A Protein Hydrolysate Mitigates the Adverse Effect of Chilling Stress on Cucumber Plants
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Growth Conditions and Experimental Design
- Nontreated plants grown at 25 ± 1 °C/20 ± 1 °C (day/night) (control).
- Pretreated plants with protein hydrolysate (PH, Naturamin WSP), grown at 25/20 ± 1 °C (day/night).
- Nontreated plants grown at 10 ± 1 °C.
- Pretreated plants with protein hydrolysate (PH, Naturamin WSP), grown at 10 ± 1 °C.
4.2. Photosynthetic Pigments Profiling
4.3. Leaf Gas Exchange Measurement
4.4. Chlorophyll Fluorescence Analysis
- ˗
- Photochemical quenching, qP = (Fm’ − F)/(Fm’ − Fo).
- ˗
- Non-photochemical quenching, qN = (Fm − Fm’)/(Fm − Fo),
- ˗
- quantum yield, Y = (Fm’ − F)/Fm’ [74].
- ˗
- Photosynthetic electron transport rate, ETR = Y × 0.84 × 0.5 × PAR (Handbook of operation with MINI-PAM).
4.5. RNA Extraction, cDNA Synthesis, and qRT-PCR Analysis
4.6. Enzyme Activity Measurements
4.6.1. Phenylalanine Ammonia Lyase (EC 4.3.1.24)
4.6.2. Nitrate Reductase (EC 1.6.6.2)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PH | Protein Hydrolisate |
| ROS | Reactive Oxygen Species |
| G6PD | Glucose-6-Phosphate Dehydrogenase |
| GCL | Glutamate-Cysteine ligase |
| PAL | Phenylalanine Ammonia Lyase |
| NADPH | Reduced Nicotinamide Adenine Dinucleotide Phosphate |
| MDHAR | Monodehydroascorbate Reductase |
| GR | Glutathione Reductase |
| NiR | Nitrate Reductase |
| PPFD | Photosynthetic Photon Flux Density |
| PAR | Photosynthetic Active Radiation |
| SLP | Saturation Light Pulse |
| RNA | Ribonucleic Acid |
| DNA | Deoxyribonucleic Acid |
| PCR | Polymerase Chain Reaction |
References
- Ding, Y.; Shi, Y.; Yang, S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019, 222, 1690–1704. [Google Scholar] [CrossRef]
- Lukatkin, A.S.; Brazaitytė, A.; Bobinas, Č.; Duchovskis, P. Chilling injury in chilling-sensitive plants: A review. Zemdirb. Agric. 2012, 99, 111–124. [Google Scholar]
- Bolger, T.P.; Upchurch, D.R.; McMichael, B.L. Temperature effects on cotton root hydraulic conductance. Environ. Exp. Bot. 1992, 32, 49–54. [Google Scholar] [CrossRef]
- Janská, A.; Maršík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation—What is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef]
- Lukatkin, A.S. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. The activity of antioxidant enzymes during plant chilling. Russ. J. Plant Physiol. 2002, 49, 782–788. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Lukatkin, A.S.; Isaikina, E.E. Calcium status and chilling injury in maize seedlings. Russ. J. Plant Physiol. 1997, 44, 339–342. [Google Scholar]
- Lee, K.P.; Kim, C.; Landgraf, F.; Apel, K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2007, 104, 10270–10275. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Noguchi, K.; Hikosaka, K.; Terashima, I. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Plant Cell Physiol. 2009, 50, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.; Clephan, A.L.; Davies, W.J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol. 2001, 126, 1566–1578. [Google Scholar] [CrossRef]
- He, S.; Zhao, K.; Ma, L.; Yang, J.; Chang, Y.; Ashraf, M.A. Comparison of cold resistance physiological and biochemical features of four Herba Rhodiola seedlings under low temperature. Saudi J. Biol. Sci. 2016, 23, 198–204. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Xiao, J.; Bao, F. Effects of chilling on the structure, function and development of chloroplasts. Front. Plant Sci. 2018, 9, 1715. [Google Scholar] [CrossRef]
