A Decision Framework for Waste Foundry Sand Reuse: Integrating Performance Metrics and Leachate Safety via Meta-Analysis
Abstract
1. Introduction
1.1. Background
1.2. Waste Foundry Sand: Definitions and Application in Construction
1.2.1. Generation and Types of WFS
1.2.2. Physical and Chemical Properties
1.2.3. Applications in Construction Materials
1.2.4. Reuse Challenges and the Need for an Integrated Framework
2. Methods
2.1. Systematic Review
2.2. Meta Analysis
3. Results
3.1. Publication Growth and Thematic Output
3.2. Thematic Keywork and Distribution Gaps
3.3. Theme-to-Output Mapping
3.4. Performance Properties of WFS in Concrete and Bricks
3.5. Environmental Safety Parameters
3.6. Decision-Making Framework for WFS Reuse
3.6.1. Structure and Logical Flow
3.6.2. Threshold Definitions and Decision Criteria
3.6.3. Decision Tree Logic
3.7. Case Study
3.7.1. Description of Data Source
3.7.2. Evaluation of Case Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chifflard, P.; Schütz, M.; Reiss, M.; Foroushani, M.A. Evaluating Chemical Properties and Sustainable Recycling of Waste Foundry Sand in Construction Materials. Front. Built Environ. 2024, 10, 1386511. [Google Scholar] [CrossRef]
- Cioli, F.; Abbà, A.; Alias, C.; Sorlini, S. Reuse or Disposal of Waste Foundry Sand: An Insight into Environmental Aspects. Appl. Sci. 2022, 12, 6420. [Google Scholar] [CrossRef]
- Deng, A.; Tikalsky, P.J. Geotechnical and Leaching Properties of Flowable Fill Incorporating Waste Foundry Sand. Waste Manag. 2008, 28, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Bozym, M. The Study of Heavy Metals Leaching from Waste Foundry Sands Using a One-Step Extraction. E3S Web Conf. 2017, 19, 02018. [Google Scholar] [CrossRef]
- Deng, A. Contaminants in Waste Foundry Sand and Its Leachate. Int. J. Environ. Pollut. 2009, 38, 425–443. [Google Scholar] [CrossRef]
- Dayton, E.A.; Whitacre, S.D.; Dungan, R.S.; Basta, N.T. Characterization of Physical and Chemical Properties of Spent Foundry Sands Pertinent to Beneficial Use in Manufactured Soils. Plant Soil 2010, 329, 27–33. [Google Scholar] [CrossRef]
- Iloh, P.I.; Fanourakis, G.; Ogra, A. Evaluation of Physical and Chemical Properties of South African Waste Foundry Sand (WFS) for Concrete Use. Sustainability 2019, 11, 193. [Google Scholar] [CrossRef]
- Iloh, P.I. The Effect of Waste Foundry Sand (WFS) on Concrete Properties. Master’s Dissertation, University of Johannesburg, Johannesburg, South Africa, 2018. Available online: https://hdl.handle.net/10210/297395 (accessed on 12 May 2025).
- Nyembwe, K. Waste Foundry Sand Characteristics. Master’s Dissertation, University of Johannesburg, Johannesburg, South Africa, 2016. Available online: https://hdl.handle.net/10210/213457 (accessed on 16 May 2025).
