Development of a Geopolymer for 3D Printing Using Submerged Arc Welding (SAW) Slag
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of KOH Molarity
3.2. Influence of SAW Slag
3.3. Optimization of w/b Ratio for 3D Printing
- Flow test
- 3D printing parameters
- Shape retention test
- 2.
- Layer-on-layer deposition
- 3D printing test
4. Discussion
4.1. Influence of KOH Molarity
4.2. Influence of SAW Slag
4.3. Optimization of w/b Ratio for 3D Printing
- Flow test
- 3D printing parameters
- Shape retention test
- 2.
- Layer-on-layer deposition
- 3D printing test
5. Conclusions
- Effect of KOH molarity: Increasing KOH molarity delayed setting times, with the longest values observed at 10 M and 12 M. The best mechanical performance was achieved with 8 M KOH, reaching 48.5 MPa at 28 days. Higher concentrations negatively affected strength due to excessive dissolution and porosity. These results provide new insight into the optimization of alkaline activator concentration for SAW-based geopolymers.
- Influence of SAW slag: Partial replacement of GGBFS with SAW slag slowed down setting time due to compositional differences (higher Al2O3 and MgO, lower CaO and SiO2). However, compressive strengths above 45 MPa at 28 days were still obtained, and 30% replacement achieved the highest value (52.4 MPa). This confirms the potential of SAW slag to act as a sustainable supplementary precursor.
- Optimization of w/s ration and 3D printing parameters: The consistency, shape retention, and layer-by-layer extrusion tests show that the S3-1, S3-2, and S3-3 mixes meet the requirements for 3D printing. During the consistency test, the materials exhibited good consistency values and also showed a good appearance during the process. The shape retention test revealed that mix S3-2 showed almost no height deformation when subjected to a total weight of 2800 g, and the layer-by-layer deposition test demonstrated that the layers were extruded without any issues, showing good continuity and no deformation under the weight of the upper layers.
- 3D printing test: The optimized formulation (20% SAW slag, 8 M KOH, w/b = 0.29) showed adequate workability, extrudability, and buildability, meeting the requirements for 3D printing. In pilot-scale printing, this mix exhibited continuous extrusion, strong interlayer adhesion, and shape retention, with only minor edge irregularities. These results demonstrate, for the first time, the suitability of SAW slag–based geopolymers for additive manufacturing applications.
- Sustainability potential: The use of SAW slag as a precursor represents a significant step forward sustainability. This by-product can be valorized, not only in 3D printed geopolymers, but also as a binder substitute in mortars or in geopolymers for other applications. Its incorporation reduces waste disposal, decreases the demand for traditional binders, and supports circular economic strategies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| KOH | potassium hydroxide |
| GGBFS | ground granulated blast furnace slag |
| w/b | water-to-binder |
| SAW | submerged arc welding |
| AASM | alkali-activated slag mortar |
| ECC | engineered cementitious composites |
| C-A-S-H | calcium-aluminate-silicate-hydrate |
References
- Buswell, R.A.; Leal De Silva, W.R.; Jones, S.Z.; Dirrenberger, J. 3D Printing Using Concrete Extrusion: A Roadmap for Research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Will, F.; Näther, M.; Otto, J.; Krause, M. Large-Scale Digital Concrete Construction—CONPrint3D Concept for on-Site, Monolithic 3D-Printing. Autom. Constr. 2019, 107, 102933. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Guo, Y.; Kashani, A.; Wang, K.; Ferrara, L.; Agudelo, I. Concrete 3D Printing Technology for Sustainable Construction: A Review on Raw Material, Concrete Type and Performance. Dev. Built Environ. 2024, 17, 100378. [Google Scholar] [CrossRef]
- Ma, G.; Wang, L.; Ju, Y. State-of-the-Art of 3D Printing Technology of Cementitious Material—An Emerging Technique for Construction. Sci. China Technol. Sci. 2018, 61, 475–495. [Google Scholar] [CrossRef]
- Zhao, Z.; Ji, C.; Xiao, J.; Yao, L.; Lin, C.; Ding, T.; Ye, T. A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete: Material Preparation, Construction Process and Structure Level. Constr. Build. Mater. 2023, 409, 133887. [Google Scholar] [CrossRef]
