-Hill, New York. References-Scientific Research Publishing. 1980. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1943982 (accessed on 25 April 2022).
- de Jesus França, L.C.; Mucida, D.P.; Santana, R.C.; de Morais, M.S.; Gomide, L.R.; de Meneses Bateira, C.V. Ahp Approach Applied to Multi-Criteria Decisions in Environmental Fragility Mapping. Floresta 2020, 50, 1623–1632. [Google Scholar] [CrossRef]
- Giamalaki, M.; Tsoutsos, T. Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renew. Energy 2019, 141, 64–75. [Google Scholar] [CrossRef]
- Manfré, L.A.; da Silva, A.M.; Urban, R.C.; Rodgers, J. Environmental Fragility Evaluation and Guidelines for Environmental Zoning: A Study Case on Ibiuna (the Southeastern Brazilian Region). Environ. Earth Sci. 2013, 69, 947–957. [Google Scholar] [CrossRef]
- Lee, S. Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review. Korean J. Remote Sens. 2019, 35, 179–193. [Google Scholar]
- Lyu, H.M.; Shen, S.L.; Yang, J.; Zhou, A.N. Risk Assessment of Earthquake-Triggered Geohazards Surrounding Wenchuan, China. Nat. Hazards Rev. 2020, 21, 05020007. [Google Scholar] [CrossRef]
- Lyu, H.M.; Shen, J.S.; Arulrajah, A. Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China. Sustainability 2018, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Vanderlei, G.; Ferreira, O. Paisagens culturais da Bacia do Rio Jequitinhonha, em Minas. Rev. Eletrônica De Geogr. 2013, 5, 2–26. [Google Scholar]
- Luciano, J.; Ross, S. Landforms and Environmental Planning: Potentialities and Fragilities. Rev. Do Dep. De Geogr. 2012, 38–51. [Google Scholar]
- Software de Mapeamento, G.I.S.; de Localização, I.; Espacial, A. Esri. Available online: https://www.esri.com/pt-br/home (accessed on 25 April 2022).
- Macedo Massa, E.; Luciano, J.; Ross, S. Aplicação De Um Modelo De Fragilidade Ambiental Relevo-Solo Na Serra Da Cantareira, Bacia Do Córrego Do Bispo, São Paulo-SP. Rev. Do Dep. De Geogr. 2012, 24, 57–79. [Google Scholar] [CrossRef] [Green Version]
- R.I UFVJM: Fragilidade Ambiental Potencial da Bacia Hidrográfica do Rio Jequitinhonha, Minas Gerais, Brasil. Available online: http://acervo.ufvjm.edu.br/jspui/handle/1/1585 (accessed on 25 April 2022).
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Morandi, D.T.; de Jesus França, L.C.; Menezes, E.S.; Machado, E.L.M.; da Silva, M.D.; Mucida, D.P. Delimitation of ecological corridors between conservation units in the Brazilian Cerrado using a GIS and AHP approach. Ecol. Indic. 2020, 115, 106440. [Google Scholar] [CrossRef]
- Saaty, T.L. Some Mathematical Concepts of the Analytic Hierarchy Process. Behaviormetrika 1991, 18, 29. [Google Scholar] [CrossRef]
- Nzeyimana, I.; Hartemink, A.E.; Geissen, V. GIS-Based Multi-Criteria Analysis for Arabica Coffee Expansion in Rwanda. PLoS ONE 2014, 9, e107449. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Merino, A.; García-Murillo, P.; Fernández-Zamudio, R. Combining multicriteria decision analysis and GIS to assess vulnerability within a protected area: An objective methodology for managing complex and fragile systems. Ecol. Indic. 2020, 108, 105738. [Google Scholar] [CrossRef]
- Liu, S.; Li, W. Zoning and management of phreatic water resource conservation impacted by underground coal mining: A case study in arid and semiarid areas. J. Clean. Prod. 2019, 224, 677–685. [Google Scholar] [CrossRef]
- Lal, R. Degradation and Resilience of Soils. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 997. [Google Scholar] [CrossRef]
- Castro, S.S.; de Hernani, L.C. Solos Frágeis: Caracterização, Manejo e Sustentabilidade. Portal Embrapa. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1039217/solos-frageis-caracterizacao-manejo-e-sustentabilidade (accessed on 25 April 2022).