- Allen, D.J.; Ort, D.R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 2001, 6, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, T.; Yamakawa, T.; Yamane, Y.; Koike, H.; Satoh, K.; Katoh, S. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol. 2002, 128, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, H.; Wang, L.; Zhao, Q.; Wang, D.; Zhang, T. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signal. Behav. 2022, 17, 2013638. [Google Scholar] [CrossRef]
- Satyakam; Zinta, G.; Singh, R.K.; Kumar, R. Cold adaptation strategies in plants—An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Front. Genet. 2022, 13, 909007. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.; Shi, K.; Xia, X.J.; Zhou, Y.H.; Yu, J.Q. Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol. Biochem. 2012, 60, 141–149. [Google Scholar] [CrossRef]
- Foyer, C.H.; Kunert, K. The ascorbate–glutathione cycle coming of age. J. Exp. Bot. 2024, 75, 2682–2699. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Q.; Liu, C.; Zhang, N.; Xu, W. Flavonoids as key players in cold tolerance: Molecular insights and applications in horticultural crops. Hortic. Res. 2025, 12, uhae366. [Google Scholar] [CrossRef]
- Cui, J.; Huang, M.; Qi, J.; Yu, W.; Li, C. Nitric oxide in plant cold stress: Functions, mechanisms and challenges. Agronomy 2025, 15, 1072. [Google Scholar] [CrossRef]
- Ruzzi, M.; Colla, G.; Rouphael, Y. Editorial: Biostimulants in agriculture II: Towards a sustainable future. Front. Plant Sci. 2024, 15, 1427283. [Google Scholar] [CrossRef]
- Petrozza, A.; Santaniello, A.; Summerer, S.; Di Tommaso, G.; Di Tommaso, D.; Paparelli, E. Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach. Sci. Hortic. 2014, 174, 185–192. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tugnoli, V.; Righi, V.; Nardi, S. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. J. Agric. Food Chem. 2011, 59, 11940–11948. [Google Scholar] [CrossRef]
- Katsenios, N.; Sparangis, P.; Vitsa, S.; Leonidakis, D.; Efthimiadou, A. Application of biostimulants and herbicides as a promising co-implementation: The incorporation of a new cultivation practice. Agronomy 2023, 13, 2634. [Google Scholar] [CrossRef]
- Andreotti, C.; Rouphael, Y.; Colla, G.; Basile, B. Rate and Timing of Application of Biostimulant Substances to Enhance Fruit Tree Tolerance toward Environmental Stresses and Fruit Quality. Agronomy 2022, 12, 603. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolysate-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. Acta Hortic. 2013, 1009, 29–35. [Google Scholar] [CrossRef]
- Harizanova, A.; Koleva-Valkova, L.; Vassilev, A. Effects of the protein hydrolysate pretreatment on cucumber plants exposed to chilling stress. Acta Agrobot. 2022, 75, 756. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Hund, A.; Richner, W.; Soldati, A.; Fracheboud, Y.; Stamp, P. Early vigour of maize inbred lines at low temperature as characterised by root and shoot traits. Eur. J. Agron. 2007, 27, 52–61. [Google Scholar] [CrossRef]
- Yordanov, I. Response of photosynthetic apparatus to temperature stress and molecular mechanisms of its adaptations. Photosynthetica 1992, 26, 517–531. [Google Scholar]
- Nie, G.Y.; Long, S.P.; Baker, N.R. The effects of development at suboptimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. Physiol. Plant. 1992, 85, 554–560. [Google Scholar] [CrossRef]
