A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis
2.2. Experimental Program
Transient Plane Source (TPS)
3. Bibliometric Results
Summary of Bibliometric Assessment
- Foam, mortar, and clay emerged as the least researched waste insulation materials.
- Mechanical testing encompassing thermal conductivity evaluations holds significant research emphasis.
- Fibre and fly ash waste materials have been researched extensively.
- Recycling and sustainability remain a pivotal driving force behind waste material research.
- The Journal of Building and Construction Materials remains the primary source of waste material-related research.
- Research on mattress waste was not published within the analysis.
4. Mattress Waste
4.1. Thermal Insulation Materials
4.2. Physical Properties of Mattress Materials
4.3. Mattress Foams
4.3.1. Memory Foam
4.3.2. Latex
4.3.3. Polyurethane Foam (PUF)
5. Current Research Utilising Mattress Waste
6. Recycling Mattress Waste
- Regulatory compliance
- OH&S Management
- Level of Recycling
- Accuracy of Environmental Claims
- Accuracy of Operational Description
- Pollution Controls
- Fire Hazards
- Management Control
TIC Group Site Visit
- Collection of mattresses.
- Mattresses loaded onto a conveyor belt.
- A machine cuts the sides of the mattress.
- Workers open the mattress and remove foam.
- Foam is bundled and collected by various companies for further recycling.
- The leftover mattress is loaded into the ripper/shredder.
- The remaining materials are loaded into two skip bins: one for scrap metal and one for landfill.
7. Experimental Results
TPS
- 10 cm × 10 cm × 10 mm
- 10 cm × 10 cm × 20 mm
- 10 cm × 10 cm × 30 mm
8. Comparitive Analysis of Materials
9. Limitations, and Possible Applications of Mattress Waste
9.1. Limitations
9.2. Application
10. Conclusions and Future Studies
Funding
Data Availability Statement
Conflicts of Interest
References
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Abd Majid, M.Z. A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Dong, W.; Lin, L.; Zhu, X.; Liu, Q.; Zhang, Y.; Zhai, N.; Zhou, Z.; Wang, Y.; et al. A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J. Non-Cryst. Solids 2021, 553, 120517. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Su, X.; Luo, Z.; Li, Y.; Huang, C. Life cycle inventory comparison of different building insulation materials and uncertainty analysis. J. Clean. Prod. 2016, 112, 275–281. [Google Scholar] [CrossRef]
- Schritt, H.; Pleissner, D. Recycling of organic residues to produce insulation composites: A review. Clean. Waste Syst. 2022, 3, 100023. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Tariku, F.; Shang, Y.; Molleti, S. Thermal performance of flat roof insulation materials: A review of temperature, moisture and aging effects. J. Build. Eng. 2023, 76, 107142. [Google Scholar] [CrossRef]
- Füchsl, S.; Rheude, F.; Röder, H. Life cycle assessment (LCA) of thermal insulation materials: A critical review. Clean. Mater. 2022, 5, 100119. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S. Life cycle cost assessment and multi-criteria decision analysis of environment-friendly building insulation materials—A review. Energy Build. 2022, 254, 111582. [Google Scholar] [CrossRef]
- Ha, Y.; Jeon, J. Thermogravimetric analysis and pyrolysis characterization of expanded–polystyrene and polyurethane–foam insulation materials. Case Stud. Therm. Eng. 2024, 54, 104002. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Krüger, E.L.; Suetake, G.; Matoski, A. Evaluation of the thermal performance of insulation sheets in fiberglass security booths. Build. Environ. 2018, 136, 1–10. [Google Scholar] [CrossRef]
- Shrestha, S.S.; Biswas, K.; Desjarlais, A.O. A protocol for lifetime energy and environmental impact assessment of building insulation materials. Environ. Impact Assess. Rev. 2014, 46, 25–31. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Sasi, S.; Yaghoubi, E.; Joseph, P.; Vrcelj, Z. Microstructural attributes and physiochemical behaviours of concrete incorporating various synthetic textile and cardboard fibres: A comparative review. J. Build. Eng. 2024, 86, 108690. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Braulio-Gonzalo, M.; Bovea, M.D. Environmental and cost performance of building’s envelope insulation materials to reduce energy demand: Thickness optimisation. Energy Build. 2017, 150, 527–545. [Google Scholar] [CrossRef]