- Shelton, D.P.; Harper, J.M. G82-623 An Overview of Concrete as a Building Material; Historical Materials from University of Nebraska-Lincoln Extensio; University of Nebraska: Lincoln, NE, USA, 1982; p. 603. [Google Scholar]
- Ede, A.N.; Ben-Ejeagwu, B.; Akpabot, A.I.; Oyebisi, S.O.; Olofinnade, O.M.; Mark, O.G. Review of the Mechanical and Durability Properties of Natural Fibre Laminate-Strengthened Reinforced Concrete Beams. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1036, 012043. [Google Scholar] [CrossRef]
- Marey, H.; Kozma, G.; Szabó, G. Green Concrete Materials Selection for Achieving Circular Economy in Residential Buildings Using System Dynamics. Clean. Mater. 2024, 11, 100221. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental Impacts and Decarbonization Strategies in the Cement and Concrete Industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Aldin, Z. 3D Printing of Geopolymer Concrete. Master’s Thesis, Delft University of Technology, Faculty of Civil Engineering & Geosciences, Delft, The Netherlands, 2019. [Google Scholar]
- Almalkawi, A.; Balachandra, A.; Soroushian, P. Potential of Using Industrial Wastes for Production of Geopolymer Binder as Green Construction Materials. Constr. Build. Mater. 2019, 220, 516–524. [Google Scholar] [CrossRef]
- Dobiszewska, M.; Beycioğlu, A. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 022027. [Google Scholar] [CrossRef]
- Fahim Huseien, G.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Abdulameer Hussein, A. Geopolymer Mortars as Sustainable Repair Material: A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 80, 54–74. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C.; Spangenberg, J.; Mehrali, M. Hardening Evolution of Geopolymers from Setting to Equilibrium: A Review. Cem. Concr. Compos. 2020, 114, 103729. [Google Scholar] [CrossRef]
- An, J.; Kim, J.; Nam, B.H. Investigation on Impacts of Municipal Solid Waste Incineration Bottom Ash on Cement Hydration. ACI Mater. J. 2017, 114, 701–711. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.; Tarelho, L.; Allen, G.; Labrincha, J.A.; Ferreira, V. Characterisation and Use of Biomass Fly Ash in Cement-Based Materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Songpiriyakij, S.; Kubprasit, T.; Jaturapitakkul, C.; Chindaprasirt, P. Compressive Strength and Degree of Reaction of Biomass- and Fly Ash-Based Geopolymer. Constr. Build. Mater. 2010, 24, 236–240. [Google Scholar] [CrossRef]
- Zhu, H.; Liang, G.; Xu, J.; Wu, Q.; Zhai, M. Influence of Rice Husk Ash on the Waterproof Properties of Ultrafine Fly Ash Based Geopolymer. Constr. Build. Mater. 2019, 208, 394–401. [Google Scholar] [CrossRef]
- Singh, J.; Singh, V. Experimental Studies on Concrete Containing Welding Waste Slag. Int. J. Res. 2018, 5, 1052–1060. [Google Scholar]
- Ramesh, S.T.; Gandhimathi, R.; Nidheesh, P.V.; Rajakumar, S.; Prateepkumar, S. Use of Furnace Slag and Welding Slag as Replacement for Sand in Concrete. Int. J. Energy Environ. Eng. 2013, 4, 3. [Google Scholar] [CrossRef]
- Bavithra, R.; Suruthi, G. Experimental Study on Behaviour of Concrete by Using Welding Slag as A Partial Replacement of Sand. Int. J. Eng. Res. 2018, 6, 1–3. [Google Scholar]
- Arunachalam, A.; Jayakumar, K. Influence of Weld Slag Aggregate in High-Performance Concrete. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2016, 169, 14–20. [Google Scholar] [CrossRef]
- UNE-EN 196-1:2018; Métodos de Ensayo de Cementos. Parte 1: Determinación de las Resistencias. UNE—Spanish Association for Standardization: Madrid, Spain, 2018. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0060675 (accessed on 16 September 2025).
- UNE-EN 196-6:2019; Métodos de Ensayo de Cementos. Parte 6: Determinación de la Finura. UNE—Spanish Association for Standardization: Madrid, Spain, 2019. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0062601 (accessed on 16 September 2025).
- UNE-EN 1015-3:2000; Métodos de Ensayo para Morteros de Albañilería. Parte 3: Determinación de la Consistencia del Mortero Fresco (por la Mesa de Sacudidas). UNE—Spanish Association for Standardization: Madrid, Spain, 2000. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0023381 (accessed on 16 September 2025).
- UNE-EN 1015-6:1999; Métodos de Ensayo de los Morteros para Albañilería. Parte 6: Determinación de la Densidad Aparente del Mortero Fresco. UNE—Spanish Association for Standardization: Madrid, Spain, 1999. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0009380 (accessed on 16 September 2025).