- Kumar, A.; Parihar, A. Quantifying Suitability of Waste Foundry Sands from Different Metal Castings for Geotechnical Applications. Sādhanā 2024, 49, 2. [Google Scholar] [CrossRef]
- Nabhani, F.; McKie, M.; Hodgson, S. A Case Study on a Sustainable Alternative to the Landfill Disposal of Spent Foundry Sand. Int. J. Sustain. Manuf. 2013, 3, 1–19. [Google Scholar] [CrossRef]
- Bhardwaj, B.; Kumar, P. Waste Foundry Sand in Concrete: A Review. Constr. Build. Mater. 2017, 156, 661–674. [Google Scholar] [CrossRef]
- Dyer, P.P.O.L.; Gutierrez Klinsky, L.M.; Silva, S.A.; E Silva, R.A.; De Lima, M.G. Macro and Microstructural Characterisation of Waste Foundry Sand Reused as Aggregate. Road Mater. Pavement Des. 2021, 22, 464–477. [Google Scholar] [CrossRef]
- Dyer, P.P.O.L.; de Lima, M.G. Waste Foundry Sand in Hot Mix Asphalt: A Review. Constr. Build. Mater. 2022, 364, 129342. [Google Scholar] [CrossRef]
- Altaf, S.; Sharma, A.; Singh, K. A Sustainable Utilization of Waste Foundry Sand in Soil Stabilization: A Review. Bull. Eng. Geol. Environ. 2024, 83, 143. [Google Scholar] [CrossRef]
- Mavroulidou, M.; Lawrence, D. Can Waste Foundry Sand Fully Replace Structural Concrete Sand? J. Mater. Cycles Waste Manag. 2019, 21, 594–605. [Google Scholar] [CrossRef]
- Winkler, E.S.; Bolshakov, A. Characterization of Foundry Sand Waste; Report No. 31; Chelsea Center for Recycling and Economic Development: Chelsea, MA, USA, 2000. [Google Scholar]
- Oguntuyi, S.D.; Nyembwe, K.; Shongwe, M.B.; Mojisola, T. Challenges and Recent Progress on the Application of Rapid Sand Casting for Part Production: A Review. Int. J. Adv. Manuf. Technol. 2023, 125, 891–906. [Google Scholar] [CrossRef]
- Mhamane, D.A.; Rayjadhav, S.B.; Shinde, V.D. Analysis of Chemically Bonded Sand Used for Molding in Foundry. Asian J. Sci. Appl. Technol. 2018, 7, 11–16. [Google Scholar] [CrossRef]
- Tangadagi, R.B.; Ravichandran, P.T. Performance Evaluation of Self-Compacting Concrete Prepared Using Waste Foundry Sand on Engineering Properties and Life Cycle Assessment. Recycling 2024, 9, 47. [Google Scholar] [CrossRef]
- Martins, M.A.B.; da Silva, L.R.R.; Ranieri, M.G.A.; Barros, R.M.; Santos, V.C.; Gonçalves, P.C.; Rodrigues, M.R.B.; Lintz, R.C.C.; Gachet, L.A.; Martinez, C.B.; et al. Physical and Chemical Properties of Waste Foundry Exhaust Sand for Use in Self-Compacting Concrete. Materials 2021, 14, 5629. [Google Scholar] [CrossRef]
- Fode, T.A.; Chande Jande, Y.A.; Kivevele, T. Physical, Mechanical, and Durability Properties of Concrete Containing Different Waste Synthetic Fibers for Green Environment—A Critical Review. Heliyon 2024, 10, e32950. [Google Scholar] [CrossRef]
- Luo, H.-L.; Lin, D.-F.; Chung, M.-L.; Chen, L.Y. Waste Foundry Sand Reused as Clay Replacement for Tile Manufacture. Int. J. Transp. Sci. Technol. 2014, 3, 339–352. [Google Scholar] [CrossRef]
- Siddique, R.; Kaur, G.; Rajor, A. Waste Foundry Sand and Its Leachate Characteristics. Resour. Conserv. Recycl. 2010, 54, 1027–1036. [Google Scholar] [CrossRef]
- Rodrigues, V.S.; Andrade, L.M.; Tenório, J.A.S. Biodegradation of Phenolic Compounds in Waste Foundry Sand: Physical and Chemical Characterization of Foundry Sand and Bacterial Degradation Kinetics. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100575. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Cho, S.; Wang, S. Use of Foundry Sands in Transportation Applications; Report No. CIGMAT/UH 2005-3; Center for Innovative Grouting Materials and Technology (CIGMAT), Department of Civil and Environmental Engineering, University of Houston: Houston, TX, USA, 2005. [Google Scholar]
- Cammelli, F.; Tameni, G.; Bernardo, E. Sustainable Stabilization of Waste Foundry Sands in Alkali Activated Glass-Based Matrices. Case Stud. Constr. Mater. 2024, 21, e03538. [Google Scholar] [CrossRef]
