miRNA Markers of Stress Exposure in Pregnancy in African American Communities
Abstract
1. Introduction
2. Results
3. Discussion
4. Limitations
5. Materials and Methods
5.1. Participants
5.2. Procedures and Materials
5.3. Analytical Plan
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson, C.; Rosenberg, N.; et al. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson, A.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2018. MMWR Surveill. Summ. 2021, 70, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gage, S.H.; Munafò, M.R.; Smith, G.D. Causal Inference in Developmental Origins of Health and Disease (DOHaD) Research. Annu. Rev. Psychol. 2016, 67, 567–585. [Google Scholar] [CrossRef]
- Beversdorf, D.Q.; Stevens, H.E.; Jones, K.L. Prenatal Stress, Maternal Immune Dysregulation, and Their Association with Autism Spectrum Disorders. Curr. Psychiatry Rep. 2018, 20, 76. [Google Scholar] [CrossRef]
- Pardo, C.A.; Eberhart, C.G. The neurobiology of autism. Brain Pathol. 2007, 17, 434–447. [Google Scholar] [CrossRef]
- Howerton, C.L.; Morgan, C.P.; Fischer, D.B.; Bale, T.L. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc. Natl. Acad. Sci. USA 2013, 110, 5169–5174. [Google Scholar] [CrossRef]
- Mor, M.; Nardone, S.; Sams, D.S.; Elliott, E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol. Autism 2015, 6, 46. [Google Scholar] [CrossRef]
- Heils, A.; Teufel, A.; Petri, S.; Stöber, G.; Riederer, P.; Bengel, D.; Lesch, K.P. Allelic variation of human serotonin transporter gene expression. J. Neurochem. 1996, 66, 2621–2624. [Google Scholar] [CrossRef]
- Nakamura, M.; Ueno, S.; Tanabe, H.; Sano, A. The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol. Psychiatry 2000, 5, 32–38. [Google Scholar] [CrossRef]
- Alexander, N.; Wankerl, M.; Hennig, J.; Miller, R.; Zänkert, S.; Steudte-Schmiedgen, S.; Stalder, T.; Kirschbaum, C. DNA methylation profiles within the serotonin transporter gene moderate the association of 5-HTTLPR and cortisol stress reactivity. Transl. Psychiatry 2014, 4, e443. [Google Scholar] [CrossRef] [PubMed]
- Duman, E.A.; Canli, T. Influence of life stress, 5-HTTLPR genotype, and SLC6A4methylation on gene expression and stress response in healthy Caucasian males. Biol. Mood Anxiety Disord. 2015, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Beversdorf, D.Q.; Manning, S.E.; Hillier, A.; Anderson, S.L.; Nordgren, R.E.; Walters, S.E.; Nagaraja, H.N.; Cooley, W.C.; Gaelic, S.E.; Bauman, M.L. Timing of prenatal stressors and autism. J. Autism Dev. Disord. 2005, 35, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Smith, R.M.; Edwards, K.S.; Givens, B.; Tilley, M.R.; Beversdorf, D.Q. Combined effect of maternal serotonin transporter genotype and prenatal stress in modulating offspring social interaction in mice. Int. J. Dev. Neurosci. 2010, 28, 529–536. [Google Scholar] [CrossRef]
