The Science Behind Stress: From Theory to Clinic, Is Basal Septal Hypertrophy the Missing Link between Hypertension and Takotsubo Cardiomyopathy?
Abstract
:1. Background of Stress Theory
2. Stressors and Associated Cardiac Diseases
3. Measurement of Stress
4. Cardiac Manifests of Stress
5. Cardiac Imaging Methods in Hypertensive Patients
6. Acute Stress Cardiomyopathy
Funding
Conflicts of Interest
References
- Le Moal, M. Historical approach and evolution of the stress concept: A personal account. Psychoneuroendocrinology 2007, 32, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. A Syndrome Produced by Diverse Nocuous Agents. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 230a–2231. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. Stress and the general adaptation syndrome. BMJ 1950, 1, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Beilin, L. Lifestyle and hypertension. Am. J. Hypertens. 1999, 12, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Sparrenberger, F.; Cichelero, F.T.; Ascoli, A.M.; Fonseca, F.P.; Weiss, G.; Berwanger, O.; Fuchs, S.C.; Moreira, L.B.; Fuchs, F.D. Does psychosocial stress cause hypertension? A systematic review of observational studies. J. Hum. Hypertens. 2009, 23, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Li, H. Loneliness, social isolation, and cardiovascular health. Antioxid. Redox Signal. 2018, 28, 837–851. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.T.; Lei, M.K.; Beach, S.R.; Simons, R.L.; Simons, L.G. Childhood adversities as determinants of cardiovascular disease risk and perceived illness burden in adulthood: Comparing retrospective and prospective self-report measures in a longitudinal sample of African Americans. J. Youth Adolesc. 2020, 49, 1292–1308. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.R.; Reuben, A.; Newbury, J.B.; Danese, A. Agreement between prospective and retrospective measures of childhood maltreatment. JAMA Psychiatry 2019, 76, 584. [Google Scholar] [CrossRef] [PubMed]
- Plante, G.E. Depression and cardiovascular disease: A reciprocal relationship. Metabolism 2005, 54, 45–48. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Gu, Q.; Dillon, C.F.; Burt, V.L.; Gillum, R.F. Association of hypertension treatment and control with all-cause and cardiovascular disease mortality among US adults With Hypertension. Am. J. Hypertens. 2010, 23, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Clemow, L.P.; Pickering, T.G.; Davidson, K.W.; Schwartz, J.E.; Williams, V.P.; Shaffer, J.A.; Williams, R.B.; Gerin, W. Stress management in the workplace for employees with hypertension: A randomized controlled trial. Transl. Behav. Med. 2018, 8, 761–770. [Google Scholar] [CrossRef] [PubMed]
- von Känel, H. Psychosomatik und arterielle hypertonie—Love it or leave it? Ther. Umsch. 2012, 69, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Linden, W.; Moseley, J.V. The Efficacy of behavioral treatments for hypertension. Assoc. Appl. Psychophysiol. Biofeedback 2006, 31, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, T. A Quantitative review of prospective evidence linking psychological factors with hypertension development. Psychosom. Med. 2002, 64, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Motta e Motta, J.; Souza, L.N.; Vieira, B.B.; Delle, H.; Consolim-Colombo, F.M.; Egan, B.M.; Lopes, H.F. Acute physical and mental stress resulted in an increase in fatty acids, norepinephrine, and hemodynamic changes in normal individuals: A possible pathophysiological mechanism for hypertension—Pilot study. J. Clin. Hypertens. 2021, 23, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.P.; Zhu, F.P.; Chen, X.W.; Xu, Z.Q.D.; Zhang, C.X.; Zhou, Z. Physiology of quantal norepinephrine release from somatodendritic sites of neurons in locus coeruleus. Front. Mol. Neurosci. 2012, 5, 29. [Google Scholar] [CrossRef]
