A Conceptual Framework for the Technological Advancement of E-Commerce Applications
Abstract
:1. Introduction
2. Materials and Methods
- Searching by keywords and setting filters to retrieve publication abstracts in English, published after 2019;
- Application of text mining technologies to extract information from the collection of textual data.
3. Results of Applying the Methodology
3.1. Literature Review
3.2. Automatic Text Analysis
- Scopus database.
- Pre-processing the text to convert it into a vector of words.
- Using the LDA approach to discover the topics.
- Tokenization—dividing the text into separate words;
- Transformation of case letter case conversion—to make all words spelled the same way, for example to convert to lowercase letters;
- Filter tokens by length—filtering words according to their length, which allows, for example, to exclude words with a length of up to two or three characters;
- Filtering stopwords—deletion of redundant words according to a predefined dictionary of so-called “redundant” words in the English language;
- Generation of n-Grams (terms)—a sequence of n elements, words, is created.
4. A Conceptual Framework for the Maintenance and Development of E-Commerce Applications
- Provide professional development tools;
- Applicable to more complex applications that can be integrated with other systems;
- Must be based on modern Internet technologies and framework systems;
- Support the operation of various types of client devices, including mobile devices in the implementation of the principles of multi-channel access;
- Enable universal access to multiple data sources;
- Reliable and secure [49], as business processes related to payments and confidential information are automated.
- Application integration. Useful applications to integrate are: referrals, email marketing, and chatbot systems.
- Data level integration. Using an integrated database and integration with external data sources, including unstructured data, to improve analytics.
- Integration with partner and supplier systems. System-level integration with supplier companies is mainly by payment modules and logistics companies.
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat. E-Commerce Continues to Grow in the EU. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/ddn-20230228-2 (accessed on 12 March 2023).
- Shepherd, J. 21 Essential eCommerce Statistics You Need to Know in 2023. Available online: https://thesocialshepherd.com/blog/ecommerce-statistics (accessed on 14 January 2023).
- Tran, T. Top 7 Server-Side Scripting Languages. 2021. Available online: https://www.orientsoftware.com/blog/server-side-scripting-languages/ (accessed on 15 January 2023).
- W3Techs. Usage Statistics of Server-Side Programming Languages for Websites. Available online: https://w3techs.com/technologies/overview/programming_language (accessed on 15 January 2023).
- Bankov, B. Software Evaluation of PHP MVC Web Applications. In Proceedings of the 19 International Multidisciplinary Scientific Geoconference SGEM 2019, Albena, Bulgaria, 28 June–6 July 2019; Informatics, Geoinformatics and Remote Sensing Issue 2.1. Volume 19, pp. 603–610. [Google Scholar] [CrossRef]
- Nguyen, L.A.; Huynh, T.S.; Tran, D.T.; Vu, Q.H. Design and Implementation of Web Application Based on MVC Laravel Architecture. Eur. J. Electr. Eng. Comput. Sci. 2022, 6, 23–29. [Google Scholar] [CrossRef]
- Santos, V.; Augusto, T.; Vieira, J.; Bacalhau, L.; Sousa, B.M.; Pontes, D. E-Commerce: Issues, Opportunities, Challenges, and Trends. In Promoting Organizational Performance Through 5G and Agile Marketing; IGI Global: Hershey, PA, USA, 2023; pp. 224–244. [Google Scholar]