- Cruz, B.B.; Manfré, L.A.; Ricci, D.S.; Brunoro, D.; Appolinario, L.; Quintanilha, J.A. Environmental fragility framework for water supply systems: A case study in the Paulista Macro Metropolis area (SE Brazil). Environ. Earth Sci. 2017, 76, 3–13. [Google Scholar] [CrossRef]
- Agência Embrapa de Informação Tecnológica-Argissolos. Available online: http://www.agencia.cnptia.embrapa.br/gestor/solos_tropicais/arvore/CONTAG01_7_2212200611538.html (accessed on 25 April 2022).
- de Alvarenga Yoshida, F.; Stolf, R. Environmental fragility based on the spatial distribution of soil resistance for the en-vironmental protection area (EPA) of Botucatu, Sao Paulo, Brazil. Holos Environ. 2019, 19, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Grelsson, G. The Fragility of Ecosystems: A Review. J. Appl. Ecol. 1995, 32, 677. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Taveira, L.R.; Weindorf, D.C.; De Menezes, M.D.; de Carvalho, T.S.; Da Motta, P.E.F.; Teixeira, A.F.D.S.; Curi, N. Land use capability classification adaptation in low and intermediate technology farming systems: A soil erosion indicator. Soil Use Manag. 2021, 37, 164–180. [Google Scholar] [CrossRef]
- Lowe, M.A.; McGrath, G.; Leopold, M. The Impact of Soil Water Repellency and Slope upon Runoff and Erosion. Soil Tillage Res. 2021, 205, 104756. [Google Scholar] [CrossRef]
- Zambon, N.; Johannsen, L.L.; Strauss, P.; Dostal, T.; Zumr, D.; Cochrane, T.A.; Klik, A. Splash erosion affected by initial soil moisture and surface conditions under simulated rainfall. Catena 2021, 196, 104827. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Tikhomirov, D.; Christl, M.; Sadough, H.; Egli, M. Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology 2020, 363, 107235. [Google Scholar] [CrossRef]
- Silva, A.C.; Horak-Terra, I.; Barral, U.M.; Costa, C.R.; Gonçalves, S.T.; Pinto, T.; Silva, B.P.C.; Fernandes, J.S.C.; Mendonça Filho, C.V.; Vidal-Torrado, P. Altitude, vegetation, paleoclimate, and radiocarbon age of the basal layer of peatlands of the Serra do Espinhaço Meridional, Brazil. J. S. Am. Earth Sci. 2020, 103, 102728. [Google Scholar] [CrossRef]
- Base Legislação da Presidência da República-Lei n° 12.651 de 25 de maio de 2012. Available online: https://legislacao.presidencia.gov.br/atos/?tipo=LEI&numero=12651&ano=2012&ato=a48QTVU1kMVpWT59b (accessed on 25 April 2022).
- Spröl, C.; Ross, J.L.S. Análise Comparativa da fragilidade ambiental com aplicação de três modelos. GEOUSP-Espaço E Tempo 2004, 8, 39–49. [Google Scholar]
- Mapbiomas Brasil. Available online: https://mapbiomas.org/en/collection-release (accessed on 25 April 2022).
- de Mello, K.; Taniwaki, R.H.; de Paula, F.R.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Rodrigues, C.B.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar] [CrossRef]
- Morellato, L.P.C.; Silveira, F.A.O. Plant life in campo rupestre: New lessons from an ancient biodiversity hotspot. Flora 2018, 238, 1–10. [Google Scholar] [CrossRef]
- Mucina, L. Vegetation of Brazilian campos rupestres on siliceous substrates and their global analogues. Flora 2018, 238, 11–23. [Google Scholar] [CrossRef]
- Reflora. Available online: https://reflora.jbrj.gov.br/reflora/PrincipalUC/PrincipalUC.do;jsessionid=E9097EADC1FC672438ECDA3AFA184702 (accessed on 25 April 2022).
- Ribeiro, K.T.; Freitas, L. Impactos potenciais das alterações no Código Florestal sobre a vegetação de campos rupestres e campos de altitude. Biota Neotrop. 2010, 10, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, C.E.; Corrêa, G.R.; Candido, H.G.; Arruda, D.M.; Nunes, J.A.; Araujo, R.W.; Rodrigues, P.; Fernandes Filho, E.I.; Pereira, A.F.; Brandão, P.C.; et al. The physical environment of rupestrian grasslands (Campos Rupestres) in Brazil: Geological, geomorphological and pedological characteristics, and interplays. In Ecology and Conservation of Mountaintop Grasslands in Brazil; Springer: Cham, Switzerland, 2016; pp. 15–54. [Google Scholar]
- Análise da Fragilidade Ambiental da Bacia do Ribeirão das Abóboras, em Rio Verde, Sudoeste de Goiás–Dialnet. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=6069631 (accessed on 25 April 2022).