- Hecht, P.M.; Hudson, M.; Connors, S.L.; Tilley, M.R.; Liu, X.; Beversdorf, D.Q. Maternal serotonin transporter genotype affects risk for ASD with exposure to prenatal stress. Autism Res. 2016, 9, 1151–1160. [Google Scholar] [CrossRef]
- Beversdorf, D.Q.; Shah, A.; Jhin, A.; Noel-MacDonnell, J.; Hecht, P.; Ferguson, B.J.; Bruce, D.; Tilley, M.; Talebizadeh, Z. microRNAs and Gene–Environment Interactions in Autism: Effects of Prenatal Maternal Stress and the SERT Gene on Maternal microRNA Expression. Front. Psychiatry 2021, 12, 668577. [Google Scholar] [CrossRef]
- Sjaarda, C.P.; Hecht, P.; McNaughton, A.J.M.; Zhou, A.; Hudson, M.L.; Will, M.J.; Smith, G.; Ayub, M.; Liang, P.; Chen, N.; et al. Interplay between maternal Slc6a4 mutation and prenatal stress: A possible mechanism for autistic behavior development. Sci. Rep. 2017, 7, 8735. [Google Scholar] [CrossRef]
- Hicks, S.D.; Carpenter, R.L.; Wagner, K.E.; Pauley, R.; Barros, M.; Tierney-Aves, C.; Barns, S.; Greene, C.D.; Middleton, F.A. Saliva MicroRNA differentiates children with autism from peers with typical and atypical development. J. Am. Acad. Child Adolesc. Psychiatry 2019, 59, 296–308. [Google Scholar] [CrossRef]
- Hicks, S.D.; Middleton, F.A. A Comparative review of microRNA expression patterns in autism spectrum Disorder. Front. Psychiatry 2016, 7, 176. [Google Scholar] [CrossRef]
- Godoy, P.M.; Bhakta, N.R.; Barczak, A.J.; Cakmak, H.; Fisher, S.; MacKenzie, T.C.; Patel, T.; Price, R.W.; Smith, J.F.; Woodruff, P.G.; et al. Large differences in small RNA composition between human biofluids. Cell Rep. 2018, 25, 1346–1358. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.F.; Dang, Y.J.; Shi, X.M.; Chen, L.; Wang, N.; Cai, Y.; Zhao, Y.Y. Differentially expressed circular RNAs in maternal and neonatal umbilical cord plasma from SGA compared with AGA. J. Cell. Biochem. 2020, 121, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Chen, L.; He, J.; Lin, J. MicroRNA expression profiles and networks in placentas complicated with selective intrauterine growth restriction. Mol. Med. Rep. 2017, 16, 6650–6673. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Ye, N.; Wang, J.; Zhao, S.; Wang, T.; Wang, G.; Shi, X.; Cheng, J.; Zhang, Y.; Yao, T.; et al. Serum Exosomes MicroRNAs Are Novel Non-Invasive Biomarkers of Intrahepatic Cholestasis of Pregnancy. Front. Endocrinol. 2022, 13, 832577. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Zhu, F.; Ding, Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp. Ther. Med. 2019, 18, 826–832. [Google Scholar] [CrossRef]
- Hiura, H.; Hattori, H.; Kobayashi, N.; Okae, H.; Chiba, H.; Miyauchi, N.; Kitamura, A.; Kikuchi, H.; Yoshida, H.; Arima, T. Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer. Clin. Epigenetics 2017, 9, 79. [Google Scholar] [CrossRef]