- Danny Harvey, L.D. Net climatic impact of solid foam insulation produced with halocarbon and non-halocarbon blowing agents. Build. Environ. 2007, 42, 2860–2879. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, C.; Liu, M.; Li, X.; Liu, T.; Liu, Z. Thermal insulation performance of buildings with phase-change energy-storage wall structures. J. Clean. Prod. 2024, 438, 140749. [Google Scholar] [CrossRef]
- Villasmil, W.; Fischer, L.J.; Worlitschek, J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 2019, 103, 71–84. [Google Scholar] [CrossRef]
- Jelle, B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Haigh, R. A Decade Review of Research Trends Using Waste Materials in the Building and Construction Industry: A Pathway towards a Circular Economy. Waste 2023, 1, 935–959. [Google Scholar] [CrossRef]
- Haigh, R. The mechanical behaviour of waste plastic milk bottle fibres with surface modification using silica fume to supplement 10% cement in concrete materials. Constr. Build. Mater. 2024, 416, 135215. [Google Scholar] [CrossRef]
- Haigh, R.; Joseph, P.; Sandanayake, M.; Bouras, Y.; Vrcelj, Z. Thermal Characterizations of Waste Cardboard Kraft Fibres in the Context of Their Use as a Partial Cement Substitute within Concrete Composites. Materials 2022, 15, 8964. [Google Scholar] [CrossRef] [PubMed]
- Haigh, R.; Bouras, Y.; Sandanayake, M.; Vrcelj, Z. The mechanical performance of recycled cardboard kraft fibres within cement and concrete composites. Constr. Build. Mater. 2022, 317, 125920. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Bouras, Y.; Vrcelj, Z. A review of the mechanical and durability performance of kraft-fibre reinforced mortar and concrete. Construction and Building Materials 2021, 297, 123759. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ashraf, A.A. Thermal Conductivity Measurement by Hot Disk Analyser: Measurement of Thermal Conductivity and Diffusivity of Different Materials by the Transient Plane Source Method Using Hot Disk Thermal Constants Analyzer. 2014. [Google Scholar] [CrossRef]
- He, Y. Rapid thermal conductivity measurement with a hot disk sensor. Thermochim. Acta 2005, 436, 122–129. [Google Scholar] [CrossRef]
- Haigh, R. A comparitive analysis of the mechanical properties with high volume waste cardboard fibres within concrete composite materials. In Proceedings of the Australasian Structural Engineering Conference: ASEC 2022, Melbourne, Australia, 9–10 November 2022; Engineers Australia: Melbourne, Australia, 2022; pp. 397–406. [Google Scholar]
- Özçelikci, E.; Oskay, A.; Bayer, İ.R.; Şahmaran, M. Eco-hybrid cement-based building insulation materials as a circular economy solution to construction and demolition waste. Cem. Concr. Compos. 2023, 141, 105149. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Bouras, Y.; Vrcelj, Z. A life cycle assessment of cardboard waste in low stress grade concrete applications. Environ. Manag. 2024, 354, 120428. [Google Scholar] [CrossRef] [PubMed]
- Haigh, R.; Bouras, Y.; Sandanayake, M.; Vrcelj, Z. Economic and environmental optimisation of waste cardboard kraft fibres in concrete using nondominated sorting genetic algorithm. J. Clean. Prod. 2023, 426, 138989. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Bouras, Y.; Vrcelj, Z. The durability performance of waste cardboard kraft fibre reinforced concrete. J. Build. Eng. 2023, 67, 106010. [Google Scholar] [CrossRef]
- Sandanayake, M.; Bouras, Y.; Haigh, R.; Vrcelj, Z. Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review. Sustainability 2020, 12, 9622. [Google Scholar] [CrossRef]
- John, N.J.; Khan, I.; Patel, A. Evaluation of the crushing characteristics of industrial waste aggregates as construction materials. Constr. Build. Mater. 2023, 403, 133111. [Google Scholar] [CrossRef]
- Pickin, J.; Wardle, C.; O’Farrell, K.; Stovell, L.; Nyunt, P.; Guazzo, S.; Lin, Y.; Caggiati-Shortell, G.; Chakma, P.; Edwards, C.; et al. National Waste Report 2022; The Department of Climate Change, Energy, the Environment and Water: Canberra, Australia, 2022.