- Malan, L.; Hamer, M.; Schlaich, M.; Lambert, G.; Ziemssen, T.; Reimann, M.; Frasure-Smith, N.; Amirkhan, J.; Schutte, R.; van Rooyen, J.; et al. Defensive coping facilitates higher blood pressure and early sub-clinical structural vascular disease via alterations in heart rate variability: The SABPA study. Atherosclerosis 2013, 227, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Curtis, B.M.; O’Keefe, J.H. Autonomic tone as a cardiovascular risk factor: The dangers of chronic fight or flight. Mayo Clin. Proc. 2002, 77, 45–54. [Google Scholar] [CrossRef]
- Scheepers, J.D.W.; Malan, L.; de Kock, A.; Malan, N.T.; Cockeran, M.; von Känel, R. Hypercoagulation and hyperkinetic blood pressure indicative of physiological loss-of-control despite behavioural control in Africans: The SABPA study. Blood Press 2016, 25, 219–227. [Google Scholar] [CrossRef]
- de Kock, A.; Malan, L.; Potgieter, J.; Steenekamp, W.; van der Merwe, M. Metabolic syndrome indicators and target organ damage in urban active coping African and Caucasian men: The SABPA Study. Exp. Clin. Endocrinol. Diabetes 2012, 120, 282–287. [Google Scholar] [CrossRef]
- Donald, W.; Black, M.D.; Jon, E.; Grant MDMPH, J.D. DSM-5® Guidebook The Essential Companion to the Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2014. [Google Scholar]
- Dai, Y.; Vgontzas, A.N.; Chen, L.; Zheng, D.; Chen, B.; Fernandez-Mendoza, J.; Karataraki, M.; Tang, X.; Li, Y. A meta-analysis of the association between insomnia with objective short sleep duration and risk of hypertension. Sleep Med. Rev. 2024, 75, 101914. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Zhang, Z.; Hu, Z.; Xiong, Y.; Zhou, L.; Yao, Y. Associations of 50 modifiable risk factors with atrial fibrillation using Mendelian randomization analysis. Eur. J. Clin. Investig. 2024, 54, e14194, online ahead of print. [Google Scholar] [CrossRef]
- Cao, H.; Baranova, A.; Zhao, Q.; Zhang, F. Bidirectional associations between mental disorders, antidepressants and cardiovascular disease. BMJ Ment. Health 2024, 27, e300975. [Google Scholar]
- Epel, E.S.; Crosswell, A.D.; Mayer, S.E.; Prather, A.A.; Slavich, G.M.; Puterman, E.; Mendes, W.B. More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol. 2018, 49, 146–169. [Google Scholar] [CrossRef]
- Samson, C.; Koh, A. Stress monitoring and recent advancements in wearable biosensors. Front. Bioeng. Biotechnol. 2020, 8, 1037. [Google Scholar] [CrossRef]
- Devereux, R.B.; Alderman, M.H. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation 1993, 88, 1444–1455. [Google Scholar] [CrossRef]
- Baltabaeva, A.; Marciniak, M.; Bijnens, B.; Moggridge, J.; He, F.; Antonios, T.; Macgregor, G.; Sutherland, G. Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur. J. Echocardiogr. 2008, 9, 501–508. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Abraham, R.; Abraham, T.P. Hemodynamic stress and microscopic remodeling. Int. J. Cardiol. Cardiovasc. Risk Prev. 2021, 11, 200155. [Google Scholar] [CrossRef]
- Yalcin, F.; Garcia, M.J. It is time to focus on “Segmental Remodeling” with validated biomarkers as “Stressed Heart Morphology” in prevention of heart failure. J. Clin. Med. 2022, 11, 4180. [Google Scholar] [CrossRef]
- Belenkie, I.; MacDonald, R.P.R.; Smith, E.R. Localized septal hypertrophy: Part of the spectrum of hypertrophic cardiomyopathy or an incidental echocardiographic finding? Am. Heart J. 1988, 115, 385–390. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Abraham, M.R.; Abraham, T.P. Ultimate phases of hypertensive heart disease and stressed heart morphology by conventional and novel cardiac imaging. Am. J. Cardiovasc. Dis. 2021, 11, 628. [Google Scholar]
- Vieira, M.L.; Filho, R.M.S.; Filho, F.S.B.; Leal, S.B.; Filho, E.B.L.; Fischer, C.H.; de Souza, J.A.; Perin, M.A. Selective contrast echocardiography in percutaneous transluminal septal myocardial ablation in an elderly patient with left ventricular concentric hypertrophy. Echocardiography 2003, 20, 563–566. [Google Scholar] [CrossRef]