- Barrio, E.; Quirós, A.; Lerma-Puertas, D.; Labarta, J.I.; Gascón-Catalán, A. Identification of miRNAs Involved in Foetal Growth Restriction Due to Maternal Smoking during Pregnancy. J. Clin. Med. 2022, 11, 5808. [Google Scholar] [CrossRef]
- Kaurani, L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int. J. Mol. Sci. 2024, 25, 2866. [Google Scholar] [CrossRef]
- Gardiner, A.S.; Gutierrez, H.L.; Luo, L.; Davies, S.; Savage, D.D.; Bakhireva, L.N.; Perrone-Bizzozero, N.I. Alcohol Use During Pregnancy is Associated with Specific Alterations in MicroRNA Levels in Maternal Serum. Alcohol. Clin. Exp. Res. 2016, 40, 826–837. [Google Scholar] [CrossRef]
- Finicelli, M.; Squillaro, T.; Galderisi, U.; Peluso, G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2020, 21, 7221. [Google Scholar] [CrossRef]
- Beversdorf, D.Q.; Wang, P.; Barnes, G.; Weisskopf, M.; Hardan, A.; Hu, V.; Mazurek, M.O.; Talebedizah, Z.; Goldberg, W.; Jones, K.L.; et al. Phenotyping, etiological factors, and biomarkers: Toward precision medicine in autism spectrum disorder. J. Dev. Behav. Pediatr. 2016, 37, 659–673. [Google Scholar] [CrossRef]
- Rinaldi, A.; Vincenti, S.; De Vito, F.; Bozzoni, I.; Oliverio, A.; Presutti, C.; Fragapane, P.; Mele, A. Stress induces region specific alterations in microRNAs expression in mice. Behav. Brain Res. 2010, 208, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Holliday, E.; Bagasra, A.; Bagasra, O.; Pandey, P. Assessing the feasibility of using salivary microRNAs as biomarkers to distinguish between chronic stress and childhood trauma in African American young women in an exploratory pilot study. Front. Psychiatry 2025, 16, 1507064. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Weiss, D.; Nyhan, K.; Dewan, A.; Jukic, A.M.Z. Circulating miRNAs in the first trimester and pregnancy complications: A systematic review. Epigenetics 2023, 18, 2152615. [Google Scholar] [CrossRef] [PubMed]
- Bozack, A.K.; Colicino, E.; Rodosthenous, R.; Bloomquist, T.R.; Baccarelli, A.A.; Wright, R.O.; Wright, R.J.; Lee, A.G. Associations between maternal lifetime stressors and negative events in pregnancy and breast milk-derived extracellular vesicle microRNAs in the programming of intergenerational stress mechanisms (PRISM) pregnancy cohort. Epigenetics 2020, 16, 389–404. [Google Scholar] [CrossRef]
- Illarionov, R.A.; Pachuliia, O.V.; Vashukova, E.S.; Tkachenko, A.A.; Maltseva, A.R.; Postnikova, T.B.; Nasykhova, Y.A.; Bespalova, O.N.; Glotov, A.S. Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes 2022, 13, 2018. [Google Scholar] [CrossRef]
- Foley, H.B.; Howe, C.G.; Eckel, S.P.; Chavez, T.; Gevorkian, L.; Reyes, E.G.; Kapanke, B.; Martinez, D.; Xue, S.; Suglia, S.F.; et al. Depression, perceived stress, and distress during pregnancy and EV-associated miRNA profiles in MADRES. J. Affect. Disord. 2023, 323, 799–808. [Google Scholar] [CrossRef]