- Miguel, R.E.; Ippolito, J.A.; Porta, A.A.; Banda Noriega, R.B.; Dungan, R.S. Use of Standardized Procedures to Evaluate Metal Leaching from Waste Foundry Sands. J. Environ. Qual. 2013, 42, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.S.Q.; Dungan, R.S.; Carnin, R.L.P.; Ippolito, J.A.; Silva, F.T. Metals in Waste Foundry Sands and an Evaluation of Their Leaching and Transport to Groundwater. Water Air Soil Pollut. 2014, 225, 1963. [Google Scholar] [CrossRef]
- Binti, Q.; Rudge, J.; Jin, F.; Maddalena, R. Waste Foundry Sand (WFS) as Aggregate Replacement for Green Concrete. In Proceedings of the Cardiff University Engineering Research Conference 2023, Cardiff, UK, 12–14 July 2023; Spezi, E., Bray, M., Eds.; Cardiff University Press: Cardiff, UK, 2024; pp. 52–54. [Google Scholar] [CrossRef]
- Gaur, H.; Sharma, P. Replacement of Aggregates through Waste Foundry Sand and Demolished Concrete: A Review. AIP Conf. Proc. 2024, 3146, 020011. [Google Scholar] [CrossRef]
- de Barros Martins, M.A.; Barros, R.M.; Silva, G.; dos Santos, I.F. Study on Waste Foundry Exhaust Sand, WFES, as a Partial Substitute of Fine Aggregates in Conventional Concrete. Sustain. Cities Soc. 2019, 45, 187–196. [Google Scholar] [CrossRef]
- Bakis, R.; Koyuncu, H.; Demirbas, A. An Investigation of Waste Foundry Sand in Asphalt Concrete Mixtures. Waste Manag. Res. 2006, 24, 269–274. [Google Scholar] [CrossRef]
- Russo, F.; Veropalumbo, R.; Biancardo, S.A.; Oreto, C.; Scherillo, F.; Viscione, N. Reusing Jet Grouting Waste as Filler for Road Asphalt Mixtures of Base Layers. Materials 2021, 14, 3200. [Google Scholar] [CrossRef]
- Guo, Y.; Tataranni, P.; Sangiorgi, C. The Use of Fibres in Asphalt Mixtures: A State of the Art Review. Constr. Build. Mater. 2023, 403, 131754. [Google Scholar] [CrossRef]
- De Souza Campelo, N.; Sá da Costa, K.J.; Vieira, R.K.; Vieira, A.K. Use of Waste Foundry Sand (WFS) as Filler in Hot-Mixed Asphalt Concrete. In Sandy Materials in Civil Engineering—Usage and Management; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sanoop, G.; Cyrus, S.; Madhu, G. Sustainability Analysis of Landfill Cover System Constructed Using Recycled Waste Materials by Life Cycle Assessment. Nat. Environ. Pollut. Technol. 2024, 23, 409–417. [Google Scholar] [CrossRef]
- Ajayi, V.E.; Epelle, P.S.; Akinwumi, I.I. Design of Landfills and the Utilization of Wastes as Sustainable Liner Materials: A Mini-Review. Detritus 2024, 28, 150–160. [Google Scholar] [CrossRef]
- Solmaz, P.; Gedik, A.G.; Lav, M.A.; Lav, A.H. Utilization of Waste Foundry Sand (WFS) as Impermeable Layer (Drainage Blanket) for Pavement Structures. In Advances in Transportation Geotechnics—Proceedings of the 1st International Conference on Transportation Geotechnics; CRC Press: London, UK, 2008; pp. 263–268. [Google Scholar]
- Siddique, R.; Singh, G. Utilization of Waste Foundry Sand (WFS) in Concrete Manufacturing. Resour. Conserv. Recycl. 2011, 55, 885–892. [Google Scholar] [CrossRef]
- Naghibalsadati, F.; Gitifar, A.; Ray, S.; Richter, A.; Ng, K.T.W. Temporal Evolution and Thematic Shifts in Sustainable Construction and Demolition Waste Management through Building Information Modeling Technologies: A Text-Mining Analysis. J. Environ. Manag. 2024, 369, 122293. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The Circular Economy: New or Refurbished as CE 3.0?—Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Hartley, K.; van Santen, R.; Kirchherr, J. Policies for Transitioning towards a Circular Economy: Expectations from the European Union (EU). Resour. Conserv. Recycl. 2020, 155, 104634. [Google Scholar] [CrossRef]