- Dimitrova, V.; Kaneva, M. Electronic Commerce and Gross Domestic Product Growth in Bulgaria. In Proceedings of the 5th International Multidisciplinary Scientific Conference on Social Science & Arts: SGEM 2018: Conference Proceedings, Albena, Bulgaria, 24 August–2 October 2018; pp. 297–304. [Google Scholar]
- Rijayana, I.; Nugraha, U. Development E-Commerce Applications. Turk. J. Comput. Math. Educ. 2021, 12, 985–990. [Google Scholar]
- Shaytura, S.V.; Kozhayev, Y.P.; Ordov, K.V.; Antonenkova, A.V.; Zhenova, N.A. Performance evaluation of the electronic commerce systems. Rev. Espac. 2017, 38, 1. [Google Scholar]
- Kumar, B.; Roy, S.; Sinha, A.; Iwendi, C.; Strážovská, Ľ. E-Commerce Website Usability Analysis Using the Association Rule Mining and Machine Learning Algorithm. Mathematics 2023, 11, 25. [Google Scholar] [CrossRef]
- Farras, M.; Friscily, F.; Gabriela, G.; Sera, S.; Sherinne, S.; Mulyawan, B. Implementation of Big Data in E-Commerce to Improve User Experience. Adv. Soc. Sci. Educ. Humanit. Res. 2022, 655, 1985–1989. [Google Scholar]
- Kumar, B.; Roy, S. An Empirical Study on Usability and Security of E-Commerce Websites. In Research in Intelligent and Computing in Engineering. Advances in Intelligent Systems and Computing; Kumar, R., Quang, N.H., Kumar Solanki, V., Cardona, M., Pattnaik, P.K., Eds.; Springer: Singapore, 2021; Volume 1254. [Google Scholar] [CrossRef]
- Aulkemeier, F.; Iacob, M.E.; van Hillegersberg, J. Platform-based collaboration in digital ecosystems. Electron Mark. 2019, 29, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, D. Research on Blockchain Application for E-Commerce, Finance and Energy. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 252, p. 042126. [Google Scholar] [CrossRef]
- Himeur, Y.; Sayed, A.; Alsalemi, A.; Bensaali, F.; Amira, A.; Varlamis, I.; Eirinaki, M.; Sardianos, C.; Dimitrakopoulos, G. Blockchain-based recommender systems: Applications, challenges and future opportunities. Comput. Sci. Rev. 2022, 43, 100439. [Google Scholar] [CrossRef]
- Almarabeh, T.; Majdalawi, Y.K. Cloud Computing of E-commerce. Mod. Appl. Sci. 2019, 13, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Sohaib, O.; Naderpour, M.; Hussain, W.; Martinez, L. Cloud computing model selection for e-commerce enterprises using a new 2-tuple fuzzy linguistic decision-making method. Comput. Ind. Eng. 2019, 132, 47–58. [Google Scholar] [CrossRef]
- Jabbar, J.; Urooj, I.; JunSheng, W.; Azeem, N. Real-time sentiment analysis on E-commerce application. In Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 9–11 May 2019; pp. 391–396. [Google Scholar] [CrossRef]
- Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Appl. Sci. 2020, 10, 7748. [Google Scholar] [CrossRef]
- Sheikh, A.S.; Guigourès, R.; Koriagin, E.; Ho, Y.K.; Shirvany, R.; Vollgraf, R.; Bergmann, U. A deep learning system for predicting size and fit in fashion e-commerce. In Proceedings of the 13th ACM Conference on Recommender Systems, Copenhagen, Denmark, 16–20 September 2019; pp. 110–118. [Google Scholar] [CrossRef] [Green Version]
- Bawack, R.E.; Wamba, S.F.; Carillo, K.D.; Akter, S. Artificial intelligence in E-Commerce: A bibliometric study and literature review. Electron Mark. 2022, 32, 297–338. [Google Scholar] [CrossRef]
- Song, Z.; Sun, Y.; Wan, J.; Huang, L.; Zhu, J. Smart e-commerce systems: Current status and research challenges. Electron. Mark. 2019, 29, 221–238. [Google Scholar] [CrossRef]
- Vanneschi, L.; Horn, D.M.; Castelli, M.; Popovič, A. An artificial intelligence system for predicting customer default in e-commerce. Expert Syst. Appl. 2018, 104, 1–21. [Google Scholar] [CrossRef]
- Cano, J.A.; Londoño-Pineda, A.; Rodas, C. Sustainable Logistics for E-Commerce: A Literature Review and Bibliometric Analysis. Sustainability 2022, 14, 12247. [Google Scholar] [CrossRef]