- Yalçin, F.; Yiǧit, F.; Erol, T.; Baltali, M.; Korkmaz, M.E.; Müderrisoǧu, H. Effect of dobutamine stress on basal septal tissue dynamics in hypertensive patients with basal septal hypertrophy. J. Hum. Hypertens. 2006, 20, 628–630. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Seyfeli, E.; Akgul, F. Stress-induced hypercontractility in patients with hypertension: An interesting imaging finding. Int. J. Cardiol. 2010, 143, e1–e3. [Google Scholar] [CrossRef]
- Yalçin, F.; Shiota, M.; Greenberg, N.; Thomas, J.D.; Shiota, T. Real time three-dimensional echocardiography evaluation of mitral annular characteristics in patients with myocardial hypertrophy. Echocardiography 2008, 25, 424–428. [Google Scholar] [CrossRef]
- Yalçin, F.; Muderrisoǧlu, H. Tako-tsubo cardiomyopathy may be associated with cardiac geometric features as observed in hypertensive heart disease. Int. J. Cardiol. 2009, 135, 251–252. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Abraham, T. Stress-induced regional features of left ventricle is related to pathogenesis of clinical conditions with both acute and chronic stress. Int. J. Cardiol. 2010, 145, 367–368. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Abraham, T.P. Exercise hypertension should be recalled in basal septal hypertrophy as the early imaging biomarker in patients with stressed heart morphology. Blood Press. Monit. 2020, 25, 118–119. [Google Scholar] [CrossRef]
- Tan, Y.T.; Wenzelburger, F.; Lee, E.; Heatlie, G.; Frenneaux, M.; Sanderson, J.E. Abnormal left ventricular function occurs on exercise in well-treated hypertensive subjects with normal resting echocardiography. Heart 2010, 96, 948–955. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Küçükler, N.; Abraham, T.P. Quantitative left ventricular contractility analysis under stress: A new practical approach in follow-up of hypertensive patients. J. Hum. Hypertens. 2011, 25, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Kucukler, N.; Cingolani, O.H.; Mbiyangandu, B.; Sorensen, L.; Pinherio, A.; Abraham, M.R.; Abraham, T.P. Evolution of ventricular hypertrophy and myocardial mechanics in physiological and pathological hypertrophy. J. Appl. Physiol. 2019, 126, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Topaloglu, C.; Kuçukler, N.; Ofgeli, M.; Abraham, T.P. Could early septal involvement in the remodeling process be related to the advance hypertensive heart disease? IJC Heart Vasc. 2015, 7, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, F.; Kucukler, N.; Cingolani, O.; Mbiyangandu, B.; Sorensen, L.L.; Pinheiro, A.C.; Abraham, M.R.; Abraham, T.P. Intracavitary gradients in mice with early regional remodeling at the compensatory hyperactive stage prior to lv tissue dysfunction. J. Am. Coll. Cardiol. 2020, 75, 1585. [Google Scholar] [CrossRef]
- Yalçin, F.; Abraham, R.; Abraham, T.P. Myocardial aspects in aortic stenosis and functional increased afterload conditions in patients with stressed heart morphology. Ann. Thorac. Cardiovasc. Surg. 2021, 27, 332–334. [Google Scholar] [CrossRef]
- Yalçin, F.; Abraham, R.; Abraham, T.P. Basal septal hypertrophy: Extremely sensitive region to variety of stress stimuli and stressed heart morphology. J. Hypertens. 2022, 40, 626–627. [Google Scholar] [CrossRef]
- Yalcin, F.; Melek, I.; Mutlu, T. Stressed heart morphology and neurologic stress score effect beyond hemodynamic stress on focal geometry. J. Hypertens. 2022, 40 (Suppl S1), e79. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Arifi, A.A.; Omran, A. The basics of echocardiography. J. Saudi Heart Assoc. 2010, 22, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Kado, Y.; Onoue, T.; Otani, K.; Nakazono, A.; Otsuji, Y.; Takeuchi, M. Impact of image quality on reliability of the measurements of left ventricular systolic function and global longitudinal strain in 2D echocardiography. Echo Res. Pract. 2018, 5, 28–39. [Google Scholar] [CrossRef]