- Terashima, I.; Noguchi, K.; Itoh-Nemoto, T.; Park, Y.M.; Kubo, A.; Tanaka, K. The cause of PSI photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant. Physiol. Plant. 1998, 103, 295–303. [Google Scholar] [CrossRef]
- Venema, J.H.; Posthumus, F.; de Vries, M.; van Hasselt, P.R. Differential response of domestic and wild Lycopersicon species to chilling under low light: Growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiol. Plant. 1999, 105, 81–88. [Google Scholar] [CrossRef]
- Van Heerden, P.D.R.; Kruger, G.H.J.; Loveland, J.E.; Parry, M.A.J.; Foyer, C.H. Dark chilling imposes metabolic restrictions on photosynthesis in soybean. Plant Cell Environ. 2003, 26, 323–337. [Google Scholar] [CrossRef]
- Garstka, M.; Venema, J.H.; Runiak, I.; Gieczewska, K.; Rosiak, M.; Koziol-Lipinska, J.; Kierdaszuk, B.; Vredenberg, W.J.; Mostowska, A. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll–protein complexes in pea and tomato: Plants with a different susceptibility to non-freezing temperature. Planta 2007, 226, 1165–1181. [Google Scholar] [CrossRef] [PubMed]
- Sakoda, K.; Yamori, W.; Groszmann, M.; Evans, J.R. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiol. 2021, 185, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Pizzeghello, D.; Muscolo, A.; Vaccaro, S.; Francioso, O.; Nardi, S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar] [CrossRef]
- Godde, D.; Bornman, J.S. Regulation of photosynthesis in higher plants. In Molecular to Global Photosynthesis; Archer, M.D., Barber, J., Eds.; Imperial College Press: London, UK, 2004; pp. 49–51. [Google Scholar]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef]
- Potvin, C. Effect of leaf detachment on chlorophyll fluorescence during chilling experiments. Plant Physiol. 1985, 78, 883–886. [Google Scholar] [CrossRef]
- Alam, B.; Jacob, J. Overproduction of photosynthetic electrons is associated with chilling injury in green leaves. Photosynthetica 2002, 40, 91–95. [Google Scholar] [CrossRef]
- Pasković, I.; Popović, L.; Pongrac, P.; Polić Pasković, M.; Kos, T.; Jovanov, P.; Franić, M. Protein hydrolysates—Production, effects on plant metabolism, and use in agriculture. Horticulturae 2024, 10, 1041. [Google Scholar] [CrossRef]
- Cholakova-Bimbalova, R.; Petrov, V.; Vassilev, A. Photosynthetic performance of young maize (Zea mays L.) plants exposed to chilling stress can be improved by the application of protein hydrolysates. Acta Agrobot. 2019, 72, 1769. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, M.; Nicolas, M.; Ogé, L.; Pérez-Garcia, M.-.D.; Crespel, L.; Li, G.; Ding, Y.; Le Gourrierec, J.; Grappin, P.; et al. Glucose-6-phosphate dehydrogenases: The hidden players of plant physiology. Int. J. Mol. Sci. 2022, 23, 16128. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.M.; Krüger, A.; Alam, M.T.; et al. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 2015, 90, 927–963. [Google Scholar] [CrossRef]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef] [PubMed]
- Hashida, S.N.; Takahashi, H.; Uchimiya, H. The role of NAD biosynthesis in plant development and stress responses. Ann. Bot. 2009, 103, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Shigeoka, S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011, 155, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Kerchev, P.; van der Meer, T.; Sujeeth, N.; Verlee, A.; Stevens, C.V.; Van Breusegem, F.; Gechev, T. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 2020, 40, 107503. [Google Scholar] [CrossRef]