- Žižka, J.; Dařena, F.; Svoboda, A. Text Mining with Machine Learning Principles and Techniques, 1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar]
- Li, L.; Zhang, J. Research and Analysis of an Enterprise E-Commerce Marketing System Under the Big Data Environment. Organ. End User Comput. 2021, 33, 1–19. [Google Scholar] [CrossRef]
- Alrumiah, S.S.; Hadwan, M. Implementing big data analytics in e-commerce: Vendor and customer view. IEEE Access 2021, 9, 37281–37286. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Y.; Deng, W. Innovation Mode and Optimization Strategy of B2C E-Commerce Logistics Distribution under Big Data. Sustainability 2020, 12, 3381. [Google Scholar] [CrossRef] [Green Version]
- Ballestar, M.T. Editorial: Segmenting the Future of E-Commerce, One Step at a Time. J. Theor. Appl. Electron. Commer. Res. 2021, 16, I–III. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Wang, M. Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. Int. J. Hosp. Manag. 2019, 76, 111–121. [Google Scholar] [CrossRef]
- Wu, P.J.; Lin, K.C. Unstructured big data analytics for retrieving e-commerce logistics knowledge. Telemat. Inform. 2018, 35, 237–244. [Google Scholar] [CrossRef]
- Xu, F.; Pan, Z.; Xia, R. E-commerce product review sentiment classification based on a Naive Bayes continuous learning framework. Inf. Process. Manag. 2020, 57, 102221. [Google Scholar] [CrossRef]
- Li, J. E-Commerce Fraud Detection Model by Computer Artificial Intelligence Data Mining. Comput. Intell. Neurosci. 2022, 2022, 8783783. [Google Scholar] [CrossRef]
- Chen, S. Analysis of Customization Strategy for E-Commerce Operation Based on Big Data. Wirel. Commun. Mob. Comput. 2021, 2021, 6626480. [Google Scholar] [CrossRef]
- Luo, H.; Song, W.; Zhou, W. TipScreener: A Framework for Mining Tips for Online Review Readers. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1716–1740. [Google Scholar] [CrossRef]
- Thandekkattu, S.G.; Kalaiarasi, M. Customer-Centric E-commerce Implementing Artificial Intelligence for Better Sales and Service. In Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems; Reddy, A.B., Kiranmayee, B., Mukkamala, R.R., Srujan Raju, K., Eds.; Algorithms for Intelligent Systems; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Metsai, A.I.; Tabakis, I.M.; Karamitsios, K.; Kotrotsios, K.; Chatzimisios, P.; Stalidis, G.; Goulianas, K. Customer Journey: Applications of AI and Machine Learning in E-Commerce. In New Realities, Mobile Systems and Applications: Proceedings of the 14th IMCL Conference; Springer International Publishing: Cham, Switzerland, 2022; pp. 123–132. [Google Scholar] [CrossRef]
- Needle, F. How Chatbots Can Improve User Experience. 2021. Available online: https://blog.hubspot.com/service/chatbots-user-experience (accessed on 14 January 2023).
- Oguntosin, V.; Olomo, A. Development of an E-Commerce Chatbot for a University Shopping Mall. Appl. Comput. Intell. Soft Comput. 2021, 2021, 6630326. [Google Scholar] [CrossRef]
- Leng, J.; Sha, W.; Wang, B.; Zheng, P.; Zhuang, C.; Liu, Q.; Wuest, T.; Mourtzis, D.; Wang, L. Industry 5.0: Prospect and retrospect. J. Manuf. Syst. 2022, 65, 279–295. [Google Scholar] [CrossRef]
- Xia, S.; Shiqi, Y.; Ziqing, H.; Tao, H. The Application of Artificial Intelligence in Electronic Commerce. Phys. Conf. Ser. 2019, 1302, 032030. [Google Scholar] [CrossRef]
- Anastasiei, B.; Dospinescu, N.; Dospinescu, O. The impact of social media peer communication on customer behaviour—Evidence from Romania. Argum. Oeconomica 2022, 48, 247–264. [Google Scholar] [CrossRef]
- Agrawal, S. The Advent of Social Commerce in the Light of COVID-19 Pandemic. Contemp. Res. Commer. Manag. 2022, 1, 98. [Google Scholar]