- Nhat-Duc, H.; Quoc-Lam, N. Towards Sustainable Construction: Estimating Compressive Strength of Waste Foundry Sand-Blended Green Concrete Using a Hybrid Machine Learning Approach. Discov. Civ. Eng. 2025, 2, 42. [Google Scholar] [CrossRef]
- Paul, P.; Belhaj, E.; Diliberto, C.; Apedo, K.L.; Feugeas, F. Comprehensive Characterization of Spent Chemical Foundry Sand for Use in Concrete. Sustainability 2021, 13, 12881. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, W.; Wang, Y. Utilization of Waste Foundry Sand and Fly Ash in the Production of Steel Fibre Reinforced Concrete. J. Clean. Prod. 2023, 433, 139872. [Google Scholar] [CrossRef]
- dos Santos Bardini, V.S.; Klinsky, L.M.; Albuquerque, A.; Andrade Pais, L.; Fiore, F.A. Waste Foundry Sand as an Alternative Material in Road Construction. Sustainability 2025, 17, 2370. [Google Scholar] [CrossRef]
- Smarzewski, P. Mechanical Properties of Ultra-High Performance Concrete with Partial Utilization of Waste Foundry Sand. Buildings 2020, 10, 11. [Google Scholar] [CrossRef]
- Apithanyasai, S.; Supakata, N.; Papong, S. The Potential of Industrial Waste: Using Foundry Sand with Fly Ash and Electric Arc Furnace Slag for Geopolymer Brick Production. Heliyon 2020, 6, e03697. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzo, S.T.; de Araujo, M.T.; Bruschi, G.J.; Chaves, H.M.; Korf, E.P.; Consoli, N.C. Mechanical and Environmental Behavior of Waste Foundry Sand Stabilized with Alkali-Activated Sugar Cane Bagasse Ash-Eggshell Lime Binder. Constr. Build. Mater. 2023, 383, 131313. [Google Scholar] [CrossRef]
- Sandhu, R.K.; Siddique, R. Strength Properties and Microstructural Analysis of Self-Compacting Concrete Incorporating Waste Foundry Sand. Constr. Build. Mater. 2019, 225, 371–383. [Google Scholar] [CrossRef]
- de Matos, P.R.; Marcon, M.F.; Schankoski, R.A.; Prudêncio, L.R. Novel Applications of Waste Foundry Sand in Conventional and Dry-Mix Concretes. J. Environ. Manag. 2019, 244, 294–303. [Google Scholar] [CrossRef]
- Siddique, R.; Singh, G.; Singh, M. Recycle Option for Metallurgical By-Product (Spent Foundry Sand) in Green Concrete for Sustainable Construction. J. Clean. Prod. 2018, 172, 1111–1120. [Google Scholar] [CrossRef]
- Monosi, S.; Sani, D.; Tittarelli, F. Used Foundry Sand in Cement Mortars and Concrete Production. Open Waste Manag. J. 2010, 3, 18–25. [Google Scholar] [CrossRef]
- Filho, E.L.C.; Dos Santos Ferreira, G.C.; Nogarotto, D.C.; Pozza, S.A. Pervious Concrete with Waste Foundry Sand: Mechanical and Hydraulic Properties. Rev. Mater. 2022, 27, e13154. [Google Scholar] [CrossRef]
- Brindha Devi, V.; Pushgara Rani, D.; Periasamy, J.K.; Ponshanmugakumar, A. Experimental Investigation on Utilization of Used Foundry Sand in Concrete as Fine Aggregate. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Arulrajah, A.; Yaghoubi, E.; Imteaz, M.; Horpibulsuk, S. Recycled Waste Foundry Sand as a Sustainable Subgrade Fill and Pipe-Bedding Construction Material: Engineering and Environmental Evaluation. Sustain. Cities Soc. 2017, 28, 343–349. [Google Scholar] [CrossRef]
- Manoharan, T.; Laksmanan, D.; Mylsamy, K.; Sivakumar, P.; Sircar, A. Engineering Properties of Concrete with Partial Utilization of Used Foundry Sand. Waste Manag. 2018, 71, 454–460. [Google Scholar] [CrossRef]
- Torres, A.; Bartlett, L.; Pilgrim, C. Effect of Foundry Waste on the Mechanical Properties of Portland Cement Concrete. Constr. Build. Mater. 2017, 135, 674–681. [Google Scholar] [CrossRef]
- Singh, G.; Siddique, R. Effect of Waste Foundry Sand (WFS) as Partial Replacement of Sand on the Strength, Ultrasonic Pulse Velocity and Permeability of Concrete. Constr. Build. Mater. 2012, 26, 416–422. [Google Scholar] [CrossRef]