- Irisarri, P.; Zhebentyayeva, T.; Errea, P.; Pina, A. Differential expression of phenylalanine ammonia lyase (PAL) genes implies distinct roles in development of graft incompatibility symptoms in Prunus. Sci. Hortic. 2016, 204, 16–24. [Google Scholar] [CrossRef]
- Han, C.; Li, J.; Jin, P.; Li, X.; Wang, L.; Zheng, Y. The effect of temperature on phenolic content in wounded carrots. Food Chem. 2017, 215, 116–123. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Wang, X.H.; Gong, M.; Tang, L.; Zheng, S.; Lou, J.D.; Ou, L.; Zhang, C. Cloning, bioinformatics and enzyme activity analyses of a phenylalanine ammonia-lyase gene involved in dragon’s blood biosynthesis in Dracaena cambodiana. Mol. Biol. Rep. 2013, 40, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Rohde, A.; Morreel, K.; Ralph, J.; Goeminne, G.; Hostyn, V.; De Rycke, R.; Boerjan, W. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 2004, 16, 2749–2771. [Google Scholar] [CrossRef]
- Tovar, M.J.; Romero, M.P.; Girona, J.; Motilva, M.J. L-Phenylalanine ammonia-lyase activity and concentration of phenolics in developing olive (Olea europaea L. cv. Arbequina) fruit grown under different irrigation regimes. J. Sci. Food Agric. 2002, 82, 892–898. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Zacarías, L.; Martínez-Téllez, M.Á.; Sanchez-Ballesta, M.T.; Granell, A. Phenylalanine ammonia-lyase and ethylene in relation to chilling injury as affected by fruit age in citrus. Postharvest Biol. Technol. 2003, 29, 309–318. [Google Scholar] [CrossRef]
- Chen, J.Y.; He, L.H.; Jiang, Y.M.; Wang, Y.; Joyce, D.C.; Ji, Z.L.; Lu, W.J. Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit. Physiol. Plant. 2008, 132, 318–328. [Google Scholar] [CrossRef]
- Dong, C.J.; Li, L.; Cao, N.; Shang, Q.M.; Zhang, Z.G. Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings. J. Appl. Ecol. 2015, 26, 2041–2049. [Google Scholar]
- Zamljen, T.; Medič, A.; Hudina, M.; Veberič, R.; Slatnar, A. Biostimulatory effects of amino acids on phenylalanine ammonia lyase, capsaicin synthase, and peroxidase activities in Capsicum baccatum L. Biology 2022, 11, 674. [Google Scholar] [CrossRef]
- Zamljen, T.; Medič, A.; Hudina, M.; Veberič, R.; Slatnar, A. Biostimulative effect of amino acids on the enzymatic and metabolic response of two Capsicum annuum L. cultivars grown under salt stress. Sci. Hortic. 2023, 309, 111713. [Google Scholar] [CrossRef]
- Holobrada, M.; Mistrik, J.; Kolek, J. The effect of temperature on the uptake and loss of anions by seedling roots of Zea mays L. Biol. Plant. 1981, 23, 241–248. [Google Scholar] [CrossRef]
- Zia, M.S.; Salim, M.; Aslam, M.; Gill, M.A. Rahmatullah Effect of low temperature of irrigation water on rice growth nutrient uptake. J. Agric. Sci. 1994, 123, 22–31. [Google Scholar]
- Campbell, W.H. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, H.; Ma, H.; Lei, F.; He, D.; Huang, X.; Yang, H.; Fan, G. Comprehensive effects of N reduction combined with biostimulants on N use efficiency and yield of the winter wheat–summer maize rotation system. Agronomy 2023, 13, 2319. [Google Scholar] [CrossRef]
- Bradacova, K.; Weber, N.F.; Morad-Talab, N.; Asim, M.; Imran, M.; Weinmann, M.; Neumann, G. Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chem. Biol. Technol. Agric. 2016, 3, 19. [Google Scholar] [CrossRef]