- Circular_for_Resource_and_Waste_Professionals. 73% of People Would Pay More for Easy-To-Recycle Mattresses. 2023. Available online: https://www.circularonline.co.uk/news/73-of-people-would-pay-more-for-easy-to-recycle-mattresses/#:~:text=He%20said%3A%20%E2%80%9CWith%207.5%20million,adopting%20a%20circular%20economy%20approach (accessed on 9 January 2024).
- Wanless_Waste_Management. Mattress Recycling. A Study by QUT and Wanless Waste Management. 2023. Available online: https://wanless.com.au/mattress-recycling/ (accessed on 18 February 2024).
- The Senate of Australia Parlament. Never Waste a Crisis: The Waste and Recycling Industry in Australia; Environment and Communications References Committee: Canberra, Australia, 2018.
- Waste_Management_Resource_Recovery_Association_Australia. Time for Change. WMRR Roadmap to 2025 for Energy from Waste. 2020. Available online: https://www.bioenergyaustralia.org.au/news/time-for-change-wmrr-roadmap-to-2025-for-energy-from-waste (accessed on 17 February 2024).
- Lazzaro, D.W.a.A. Mattress recycling & disposal. In The Collection, Recycling and Disposoal of Used Mattresses in Victoria; Boomerang Alliance: Surry Hills, NSW, Australia, 2016. [Google Scholar]
- Khoza, M.M.; Huan, Z.; Sithebe, T.; Vasudeva, V. Experimental study of specific heat capacity and thermal conductivity of Al2O3-nanotransformer oil. Mater. Today Proc. 2023, 92, 1289–1294. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.-A.; Zhang, L. Influence and sensitivity evaluation of window thermal parameters variations on economic benefits of insulation materials for building exterior walls—A case study for traditional dwelling in China. Therm. Sci. Eng. Prog. 2023, 46, 102207. [Google Scholar] [CrossRef]
- Lakatos, Á.; Lucchi, E. Thermal performances of Super Insulation Materials (SIMs): A comprehensive analysis of characteristics, heat transfer mechanisms, laboratory tests, and experimental comparisons. Int. Commun. Heat Mass Transf. 2024, 152, 107293. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, F.; Anderson, B.; Cejudo-López, J.M.; Carrillo-Andrés, A. Uncertainty in the thermal conductivity of insulation materials. Energy Build. 2010, 42, 2159–2168. [Google Scholar] [CrossRef]
- Ergonomic_Life_International. The History of Mattress Design. 2024. Available online: https://ergonomiclifeinternational.co/2017/04/28/the-history-of-mattress-design/ (accessed on 17 February 2024).