- Maltagliati, A.; Berti, M.; Muratori, M.; Tamborini, G.; Zavalloni, D.; Berna, G.; Pepi, M. Exercise echocardiography versus exercise electrocardiography in the diagnosis of coronary artery disease in hypertension. Am. J. Hypertens. 2000, 13, 796–801. [Google Scholar] [CrossRef]
- Fragasso, G.; Lu, C.; Dabrowski, P.; Pagnotta, P.; Sheiban, I.; Chierchia, S.L. Comparison of stress/rest myocardial perfusion tomography, dipyridamole and dobutamine stress echocardiography for the detection of coronary disease in hypertensive patients with chest pain and positive exercise test. J. Am. Coll. Cardiol. 1999, 34, 441–447. [Google Scholar] [CrossRef]
- Astarita, C.; Pálinkás, A.; Nicolai, E.; Maresca, F.S.; Varga, A.; Picano, E. Dipyridamole-atropine stress echocardiography versus exercise SPECT scintigraphy for detection of coronary artery disease in hypertensives with positive exercise test. J. Hypertens. 2001, 19, 495–502. [Google Scholar] [CrossRef]
- Elhendy, A.; Geleijnse, M.L.; van Domburg, R.T.; Bax, J.J.; Nierop, P.R.; Beerens, S.A.M.; Valkema, R.; Krenning, E.P.; Ibrahim, M.M.; Roelandt, J.R.T.C. Comparison of dobutamine stress echocardiography and technetium-99m sestamibi single-photon emission tomography for the diagnosis of coronary artery disease in hypertensive patients with and without left ventricular hypertrophy. Eur. J. Nucl. Med. Mol. Imaging 1997, 25, 69–78. [Google Scholar] [CrossRef]
- Shin, J.-H.; Shiota, T.; Kim, Y.-J.; Kwan, J.; Qin, J.X.; Eto, Y.; Rodriguez, L.; Thomas, J.D. False-positive exercise echocardiograms: Impact of sex and blood pressure response. Am. Heart J. 2003, 146, 914–919. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Rigamonti, E.; Lombardo, M.; Gensini, G.F.; Ambrosio, G. Does chest shape influence exercise stress echocardiographic results in patients with suspected coronary artery disease? Intern. Emerg. Med. 2022, 17, 101–112. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Lombardo, M.; Nicolosi, G.L.; Grasso, E.; Ambrosio, G. The wide spectrum of determinants of false-positive results on exercise stress echocardiography. J. Cardiovasc. Med. 2023, 24, 585–588. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Marwick, T.H. Phenotyping the hypertensive heart. Eur. Heart J. 2022, 43, 3794–3810. [Google Scholar] [CrossRef]
- Abuarqoub, A.; Garis, R.; Shaaban, H.; Khaddash, I.; Shamoon, F. Takotsubo cardiomyopathy with basal hypertrophy and outflow obstruction in a patient with bowel ischemia. Int. J. Crit. Illn. Inj. Sci. 2018, 8, 44. [Google Scholar] [CrossRef]
- Azzarelli, S.; Galassi, A.R.; Amico, F.; Giacoppo, M.; Argentino, V.; Fiscella, A. Intraventricular obstruction in a patient with tako-tsubo cardiomyopathy. Int. J. Cardiol. 2007, 121, e22–e24. [Google Scholar] [CrossRef]
- Sharkey, S.W.; Lesser, J.R.; Zenovich, A.G.; Maron, M.S.; Lindberg, J.; Longe, T.F.; Maron, B.J. Acute and reversible cardiomyopathy provoked by stress in women from the United States. Circulation 2005, 111, 472–479. [Google Scholar] [CrossRef]
- Yalçin, F.; Shiota, T.; Odabashian, J.; Agler, D.; Greenberg, N.L.; Garcia, M.J.; Lever, H.M.; Thomas, J.D. Comparison by real-time three-dimensional echocardiography of left ventricular geometry in hypertrophic cardiomyopathy versus secondary left ventricular hypertrophy. Am. J. Cardiol. 2000, 85, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, P.E.; Kautiainen, H.; Järvenpää, S.; Kantola, I. Target organ damage and cardiovascular risk factors among subjects with previously undiagnosed hypertension. Eur. J. Prev. Cardiol. 2014, 21, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Schlaich, M.P.; Kaye, D.M.; Lambert, E.; Sommerville, M.; Socratous, F.; Esler, M.D. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation 2003, 108, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, S.; Abrahamsson, T.; Almgren, O. Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: Fluorescence microscopic appearance in the normal state and after ischemia. Basic Res. Cardiol. 