- Karfunkel, J.; Chaves, M.L.S.C.; Svisero, D.P.; Meyer, H.O.A. Diamonds from Minas Gerais, Brazil: An update on sources, origin, and production. Int. Geol. Rev. 2010, 36, 1019–1032. [Google Scholar] [CrossRef]
- Sulzbacher, A.W.; Lage, N.; Lopes, L.S. Mineração e questão agrária no Vale do Jequitinhonha. Rev. Campo-Territ. 2020, 15, 400–429. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Arantes-Garcia, L.; Barbosa, M.; Barbosa, N.P.; Batista, E.K.; Beiroz, W.; Resende, F.M.; Abrahao, A.; Almada, E.D.; Alves, E.; et al. Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspect. Ecol. Conserv. 2020, 18, 213–222. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Barbosa, N.P.U.; Alberton, B.; Barbieri, A.; Dirzo, R.; Goulart, F.; Guerra, T.J.; Morellato, L.P.C.; Solar, R.R.C. The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands. Biodivers. Conserv. 2018, 27, 2587–2603. [Google Scholar] [CrossRef] [Green Version]
- Crepani, E.; Medeiros, J.D.; Hernandez Filho, P.; Florenzano, T.G.; Duarte, V.; Barbosa, C.C.F. Sensoriamento Remoto e Geoprocessamento Aplicados ao Zoneamento Ecológico-Econômico e ao Ordenamento Territorial; Inpe: São José dos Campos, Brazil, 2001. [Google Scholar]
- Kidane, M.; Bezie, A.; Kesete, N.; Tolessa, T. The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon 2019, 5, e02981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, S.; Kosugi, K.; Gomi, T.; Mizuyama, T. Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resour. Res. 2009, 45, 6402. [Google Scholar] [CrossRef]
- Oliveira-Andreoli, E.Z.; de Moraes, M.C.P.; da Silva Faustino, A.; Vasconcelos, A.F.; Costa, C.W.; Moschini, L.E.; Melanda, E.A.; Justino, E.A.; Di Lollo, J.A.; Lorandi, R. Multi-temporal analysis of land use land cover interference in environmental fragility in a Mesozoic basin, southeastern Brazil. Groundw. Sustain. Dev. 2021, 12, 100536. [Google Scholar] [CrossRef]
- Campos, J.A.; Aires, U.R.V.; da Silva, D.D.; Calijuri, M.L. Environmental fragility and vegetation cover dynamics in the Lapa Grande State Park, MG, Brazil. An. Da Acad. Bras. De Ciências 2019, 91. Available online: http://www.scielo.br/j/aabc/a/hmcZ6GYy97wQKrHqznXmKGs/abstract/?lang=en (accessed on 25 April 2022). [CrossRef]
- Wang, X.D.; Zhong, X.H.; Liu, S.Z.; Liu, J.G.; Wang, Z.Y.; Li, M.H. Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. J. Arid. Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- Xiaodan, W.; Xianghao, Z.; Pan, G. A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. J. Environ. Manag. 2010, 91, 1981–1990. [Google Scholar] [CrossRef]
- Panagos, P.; Christos, K.; Cristiano, B.; Ioannis, G. Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in Crete focusing on agricultural land uses. IJAEO 2014, 27, 147–155. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Lu, C.Y.; Gu, W.; Dai, A.H.; Wei, H.Y. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecol. Model. 2012, 242, 105–115. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, M.; Zhou, L.; Yang, G.; Huang, L.; Yan, C.; Huang, Q.; Ye, L.; Zhang, X.; Guo, L.; et al. Regionalization of Habitat Suitability of Masson’s Pine based on geographic information system and Fuzzy Matter-Element Model. Sci. Rep. 2016, 6, 34716. [Google Scholar] [CrossRef] [Green Version]
- Gharizadeh Beiragh, R.; Alizadeh, R.; Shafiei Kaleibari, S.; Cavallaro, F.; Zolfani, S.H.; Bausys, R.; Mardani, A. An integrated multi-criteria decision making model for sustainability performance assessment for insurance companies. Sustainability 2020, 12, 789. [Google Scholar] [CrossRef] [Green Version]
- Randhir, T.; Shriver, D.M. Deliberative valuation without prices: A multiattribute prioritization for watershed ecosystem management. Ecol. Econ. 2009, 68, 3042–3051. [Google Scholar] [CrossRef]
- Rose, D.C.; Wheeler, R.; Winter, M.; Lobley, M.; Chivers, C.A. Agriculture 4.0: Making it work for people, production, and the planet. Land Use Policy 2021, 100, 104933. [Google Scholar] [CrossRef]