- Park, E.J.; Jeknic, Z.; Chen, T.H.H. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol. 2006, 47, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Balabanova, D. The ameliorative effect of protein hydrolysate on imazamox-damaged young wheat plants. Agric. Sci. 2021, 13, 69–76. [Google Scholar] [CrossRef]
- Lichtenthaler, H. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Van Kooten, O.; Snel, J.F.H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 1990, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Brueske, C.H. Phenylalanine ammonia-lyase activity in tomato roots infected and resistant to the root-knot nematode Meloidogyne incognita. Physiol. Plant Pathol. 1980, 16, 409–414. [Google Scholar] [CrossRef]
- Al Gharbi, A.; Hipkin, C. Studies on nitrate reductase in British angiosperms: I. A comparison of nitrate reductase activity in ruderal woodland-edge and woody species. New Phytol. 1984, 97, 629–639. [Google Scholar] [CrossRef]
- Downs, M.; Nadelhoffer, K.; Melillo, J.; Aber, J. Foliar and fine root nitrate reductase activity in seedlings of four forest tree species in relation to nitrogen availability. Trees 1993, 7, 233–236. [Google Scholar] [CrossRef]




| Treatment | Plant Mass [g] | Root Mass [g] | Leaf Area [cm2] |
|---|---|---|---|
| 25 °C | 13.63 ± 0.9 a | 5.91 ± 0.8 a | 531 ± 46 a |
| 25 °C + PH | 12.73 ± 0.5 a | 6.07 ± 0.6 a | 502 ± 55 a |
| 10 °C | 2.36 ± 0.2 c | 1.68 ± 0.2 b | 83 ± 8 c |
| 10 °C + PH | 3.89 ± 0.1 b | 1.83 ± 0.1 b | 127 ± 6 b |
| Treatment | A [µmol CO2 m−2 s−1] | ci [vpm] | E [mmol H2O m−2 s−1] | gs [mol m−2 s−1] |
|---|---|---|---|---|
| 25 °C | 20.02 ± 1.18 a | 449 ± 13 a | 2.67 ± 0.07 b | 0.74 ± 0.05 a |
| 25 °C + PH | 18.97 ± 0.47 a | 426 ± 16 a | 2.92 ± 0.12 a | 0.91 ± 0.20 a |
| 10 °C | 3.54 ± 0.41 c | 482 ± 51 a | 0.57 ± 0.02 d | 0.04 ± 0.01 c |
| 10 °C + PH | 6.19 ± 0.15 b | 439 ± 42 a | 1.01 ± 0.06 c | 0.08 ± 0.01 b |
| Treatment | Fo | Fm | Fv/Fm | Y | ERT | qP | qN |
|---|---|---|---|---|---|---|---|
| 25 °C | 288 ± 4 c | 1412 ± 82 a | 0.795 ± 0.009 a | 0.319 ± 0.008 a | 32 ± 0.7 a | 0.476 ± 0.014 b | 0.478 ± 0.034 c |
| 25 °C + PH | 282 ± 2.5 c | 1436 ± 81 a | 0.803 ± 0.009 a | 0.289 ± 0.028 b | 29.5 ± 0.8 a | 0.442 ± 0.025 b | 0.505 ± 0.029 c |
| 10 °C | 412 ± 6.5 a | 841 ± 50 c | 0.509 ± 0.022 c | 0.093 ± 0.001 c | 9.5 ± 0.1 c | 0.247 ± 0.015 c | 0.589 ± 0.017 a |
| 10 °C + PH | 321 ± 10 b | 1115 ± 29 b | 0.712 ± 0.038 b | 0.204 ± 0.029 b | 20.6 ± 1.4 b | 0.521 ± 0.010 a | 0.553 ± 0.002 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Balabanova, D.; Harizanova, A.; Koleva-Valkova, L.; Petrov, V.; Vassilev, A. A Protein Hydrolysate Mitigates the Adverse Effect of Chilling Stress on Cucumber Plants. Stresses 2026, 6, 5. https://doi.org/10.3390/stresses6010005
Balabanova D, Harizanova A, Koleva-Valkova L, Petrov V, Vassilev A. A Protein Hydrolysate Mitigates the Adverse Effect of Chilling Stress on Cucumber Plants. Stresses. 2026; 6(1):5. https://doi.org/10.3390/stresses6010005
Chicago/Turabian StyleBalabanova, Dobrinka, Adelina Harizanova, Lyubka Koleva-Valkova, Veselin Petrov, and Andon Vassilev. 2026. "A Protein Hydrolysate Mitigates the Adverse Effect of Chilling Stress on Cucumber Plants" Stresses 6, no. 1: 5. https://doi.org/10.3390/stresses6010005
APA StyleBalabanova, D., Harizanova, A., Koleva-Valkova, L., Petrov, V., & Vassilev, A. (2026). A Protein Hydrolysate Mitigates the Adverse Effect of Chilling Stress on Cucumber Plants. Stresses, 6(1), 5. https://doi.org/10.3390/stresses6010005