- Njoku, A.; Evans, M.; Nimo-Sefah, L.; Bailey, J. Listen to the Whispers before They Become Screams: Addressing Black Maternal Morbidity and Mortality in the United States. Healthcare 2023, 11, 438. [Google Scholar] [CrossRef]
- Gallin, Z.; Kolevzon, A.M.; Reichenberg, A.; Hankerson, S.H.; Kolevzon, A. Racial Differences in the Prevalence of Autism Spectrum Disorder: A Systematic review. J. Autism Dev. Disord. 2024, 1–14, (epub ahead of print). [Google Scholar] [CrossRef]
- Grosvenor, L.P.; Croen, L.A.; Lynch, F.L.; Marafino, B.J.; Maye, M.; Penfold, R.B.; Simon, G.E.; Ames, J.L. Autism diagnosis among US children and adults, 2011–2022. JAMA Netw. Open 2024, 7, e2442218. [Google Scholar] [CrossRef]
- Brown, L.L.; Mitchell, U.A.; Ailshire, J.A. Disentangling the stress process: Race/Ethnic differences in the exposure and appraisal of chronic stressors among older adults. J. Gerontol. Ser. B 2018, 75, 650–660. [Google Scholar] [CrossRef]
- Frost, D.M.; Meyer, I.H. Minority stress theory: Application, critique, and continued relevance. Curr. Opin. Psychol. 2023, 51, 101579. [Google Scholar] [CrossRef] [PubMed]
- Ashing-Giwa, K.; Ganz, P.A.; Petersen, L. Quality of life of African-American and white long term breast carcinoma survivors. Cancer 1999, 85, 418–426. [Google Scholar] [CrossRef]
- Ashing-Giwa, K.T.; Padilla, G.V.; Tejero, J.S.; Kim, J. Breast cancer survivorship in a multiethnic sample: Challenges in recruitment and measurement. Cancer 2004, 101, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Holmes, T.H.; Rahe, R.H. The social readjustment rating scale. J. Psychosom. Res. 1967, 11, 213–218. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019, 20, 18. [Google Scholar] [CrossRef]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
Item on PSS | High Stress “Yes” (n = 10) | Low Stress “Yes” (n = 10) | Total Sample (n = 83) | Remaining (n = 63) | ||
---|---|---|---|---|---|---|
n | % Yes | n | % Yes | |||
Death of a spouse | 0 | 0 | 2 | 2.40% | 2 | 3.17% |
Divorce | 0 | 0 | 0 | 0.00% | 0 | 0.00% |
Marital separation | 2 | 0 | 4 | 4.80% | 2 | 3.17% |
Death of a close family member | 3 | 1 | 18 | 21.70% | 14 | 22.22% |
Injury/illness | 5 | 0 | 16 | 19.30% | 11 | 17.46% |
Marriage | 1 | 0 | 7 | 8.40% | 6 | 9.52% |
Marital reconciliation | 0 | 0 | 1 | 1.20% | 1 | 1.59% |
Change in health of family member | 5 | 0 | 15 | 18.10% | 10 | 15.87% |
Gain of new family member | 2 | 0 | 12 | 14.50% | 10 | 15.87% |
Death of close friend | 2 | 0 | 3 | 3.60% | 1 | 1.59% |
Increase in arguments with spouse | 4 | 2 | 24 | 28.90% | 18 | 28.57% |
Child leaving home | 0 | 0 | 2 | 2.40% | 2 | 3.17% |
Trouble with in-laws | 3 | 0 | 5 | 6.00% | 2 | 3.17% |