1985, 80, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kawano, H.; Okada, R.; Yano, K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessel. 2003, 18, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Wittstein, I.S.; Thiemann, D.R.; Lima, J.A.C.; Baughman, K.L.; Schulman, S.P.; Gerstenblith, G.; Wu, K.C.; Rade, J.J.; Bivalacqua, T.J.; Champion, H.C. Neurohumoral features of myocardial stunning due to sudden emotional stress. N. Engl. J. Med. 2005, 352, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Abraham, M.R.; Abraham, T.P. It is time to assess left ventricular segmental remodelling in aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e299–e300. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Küçükler, N.; Arslan, S.; Akkuş, O.; Kurtul, A.; Abraham, M.R. Basal septal hypertrophy as the early imaging biomarker for adaptive phase of remodeling prior to heart failure. J. Clin. Med. 2021, 11, 75. [Google Scholar] [CrossRef]
- Krasnow, N. Subaortic septal bulge simulates hypertrophic cardiomyopathy by angulation of the septum with age, independent of focal hypertrophy. An echocardiographic study. J. Am. Soc. Echocardiogr. 1997, 10, 545–555. [Google Scholar] [CrossRef]
- Guzik, B.M.; McCallum, L.; Zmudka, K.; Guzik, T.J.; Dominiczak, A.F.; Padmanabhan, S. Echocardiography predictors of survival in hypertensive patients with left ventricular hypertrophy. Am. J. Hypertens. 2021, 34, 636–644. [Google Scholar] [CrossRef]
- Yalçin, F.; Muderrisoglu, H.; Korkmaz, M.E.; Ozin, B.; Baltali, M.; Yigit, F. The effect of dobutamine stress on left ventricular outflow tract gradients in hypertensive patients with basal septal hypertrophy. Angiology 2004, 55, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Schindler, T.; Abraham, T.P. Hypertension should be ruled out in patients with hyperdynamic left ventricle on radionuclide myocardial perfusion imaging, diastolic dysfunction and dyspnea on exertion. IJC Heart Vasc. 2015, 7, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, F.; Kucukler, N.; Haq, N.; Abraham, T.P. Evaluation of regional myocardial dynamics in left ventricular hypertrophy secondary to essential hypertension. J. Am. Coll. Cardiol. 2011, 57, E2000. [Google Scholar] [CrossRef]
- Yalçin, F.; Çağatay, B.; Küçükler, N.; Abraham, T.P. Geomeric and functional aspects in hypertension and takotsubo: Importance of basal septal hypertrophy. Eur. J. Prev. Cardiol. 2023, 30, 1996–1997. [Google Scholar] [CrossRef]
- Yalcin, F.; Kucukler, N.; Abraham, T.P.; Garcia, M.J. Can quantitative regional myocardial dynamics contribute to the differential diagnosis of acute stress cardiomyopathy? Anadolu Kardiyol. Derg. Anatol. J. Cardiol. 2012, 12, 71–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çağatay, B.; Yalçin, F.; Kıraç, A.; Küçükler, N.; Abraham, M.R. The Science Behind Stress: From Theory to Clinic, Is Basal Septal Hypertrophy the Missing Link between Hypertension and Takotsubo Cardiomyopathy? Stresses 2024, 4, 330-341. https://doi.org/10.3390/stresses4020021
Çağatay B, Yalçin F, Kıraç A, Küçükler N, Abraham MR. The Science Behind Stress: From Theory to Clinic, Is Basal Septal Hypertrophy the Missing Link between Hypertension and Takotsubo Cardiomyopathy? Stresses. 2024; 4(2):330-341. https://doi.org/10.3390/stresses4020021
Chicago/Turabian StyleÇağatay, Boran, Fatih Yalçin, Adnan Kıraç, Nagehan Küçükler, and Maria Roselle Abraham. 2024. "The Science Behind Stress: From Theory to Clinic, Is Basal Septal Hypertrophy the Missing Link between Hypertension and Takotsubo Cardiomyopathy?" Stresses 4, no. 2: 330-341. https://doi.org/10.3390/stresses4020021
APA StyleÇağatay, B., Yalçin, F., Kıraç, A., Küçükler, N., & Abraham, M. R. (2024). The Science Behind Stress: From Theory to Clinic, Is Basal Septal Hypertrophy the Missing Link between Hypertension and Takotsubo Cardiomyopathy? Stresses, 4(2), 330-341. https://doi.org/10.3390/stresses4020021