- Madias, K.; Szymkowiak, A. Functionalities of Social Commerce used by SME during Pandemic. Int. J. Mark. Commun. New Media 2022, 11, 30–44. [Google Scholar] [CrossRef]
- Attar, R.W.; Almusharraf, A.; Alfawaz, A.; Hajli, N. New Trends in E-Commerce Research: Linking Social Commerce and Sharing Commerce: A Systematic Literature Review. Sustainability 2022, 14, 16024. [Google Scholar] [CrossRef]
- Hartley, J. Clarifying the abstracts of systematic literature reviews. Bull. Med. Libr. Assoc. 2000, 88, 332. [Google Scholar]
- Blei, D.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. 2003, 3, 993–1022. [Google Scholar]
- Akour, I.; Alnazzawi, N.; Alshurideh, M.; Almaiah, M.A.; Al Kurdi, B.; Alfaisal, R.M.; Salloum, S. A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers. Electronics 2022, 11, 3648. [Google Scholar] [CrossRef]
- Babalola, I.H.; Aigbavboa, C.O. Evaluating Communication Features of Human Resource Management Practices: The Construction Industry in Lagos State, Nigeria. Businesses 2022, 2, 471–485. [Google Scholar] [CrossRef]
- Huang, W.; Lin, M.; Wang, Y. Sentiment Analysis of Chinese E-Commerce Product Reviews Using ERNIE Word Embedding and Attention Mechanism. Appl. Sci. 2022, 12, 7182. [Google Scholar] [CrossRef]
- Tabianan, K.; Velu, S.; Ravi, V. K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data. Sustainability 2022, 14, 7243. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, H. Behavior prediction based on a Commodity Utility-Behavior Sequence model. Mach. Learn. Appl. 2022, 9, 100314. [Google Scholar] [CrossRef]
- Peicheva, M. Data analysis from the applicant tracking system. Choveshki Resur. Tehnol. HR Technol. Creat. Space Assoc. 2022, 2, 6–15. [Google Scholar]
- Hussain, A.; Shahzad, A.; Hassan, R. Organizational and Environmental Factors with the Mediating Role of E-Commerce and SME Performance. J. Open Innov. Technol. Mark. Complex. 2020, 6, 196. [Google Scholar] [CrossRef]
- Helfat, C.E.; Raubitschek, R.S. Dynamic integrative capabilities for profiting from innovation in digital platform-based ecosystems. Res. Policy 2018, 47, 1391–1399. [Google Scholar] [CrossRef]
- Lewandowski, D. Search Engine Optimization (SEO). In Understanding Search Engines; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Shishmanov, K.; Tashkova, M.; Markova, M. Savremenni Tendentsii v Sazdavaneto na Prilozheniya za Elektronna Targoviya; Scientific Research Almanac, D.A., Ed.; Tsenov Academy of Economics: Svishtov, Bulgaria, 2020; Volume 28, pp. 243–272. (In Bulgarian) [Google Scholar]
- Ramya, P.; Jai Sai Chaitanya, K.; Fardeen, S.K.; Prabhakar, G. Web Design as an Important Factor in the Success of a Website. Lect. Notes Netw. Syst. 2023, 558, 51–60. [Google Scholar] [CrossRef]
Group 1 | Group 2 | Group 3 |
---|---|---|
development | social | data |
data | business | recommendation |
logistics | digital | users |
system | customer | learning |
technology | factors | reviews |
service | data | network |
supply chain | analysis | systems |
cross | purchase | method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulova, S. A Conceptual Framework for the Technological Advancement of E-Commerce Applications. Businesses 2023, 3, 220-230. https://doi.org/10.3390/businesses3010015
Sulova S. A Conceptual Framework for the Technological Advancement of E-Commerce Applications. Businesses. 2023; 3(1):220-230. https://doi.org/10.3390/businesses3010015
Chicago/Turabian StyleSulova, Snezhana. 2023. "A Conceptual Framework for the Technological Advancement of E-Commerce Applications" Businesses 3, no. 1: 220-230. https://doi.org/10.3390/businesses3010015
APA StyleSulova, S. (2023). A Conceptual Framework for the Technological Advancement of E-Commerce Applications. Businesses, 3(1), 220-230. https://doi.org/10.3390/businesses3010015