- Nematollahi, B.; Vijay, P.; Sanjayan, J.; Nazari, A.; Xia, M.; Naidu Nerella, V.; Mechtcherine, V. Effect of Polypropylene Fibre Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction. Materials 2018, 11, 2352. [Google Scholar] [CrossRef]
- Fernández, F.; Jarabo, R.; Asensio, E.; Guerrero, A. Study of Self-Healing at Large Ages for a 3D Printable ECC Material. Mater. Today Proc. 2023. [CrossRef]
- Soltan, D.G.; Li, V.C. A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing. Cem. Concr. Compos. 2018, 90, 1–13. [Google Scholar] [CrossRef]
- Awoyera, P.; Adesina, A. A Critical Review on Application of Alkali Activated Slag as a Sustainable Composite Binder. Case Stud. Constr. Mater. 2019, 11, e00268. [Google Scholar] [CrossRef]
- Avram, S.E.; Birle, B.V.; Cosma, C.; Tudoran, L.B.; Moldovan, M.; Cuc, S.; Borodi, G.; Petean, I. Ecological Building Material Obtained Through the Moderate Thermal Consolidation of Ceramic Slurry Collected from Industrial Waste Waters. Materials 2025, 18, 1715. [Google Scholar] [CrossRef] [PubMed]








| Properties | Potassium Hydroxide |
|---|---|
| Chemical formula | KOH |
| Molecular weight (g/mol) | 56.11 |
| Appearance | Solid |
| Relative density (g/cm3) | 2.04 |
| Properties | SAW Slag | GGBFS |
|---|---|---|
| Density (g/cm3) | 3.1 | 2.9 |
| Blaine (cm2/g) | 4968 | 4068 |
| Oxides (%) | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | MnO | TiO2 | Fe2O3 | P2O5 | SO3 | LOI |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SAW slag | 2.43 | 15.71 | 19.55 | 20.99 | 1.09 | 18.22 | 8.48 | 2.76 | 2.77 | 0.03 | 0.05 | 7.92 |
| GGBFS | 0.17 | 4.26 | 13.58 | 30.83 | 0.35 | 46.58 | 0.15 | 0.65 | 0.87 | 0.03 | 1.63 | 0.90 |
| Samples | GGBFS | SAW Slag | Sand | KOH (M) | w/b |
|---|---|---|---|---|---|
| S1-1 | 100 | 0 | 124 | 6 | 0.37 |
| S1-2 | 100 | 0 | 124 | 8 | 0.37 |
| S1-3 | 100 | 0 | 124 | 10 | 0.37 |
| S1-4 | 100 | 0 | 124 | 12 | 0.37 |
| S2-0 | 100 | 0 | 124 | 8 | 0.32 |
| S2-1 | 90 | 10 | 124 | 8 | 0.32 |
| S2-2 | 80 | 20 | 124 | 8 | 0.32 |
| S2-3 | 70 | 30 | 124 | 8 | 0.32 |
| S2-4 | 60 | 40 | 124 | 8 | 0.32 |
| S2-5 | 50 | 50 | 124 | 8 | 0.32 |
| S3-1 | 90 | 10 | 124 | 8 | 0.29 |
| S3-2 | 80 | 20 | 124 | 8 | 0.29 |
| S3-3 | 70 | 30 | 124 | 8 | 0.29 |
| Consistency | S3-1 | S3-2 | S3-3 |
|---|---|---|---|
| (mm) | 185 | 183 | 183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, F.; Sánchez, M.; García, P.G.; Hernández, M.; Hurtado, M.; Chen, Y.; Rahier, H.; Rodríguez, C. Development of a Geopolymer for 3D Printing Using Submerged Arc Welding (SAW) Slag. Constr. Mater. 2025, 5, 73. https://doi.org/10.3390/constrmater5040073
Fernández F, Sánchez M, García PG, Hernández M, Hurtado M, Chen Y, Rahier H, Rodríguez C. Development of a Geopolymer for 3D Printing Using Submerged Arc Welding (SAW) Slag. Construction Materials. 2025; 5(4):73. https://doi.org/10.3390/constrmater5040073
Chicago/Turabian StyleFernández, Fernando, Marina Sánchez, Pablo Gómez García, Míriam Hernández, Miguel Hurtado, Yanjuan Chen, Hubert Rahier, and Carlos Rodríguez. 2025. "Development of a Geopolymer for 3D Printing Using Submerged Arc Welding (SAW) Slag" Construction Materials 5, no. 4: 73. https://doi.org/10.3390/constrmater5040073
APA StyleFernández, F., Sánchez, M., García, P. G., Hernández, M., Hurtado, M., Chen, Y., Rahier, H., & Rodríguez, C. (2025). Development of a Geopolymer for 3D Printing Using Submerged Arc Welding (SAW) Slag. Construction Materials, 5(4), 73. https://doi.org/10.3390/constrmater5040073