Major revision of personal habits | 6 | 1 | 20 | 24.10% | 13 | 20.63% |
Change in recreation | 4 | 0 | 10 | 12.00% | 6 | 9.52% |
Change in social activities | 7 | 0 | 34 | 41.00% | 27 | 42.86% |
Change in sleep habits | 9 | 2 | 50 | 60.20% | 39 | 61.90% |
Fired at work | 2 | 0 | 6 | 7.20% | 4 | 6.35% |
Retirement | 0 | 0 | 1 | 1.20% | 1 | 1.59% |
Business readjustment | 4 | 0 | 7 | 8.40% | 3 | 4.76% |
Change to different line of work | 5 | 0 | 18 | 21.70% | 13 | 20.63% |
Change in responsibilities at work | 7 | 0 | 20 | 24.10% | 13 | 20.63% |
Outstanding personal achievement | 3 | 0 | 10 | 12.00% | 7 | 11.11% |
Spouse began or stopped work | 5 | 0 | 16 | 19.30% | 11 | 17.46% |
Began or ending school | 3 | 1 | 9 | 10.80% | 5 | 7.94% |
Trouble with boss | 3 | 0 | 4 | 4.80% | 1 | 1.59% |
Change in work hours or conditions | 7 | 0 | 25 | 30.10% | 18 | 28.57% |
Change in schools | 1 | 0 | 4 | 4.80% | 3 | 4.76% |
Change in financial state | 8 | 1 | 31 | 37.30% | 22 | 34.92% |
Large mortgage | 0 | 0 | 1 | 1.20% | 1 | 1.59% |
Foreclosure of mortgage or loan | 1 | 0 | 1 | 1.20% | 0 | 0.00% |
Small loan | 2 | 0 | 8 | 9.60% | 6 | 9.52% |
Jail term | 0 | 0 | 2 | 2.40% | 2 | 3.17% |
Change in living conditions | 4 | 0 | 11 | 13.30% | 7 | 11.11% |
Change in residence | 4 | 0 | 15 | 18.10% | 11 | 17.46% |
miRNA | High Stress | Low Stress | Fold Change | p Value | ||
---|---|---|---|---|---|---|
M(log2) | SD | M(log2) | SD | |||
hsa-miR-1184 | 5.44 | 1.29 | 3.94 | 0.64 | 2.82 | 0.0019 |
hsa-miR-668–5p | 3.59 | 1.31 | 2.49 | 0.87 | 2.13 | 0.0199 |
hsa-miR-6750–5p | 4.2 | 0.98 | 3.13 | 0.49 | 2.1 | 0.0011 |
hsa-miR-3619–5p | 3.81 | 0.55 | 3.01 | 0.4 | 1.74 | 0.0003 |
hsa-miR-4758–5p | 5.95 | 1.5 | 6.54 | 0.94 | −1.5 | 0.0497 |
hsa-miR-3147 | 2.73 | 0.43 | 3.32 | 0.77 | −1.5 | 0.009 |
hsa-miR-4651 | 6 | 0.7 | 6.59 | 0.67 | −1.5 | 0.0081 |
hsa-miR-6869–5p | 9.24 | 0.78 | 9.86 | 0.41 | −1.54 | 0.0291 |
hsa-miR-6752–5p | 6.86 | 0.99 | 7.52 | 0.56 | −1.58 | 0.0311 |
hsa-miR-4763–3p | 6.68 | 0.56 | 7.35 | 0.46 | −1.59 | 0.0016 |
hsa-miR-4734 | 6.87 | 1.43 | 7.58 | 0.58 | −1.63 | 0.025 |
hsa-miR-6799–5p | 3.88 | 0.78 | 4.61 | 1.16 | −1.65 | 0.0098 |
hsa-miR-4270 | 6.69 | 0.94 | 7.45 | 0.44 | −1.7 | 0.006 |
hsa-miR-7150 | 3.24 | 1.35 | 4.03 | 0.77 | −1.73 | 0.0494 |
hsa-miR-6893–5p | 3.02 | 1.03 | 3.83 | 0.68 | −1.76 | 0.0394 |
hsa-miR-6840–3p | 2.13 | 0.67 | 2.99 | 0.49 | −1.82 | 0.0032 |
hsa-miR-3188 | 2.21 | 0.97 | 3.18 | 0.75 | −1.96 | 0.0306 |
hsa-miR-7114–5p | 3.19 | 0.75 | 4.17 | 0.95 | −1.97 | 0.0106 |
hsa-miR-2392 | 2.36 | 0.79 | 3.36 | 0.86 | −1.99 | 0.0344 |
hsa-miR-4721 | 2.94 | 0.75 | 3.95 | 0.93 | −2.01 | 0.006 |
hsa-miR-8089 | 3.71 | 1.32 | 4.87 | 0.66 | −2.23 | 0.0173 |
hsa-miR-6849–5p | 2.46 | 0.75 | 3.63 | 1.32 | −2.27 | 0.0383 |
hsa-miR-5739 | 1.54 | 0.87 | 2.72 | 0.9 | −2.27 | 0.0212 |