- Roy, R.; Sairam, V. Effect of Silica Fume and Foundry Waste Sand on Strength Characteristics of Geogrid and Ferro Cement Panel. Mater. Today Proc. 2019, 7, 362–372. [Google Scholar] [CrossRef]
- Fanourakis, G.; Ogra, A. Strength Properties of Concrete with Partial Utilization of South African Waste Foundry Sand. J. Res. Eng. Appl. Sci. 2024, 9, 791–800. [Google Scholar]
- Kumar, R.S.; Devarajan, P.; Vijayan, D.S.; Kumar, A.S.; Kadavan, A.S.; Rajesh, R. Performance assessment and engineering behaviour of cement concrete with partially replaced foundry sand as fine aggregate. IOP Conf. Ser. Earth Environ. Sci. 2023, 1130, 012007. [Google Scholar] [CrossRef]
- Feijoo, B.A.; Tobón, J.I.; Restrepo-Baena, O.J. Substitution of aggregates by waste foundry sand: Effects on physical properties of mortars. Mater. Construcc. 2021, 71, e251. [Google Scholar] [CrossRef]
- Siddique, R.; De Schutter, G.; Noumowe, A. Effect of used-foundry sand on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 976–980. [Google Scholar] [CrossRef]
- Singh, G.; Siddique, R. Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS). Constr. Build. Mater. 2012, 28, 421–426. [Google Scholar] [CrossRef]
- Siddique, R.; Singh, G.; Belarbi, R.; Aït-Mokhtar, K.; Kunal. Comparative investigation on the influence of spent foundry sand as partial replacement of fine aggregates on the properties of two grades of concrete. Constr. Build. Mater. 2015, 83, 216–222. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Beneficial Reuse Guide for Foundry Sand; U.S. EPA: Washington, DC, USA, 2002; 40p. Available online: https://archive.epa.gov/sectors/web/pdf/reuse.pdf (accessed on 16 May 2025).
- Dungan, R.S.; Dees, N.H. The characterization of total and leachable metals in foundry molding sands. J. Environ. Manag. 2009, 90, 539–548. [Google Scholar] [CrossRef]
- Siddique, R.; Noumowé, A. Utilization of spent foundry sand in controlled low-strength materials and concrete. Resour. Conserv. Recycl. 2008, 53, 27–35. [Google Scholar] [CrossRef]
- Kaur, G.; Siddique, R.; Rajor, A. Properties of concrete containing fungal treated waste foundry sand. Constr. Build. Mater. 2012, 29, 82–87. [Google Scholar] [CrossRef]
- Nyembwe, J.K.; Makhatha, M.E.; Madzivhandila, T.; Nyembwe, K.D. Characterisation of South African Waste Foundry Moulding Sand: Metallic Contaminants. In Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015), Barcelona, Spain, 20–21 July 2015; Paper No. 362. p. 362-1. [Google Scholar]
Group Name | Search String (with Waste Foundry Sand in Title or Abstract) | Primary Focus |
---|---|---|
A. Engineering Applications | (“waste foundry sand” OR “spent foundry sand” OR “used foundry sand” OR “foundry waste sand” OR “reclaimed foundry sand” OR “foundry byproduct sand” OR “discarded foundry sand” OR “exhausted molding sand”) AND (concrete OR brick OR cement OR mortar) | Construction use of WFS |
B. Environmental Safety & Leaching | (“waste foundry sand” OR “spent foundry sand” OR “used foundry sand” OR “foundry waste sand” OR “reclaimed foundry sand” OR “foundry byproduct sand” OR “discarded foundry sand” OR “exhausted molding sand”) AND (leachate OR “heavy metals” OR “toxic metals” OR contamination OR regulation OR “environmental risk” OR “landfill regulation”) | Contaminant behavior and regulatory thresholds |
C. Treatment Techniques | (“waste foundry sand” OR “spent foundry sand” OR “used foundry sand” OR “foundry waste sand” OR “reclaimed foundry sand” OR “foundry byproduct sand” OR “discarded foundry sand” OR “exhausted molding sand”) AND (treatment OR stabilization OR microbial OR bioremediation OR solidification OR detoxification OR “waste management” OR “microbial treatment”) | Microbial, chemical, or physical treatment methods |