Geo-Spatial Data Layers | Database | Data Type or Method |
---|---|---|
Digital Elevation Model (DEM/SRTM) | Earth Explorer (USGS) (https://earthexplorer.usgs.gov/) (accessed on 2 March 2018) | Raster |
Soil Classes 1 | State Environment Foundation (FEAM) (http://idesisema.meioambiente.mg.gov.br/) (accessed on 2 March 2018) | Polygons |
Geological Domains | Geological Survey of Brazil (CPRM) (http://www.cprm.gov.br/en/) (accessed on 2 March 2018) | Polygons |
Rainfall 2 | Rainfall atlas (CPRM) (http://www.cprm.gov.br/en/) (accessed on 2 March 2018) | Inverse Distance Weighted (IDW) |
Fluvial Hierarchy | Derived from the DEM/SRTM (https://earthexplorer.usgs.gov/) (accessed on 2 March 2018) | Strahler method |
Land Use Land Cover 3 | MapBiomas (https://mapbiomas.org/) (accessed on 23 January 2020) | Raster |
Class | Coefficient | Description |
---|---|---|
Low | 1 | High potential for resilience and dynamic balance. |
Slightly Low | 2 | Stable morphodynamical conditions in the landscape with at least one environmental characteristic not included in low/weight 1 class. |
Medium | 3 | Fragility in the transition from the lower to the upper classes; an alert category for the risk of environmental degradation. They have moderate restrictions on the use of natural resources and anthropic use. Some of the analyzed parameters determine this level of fragility. |
High | 4 | High restrictions on the use of natural resources and land; more susceptible to forms of degradation than class 3. A combination of conditioning factors determines this level of environmental fragility, and careful evaluations are required before implementing any enterprise or anthropic interventions to minimize the impact and prioritize conservation or protection. |
Extremely High | 5 | Unstable areas with extreme environmental sensitivity. They have severe restrictions on the use of natural resources and land. The combination of biogeophysical or morphodynamical parameters can lead to soil erosion and environmental degradation. These areas are of relevant interest to forest conservation and biodiversity. |
Abbreviation | Description |
---|---|
PEF | Potential Environmental Fragility |
EEF | Emergent Environmental Fragility |
AHP | Analytic Hierarchy Process |
MCA | Multi-Criteria Analysis |
WLC | Weighted Linear Combination |
CR | Consistency Ratio |
CI | Consistency Index |
RI | Random Index |
JRHB | Jequitinhonha River Hydrographic Basin |
Environmental Fragility Classes | Criteria and Sub-Criteria | |||||
---|---|---|---|---|---|---|
Slope Degree 1 (%) | Geological Domains | River Hierarchy (Orders) | 2 Soil Classes | 3 Rainfall (mm) | 4 Land Use Cover | |
(1) Low | 0–6 | Granitoids; gneisses; deformed granitoids | 5 st, 6 st, 7 st | Red oxisols | 800–899 899–999 | Forest formation |
(2) Slightly Low | 6–12 | Gneisses and migmatites; metasedimentary and metavolcanic rocks | --- | Yellow and red-yellow oxisols | --- | Other non-forest natural formations |
(3) Medium | 12–20 | (Meta) sedimentary rocks | 3 st, 4 st | Yellow-red ultisols | 999–1098 | Forest plantations; savanna formations; annual and perennial crops; semi-perennial crops |
(4) High | 20–30 | Detrital lateritic covers | 2 st | Alfisols; haplic inceptisols | 1098–1198 1198–1300 | Pastures; mosaics of agricultural areas and pastures |
(5) Extremely High | >30 | --- | 1 st | Red ultisols; lithic entisols; rocky outcrops | --- | Rocky outcrops; mining; urban infrastructure; grassland; other non-vegetated areas |
C1 | C2 | C3 | C4 | C5 | C6 | EIGENVECTOR | ANV. | |
C1 | 1 | 6 | 2 | 9 | 5 | 4 | 3.60 | 40% |
C2 | 1/7 | 1 | 1/7 | 5 | 1/5 | 1/3 | 0.44 | 5% |
C3 | 1/3 | 7 | 1 | 9 | 3 | 3 | 2.40 | 27% |
C4 | 1/9 | 1/5 | 1/9 | 1 | 1/9 | 1/7 | 0.18 | 2% |
C5 | 1/5 | 5 | 1/3 | 9 | 1 | 3 | 1.44 | 16% |
C6 | 1/5 | 3 | 1/3 | 7 | 1/3 | 1 | 0.88 | 10% |