hsa-miR-6127 | 3.45 | 0.95 | 4.64 | 0.68 | −2.28 | 0.0017 |
hsa-miR-4674 | 5.25 | 1.88 | 6.44 | 0.92 | −2.28 | 0.0289 |
hsa-miR-4655–5p | 2.93 | 1.08 | 4.15 | 0.83 | −2.32 | 0.0225 |
hsa-miR-4484 | 5.35 | 1.03 | 6.57 | 0.72 | −2.33 | 0.004 |
hsa-miR-6769 b−5p | 3.54 | 1.17 | 4.76 | 0.67 | −2.34 | 0.0158 |
hsa-miR−6784–5p | 1.59 | 0.87 | 2.83 | 0.88 | −2.36 | 0.0053 |
hsa-miR−8063 | 3.44 | 1.27 | 4.71 | 1.37 | −2.41 | 0.0338 |
hsa-miR−1229–5p | 3.07 | 1.22 | 4.42 | 0.71 | −2.54 | 0.0041 |
miRNA | Direction | Target Genes |
---|---|---|
hsa-miR-1184 | UP | CTNND1, GPC6, PTCHD1, FOXP1, NFIB, AGO1, RFX7, SATB2, TBCEL, NTNG1, POLA2, EXOC6 B, DPYSL2, ALDH1 A3, PSD3, MECP2, DLG2, SNTG2, KMT2 C, CHD2, PARD3 B, MAP1 B, WNK3, DAGLA, SETD5, PLPPR4, SGSM3, KCNB1, TAF1 C, CDK8, AGAP2, VASH1, AGO4, USP9 X, CELF4, ARID1 A, CHST2, TSPAN17, ZSWIM6, VEZF1, GRIK3, SORCS3, DCC, NIPBL, TAOK1, SRGAP3 |
hsa-miR-3619–5 p | UP | NEO1, NAA15, DMXL2, DLL1, KCNC2, ZBTB20, TBL1 XR1, LRP2, FGF14, PRR14 L, DAGLA, RALGAPB, FGFR1, BTAF1, SLC25 A39, BCL11 A, GPR85, USP24, CPEB4, NFIA, TANC2, ZFHX3, TAOK1, CLASP1, DUSP15, ADSS2, CHD2, NSD1, PCLO, RIMS3, CERT1, SOS2, CTNNB1, LARP1, USP30, PHF21 A, PRICKLE2, YWHAZ, TRIM33, HNRNPU, ADORA2 A, SPEN, WWOX, HDLBP, RFX7, KDM2 A, SETDB2, NPTN, SCP2, RAB39 B, VASH1, CDC42 BPB, SEMA5 A, SCN3 A, DMWD, VDR, TET3, SYNCRIP, BTRC, UBE2 H, GRB10, TLE3, DNM1, DLGAP1, CAMK2 A, SIK1, CD276, ABL2, CECR2, PTPN4, RPH3 A, MINK1, CNTNAP3, PTPRD, BCL11 B, MTF1, SKI, KCNQ2, PNPLA7, MEF2 C, RELN, CDH8, LMX1 B, PER1, KCNQ3, SLC9 A1, CTNNA3, EXOC6 B, SCN1 A, MECP2, CDK13, PTEN |
hsa-miR-668–5 p | UP | KCNC2, DMPK, ELAVL2 |
hsa-miR-6750–5 p | UP | WWP1, GALNT13, DPYSL3, MSL3, ZSWIM6, TAOK1, GRIK2, HLA-DPB1, PDE1 C, GALNT2, DCC, EP300, GPC6, CACNG2, PAX5, PTPRT, NRXN1, GNAS, SETD2, KCNMA1, IQSEC2 |
hsa-miR-1229–5 p | DOWN | CSNK2 A1, IQGAP3, TRPC6 |
hsa-miR-2392 | DOWN | LARP1, BTAF1, ELAVL2, HNRNPU, PCDH19, DIXDC1, BRD4, PPP3 CA, NSD2 |
hsa-miR-3147 | DOWN | GRIK2, RORA, CNTN5 |
hsa-miR-3188 | DOWN | RICTOR, DPYSL3, DVL3, PLXNA4, CYP11 B1, SLC1 A2, HECTD1, NAV3 |
hsa-miR-4270 | DOWN | TRIP12, SMG6, HTR3 C, RPH3 A, SATB2, MAPK3, TDO2, PRICKLE1, WDFY3, AGO1, SKI, MFRP, IKZF1 |
hsa-miR-4484 | DOWN | AGO3, MRTFB |
hsa-miR-4651 | DOWN | PPP1 R9 B, IQSEC2, GFAP, DAGLA, ELAVL3, SYNGAP1, RAI1, DVL3, NOVA2, HIVEP3, ZBTB7 A, DLX3, NFIX, GRIN2 A, NACC1, KLF16, NAV2, PAX5, BSN, ZMYND11, KCNH1, CUX1 |
hsa-miR-4674 | DOWN | MYH10 |
hsa-miR-4721 | DOWN | TSHZ3, DLX3, KCNB1, ASB9, CPSF7, TNS2, UBE3 A, NLGN2 |
hsa-miR-4734 | DOWN | GRIN1 |
hsa-miR-4758–5 p | DOWN | CSNK1 E, NXPH1 |
hsa-miR-4763–3 p | DOWN | RBBP5, DDX3 X, CD276, STAG1, MARK2, CACNA2 D1, LRP1, MAP1 B, ZMYM3, CLASP1, CDC42 BPB, TFE3, NACC1, PBX1, MECP2, RAB43, PIK3 CG |
hsa-miR-6127 | DOWN | GABRG2, PACS1, SYNGAP1, NFIX, LHX2, NXF1, BICDL1, RPH3 A, TET3, INTS6, SMG6, NOVA2, MECP2, PLXNA4, AGAP1, CSNK1 G1, HERC1 |