D. Circular Economy & Reuse Policy | (“waste foundry sand” OR “spent foundry sand” OR “used foundry sand” OR “foundry waste sand” OR “reclaimed foundry sand” OR “foundry byproduct sand” OR “discarded foundry sand” OR “exhausted molding sand”) AND (reuse OR recycling OR “circular economy” OR “waste valorization” OR “resource recovery” OR “secondary raw materials” OR policy OR regulation OR legislation OR framework) | Policy, regulatory, and sustainability framing |
E. General Trends | (“foundry sand” OR “waste foundry sand” OR “spent foundry sand” OR “used foundry sand” OR “foundry waste sand” OR “reclaimed foundry sand” OR “foundry byproduct sand” OR “discarded foundry sand” OR “exhausted molding sand”) AND (“built environment” OR reuse OR recycling OR “circular economy” OR “sustainable construction” OR policy OR regulation OR legislation OR “waste management”) | Foundry sand research landscape |
Framework Layer | Function | Details |
---|---|---|
Input Layer | Collects key data for batch evaluation | —Leachate values: Pb, Cd, Cr (VI), Co, As —Compressive strength (WFS mix and reference mix) —WFS replacement percentage —Water-to-cement (w/c) ratio |
Evaluation Layer | Compares input data to performance and environmental thresholds | —NSR (Normalized Strength Ratio) ≥ 0.90 —w/c ratio ≤ 0.5 —Leachate values must be below regulatory thresholds (EPA, EU, SA) |
Categorization Layer | Determines material classification based on evaluation results | —Reuse Approved: meets both mechanical and environmental thresholds —Reuse with Treatment: passes NSR but fails leachate threshold — Rejected: fails either NSR or leachate thresholds |
Parameter | Threshold | Justification |
---|---|---|
NSR (Normalized Strength) | ≥0.90 | Ensures at least 90% control mix performance |
Pb (TCLP) | <5.0 mg/L | EPA hazardous waste limit |
Cd (TCLP) | <1.0 mg/L | EPA hazardous waste limit |
Cr VI (SA) | <0.1 mg/L | South African landfill criterion |
Co (SA) | <0.2 mg/L | South African waste screening |
As (EU) | <0.5 mg/L | EU inert waste acceptance limit |
w/c Ratio | ≤0.5 | Ensures adequate strength development |
Criterion | Input Value | Threshold | Result |
---|---|---|---|
Pb Leachate | 0.71 mg/L | <0.5 mg/L (SA) | Fail |
Mn Leachate | 0.89 mg/L | <0.5 mg/L (SA) | Fail |
Zn Leachate | 7.62 mg/L | <5.0 mg/L (SA) | Fail |
Co Leachate | 0.79 mg/L | <0.2 mg/L (SA) | Fail |
Cr, Cu, Ni Leachate | Within limits | Varies | Pass |
Normalized Strength Ratio (NSR) | 1.05 | ≥0.90 | Pass |
Estimated Compressive Strength | 31.5 MPa | ≥90% of control (27 MPa min) | Pass |
Water-to-Cement Ratio (w/c) | 0.48 | ≤0.5 | Pass |
Final Classification | — | — | Reuse with Treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niyonyungu, F.; Ogra, A.; Ngcobo, N. A Decision Framework for Waste Foundry Sand Reuse: Integrating Performance Metrics and Leachate Safety via Meta-Analysis. Constr. Mater. 2025, 5, 63. https://doi.org/10.3390/constrmater5030063
Niyonyungu F, Ogra A, Ngcobo N. A Decision Framework for Waste Foundry Sand Reuse: Integrating Performance Metrics and Leachate Safety via Meta-Analysis. Construction Materials. 2025; 5(3):63. https://doi.org/10.3390/constrmater5030063
Chicago/Turabian StyleNiyonyungu, Ferdinand, Aurobindo Ogra, and Ntebo Ngcobo. 2025. "A Decision Framework for Waste Foundry Sand Reuse: Integrating Performance Metrics and Leachate Safety via Meta-Analysis" Construction Materials 5, no. 3: 63. https://doi.org/10.3390/constrmater5030063
APA StyleNiyonyungu, F., Ogra, A., & Ngcobo, N. (2025). A Decision Framework for Waste Foundry Sand Reuse: Integrating Performance Metrics and Leachate Safety via Meta-Analysis. Construction Materials, 5(3), 63. https://doi.org/10.3390/constrmater5030063