Sum (∑) | 1.99 | 22.20 | 3.92 | 40.00 | 9.64 | 11.48 | 8.93 | 100% |
Order of Importance | Criteria (n) | Weight wij | Priority Importance Scale |
---|---|---|---|
1 | Land Use Land Cover | 0.40 | 40% |
2 | Slope | 0.27 | 27% |
3 | Rainfall | 0.16 | 16% |
4 | Fluvial Hierarchy | 0.10 | 10% |
5 | Soil Classes | 0.05 | 5% |
6 | Geological Domains | 0.02 | 2% |
Fragility Classes | (A) PEF | (B) EEF | ||
---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Low | 12,430.57 | 19.38 | 1646.90 | 2.57 |
Slightly Low | 18,540.93 | 28.90 | 21,399.14 | 33.36 |
Medium | 19,244.07 | 30.00 | 34,503.55 | 53.78 |
High | 10,519.63 | 16.40 | 6305.45 | 9.83 |
Extremely High | 3416.15 | 5.33 | 296.27 | 0.46 |
Total | 64,151.35 | 100 | 64,151.35 | 100 |
EEF | (A) | (B) | |
---|---|---|---|
Degradation Risk/ Susceptibility | Resilience | ||
Description | Recommendations | ||
Low | Resistant (very resistant to stress and stable) | Highly resilient | (1) Suitable for anthropic land use and observations of the land use capability |
(2) Areas of rapid recovery/regeneration | |||
(3) Conservation of existing plant/forest remnants | |||
Slightly Low | Slight (stress resistant and stable) | Resilient | (1) Suitable for anthropic land use and observations of the land use capability |
(2) Conventional recovery techniques with appropriate management | |||
(3) Conservation of existing plant/forest remnants | |||
Medium | Moderate (susceptible to stress, with the transition from stable to unstable) | Moderately resilient | (1) Requires attention to anthropic land use; preferably agricultural and silvicultural minimum cultivation |
(2) Correct pasture management | |||
(3) Recovery through techniques and the induction of natural regeneration | |||
High | High (highly susceptible to stress and unstable) | Slightly or low resilience | (1) Priority for conservation and/or restoration |
(2) Reforestation with native species in riparian forests with streams and around anthropized springs | |||
(3) Slowly recoverable, even with land-use changes | |||
(4) Use of conservationist practices in anthropic land-use activities. Areas in use should prioritize family farming | |||
Extremely High | Extreme (extremely susceptible and fragile) | Low or no resilience | (1) Areas for the conservation and protection of natural vegetation, especially in the Espinhaço Range Biosphere Reserve |
(2) Effective recovery unlikely, even with a change in land use | |||
(3) Strict application of the Forest Code for PPA 1 of sloping land, hilltops, riverbanks, and springs | |||
(4) Priorities for the implementation of conservation units |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
França, L.C.d.J.; Lopes, L.F.; Morais, M.S.d.; Lisboa, G.d.S.; Rocha, S.J.S.S.d.; Morais Junior, V.T.M.d.; Santana, R.C.; Mucida, D.P. Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil. Conservation 2022, 2, 349-366. https://doi.org/10.3390/conservation2020024
França LCdJ, Lopes LF, Morais MSd, Lisboa GdS, Rocha SJSSd, Morais Junior VTMd, Santana RC, Mucida DP. Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil. Conservation. 2022; 2(2):349-366. https://doi.org/10.3390/conservation2020024
Chicago/Turabian StyleFrança, Luciano Cavalcante de Jesus, Luis Filipe Lopes, Marcelino Santos de Morais, Gerson dos Santos Lisboa, Samuel José Silva Soares da Rocha, Vicente Toledo Machado de Morais Junior, Reynaldo Campos Santana, and Danielle Piuzana Mucida. 2022. "Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil" Conservation 2, no. 2: 349-366. https://doi.org/10.3390/conservation2020024
APA StyleFrança, L. C. d. J., Lopes, L. F., Morais, M. S. d., Lisboa, G. d. S., Rocha, S. J. S. S. d., Morais Junior, V. T. M. d., Santana, R. C., & Mucida, D. P. (2022). Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil. Conservation, 2(2), 349-366. https://doi.org/10.3390/conservation2020024