hsa-miR-6752–5 p | DOWN | DAGLA, IQSEC2, SYNGAP1, ZBTB7 A, CAMK2 A, KDM6 B, BCL11 B, RAB2 A, ADGRB1, MECP2 |
hsa-miR-6769 b-5 p | DOWN | CACNA1 E, SLC6 A8, CACNA1 A, SYNGAP1, IGF1, KCNA3 |
hsa-miR-6799–5 p | DOWN | PAPOLG, ZNF548, HECTD4, PACS1, PRKCA, SYN2, KCNJ10, DEPDC5, ZNF626 |
hsa-miR-6840–3 p | DOWN | TFE3, DLG4, EPHB2, VCP, CDH9, KIAA0232, RAPGEF4, GABBR2 |
hsa-miR-6849–5 p | DOWN | CSDE1 |
hsa-miR-6869–5 p | DOWN | PLPPR4, TRIM33, FAM47 A |
hsa-miR-6893–5 p | DOWN | CADM2, VDR, TRIO, GABBR2, SLC12 A5, ARF3, ZBTB21, CDK16, PCCB, ANKS1 B, USP9 X, ZBTB47, ST8 SIA2, SOX6, PRKN, FHIT, PARD3 B, CTNNA3, KCND2, SLC24 A2, SCN4 A, NSD1, TRIM33 |
hsa-miR-7114–5 p | DOWN | PCDH9, RUNX1 T1, SNAP25, SLC25 A27, HMGN1, PCCA, KDM4 C, NF1, RIMS2, UBN2, VEZF1, EPHB2, SHANK2, ROBO2, TERF2, RFX7, PPP2 R5 D |
hsa-miR-7150 | DOWN | KCNH5, STAG1, CACNA2 D1, KDM6 A, DDX3 X, MYO5 C, MEF2 C, KCNH1, FOXP2, MAP1 B, TBL1 XR1, TRIO, CDH10, PHIP, PACS2 |
hsa-miR-8063 | DOWN | TBL1 XR1, HTR2 C, ELAVL2, ZMYM2, TANC2, BRWD3, STXBP5, HNRNPR, PTPN4, NIPBL, TCF4, NR3 C2, CNTNAP3, MEGF10, USP9 X, KCNH5, IGF1, ERBIN, PIK3 CG, WWP1, PRKDC, GRM5, ANK2, DIPK2 A, AGO2, PAX6, GABRA4, ARHGAP5, PIK3 CA, RFX3, CPEB4, CACNA2 D1, CNOT1, KCNMA1, KCND2, KRR1, SLC4 A10, DDX3 X, LEO1, ANK3, GPR37, APH1 A, PTEN, CERT1, PRPF39, FRMD5, WASF1, MED23, STK39, CADM2 |
hsa-miR-8089 | DOWN | CIC, DAGLA, PPP1 R1 B, POU3 F3, CAPN12, MBOAT7, SOX6, MEIS2, ZNF559, SON, CELF6, CASKIN1, TET3, KCNJ10, MTHFR, PPP1 R9 B, DMWD, GFAP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becher, B.V.; Ahmed, N.I.; King, C.; Godavarthi, J.; Bloomer, C.; Rivera, R.; Talebizadeh, Z.; Goodman, J.; Bond, R.; Long, K.; et al. miRNA Markers of Stress Exposure in Pregnancy in African American Communities. Stresses 2025, 5, 41. https://doi.org/10.3390/stresses5030041
Becher BV, Ahmed NI, King C, Godavarthi J, Bloomer C, Rivera R, Talebizadeh Z, Goodman J, Bond R, Long K, et al. miRNA Markers of Stress Exposure in Pregnancy in African American Communities. Stresses. 2025; 5(3):41. https://doi.org/10.3390/stresses5030041
Chicago/Turabian StyleBecher, Brianna V., Nick I. Ahmed, Candice King, Jahnavi Godavarthi, Clark Bloomer, Rocio Rivera, Zohreh Talebizadeh, Jean Goodman, Rebecca Bond, Kennadie Long, and et al. 2025. "miRNA Markers of Stress Exposure in Pregnancy in African American Communities" Stresses 5, no. 3: 41. https://doi.org/10.3390/stresses5030041
APA StyleBecher, B. V., Ahmed, N. I., King, C., Godavarthi, J., Bloomer, C., Rivera, R., Talebizadeh, Z., Goodman, J., Bond, R., Long, K., Weber, K., Chrisman, M., Hunter, S., Takahashi, N., & Beversdorf, D. Q. (2025). miRNA Markers of Stress Exposure in Pregnancy in African American Communities. Stresses, 5(3), 41. https://doi.org/10.3390/stresses5030041