- Defonseka, C. Practical Guide to Flexible Polurethane Foams. Smithers Rapra: Shrewsbury, UK, 2013. [Google Scholar]
- Loeblein, M.; Bolker, A.; Ngoh, Z.L.; Li, L.; Wallach, E.; Tsang, S.H.; Pawlik, M.; Verker, R.; Atar, N.; Gouzman, I.; et al. Novel timed and self-resistive heating shape memory polymer hybrid for large area and energy efficient application. Carbon 2018, 139, 626–634. [Google Scholar] [CrossRef]
- Banerjee, S.L.; Potluri, P.; Singha, N.K. Antimicrobial cotton fibre coated with UV cured colloidal natural rubber latex: A sustainable material. Colloids Surf. A Physicochem. Eng. Asp. 2019, 566, 176–187. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R.; Conesa, J.A. Thermochemical study of the briquetting process of mattress foams. Fuel Process. Technol. 2017, 159, 88–95. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, M.; Shi, L.; Peng, L.; Yuan, Q.; Wang, S. Fire behaviors of single and laminated natural latex foam. Int. J. Therm. Sci. 2019, 136, 278–286. [Google Scholar] [CrossRef]
- Sternberg, J.; Sequerth, O.; Pilla, S. Structure-property relationships in flexible and rigid lignin-derived polyurethane foams: A review. Mater. Today Sustain. 2024, 25, 100643. [Google Scholar] [CrossRef]
- Papadopoulos, A.M. State of the art in thermal insulation materials and aims for future developments. Energy Build. 2005, 37, 77–86. [Google Scholar] [CrossRef]
- Gwon, J.G.; Kim, S.K.; Kim, J.H. Sound absorption behavior of flexible polyurethane foams with distinct cellular structures. Mater. Des. 2016, 89, 448–454. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Martinez, I.; Callen, M.S.; Lopez, J.M.; Garcia, T.; Murillo, R. A pyrolysis process coupled to a catalytic cracking stage: A potential waste-to-energy solution for mattress foam waste. Waste Manag. 2021, 120, 415–423. [Google Scholar] [CrossRef]
- Arning, K.; van Heek, J.; Ziefle, M. Acceptance profiles for a carbon-derived foam mattress. Exploring and segmenting consumer perceptions of a carbon capture and utilization product. J. Clean. Prod. 2018, 188, 171–184. [Google Scholar] [CrossRef]
- Garrido, M.A.; Gerecke, A.C.; Heeb, N.; Font, R.; Conesa, J.A. Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam. Chemosphere 2017, 168, 667–675. [Google Scholar] [CrossRef]
- Andreea Hegyi, C.D.; Henriette, S. Sheep wool thermal insulating mattresses behaviour in the water vapours presence. In Proceedings of the Procedia Manufacturing 2020, 13th International Conference Interdisciplinarity in Engineering (INTER-ENG 2019), Targu Mures, Romania, 3–4 October 2019. [Google Scholar]
- Rajkishore Nayak, S.H.; Asis, P.; Long, T.V.; Nguyen, R.A.; Shanks, R.P.; Mac, F. Sustainable reuse of fashion waste as flame-retardant mattress filing with ecofriendly chemicals. Clean. Prod. 2020, 251, 119620. [Google Scholar] [CrossRef]
- Australian_Bedding_Stewardship_Council_Limited. Mattress Recycling Study. Stocks, Flows and Feasibility. 2021. Available online: https://www.accc.gov.au/system/files/public-registers/documents/Application%20Attachment%20H%20-%20Mattress%20Recycling%20Study%3A%20Stocks%20flows%20and%20feasibility%20-%2026.05.22%20-%20PR%20-%20AA1000613%20ABSC.pdf (accessed on 17 February 2024).
- Waste_Initiatives. TIC Group. 2024. Available online: https://wasteinitiatives.com.au/project/tic-group-recycling/ (accessed on 30 January 2024).
- TIC_Group. Sustainability through Innovation. 2024. Available online: https://ticgroup.com.au/ (accessed on 8 February 2024).
- Coquard, R.; Coment, E.; Flasquin, G.; Baillis, D. Analysis of the hot-disk technique applied to low-density insulating materials. Int. J. Therm. Sci. 2013, 65, 242–253. [Google Scholar] [CrossRef]
- Al-Ajlan, S.A. Measurements of thermal properties of insulation materials by using transient plane source technique. Appl. Therm. Eng. 2006, 26, 2184–2191. [Google Scholar] [CrossRef]
- Son, M.H.; Kim, Y.; Jo, Y.H.; Kwon, M. Assessment of chemical asphyxia caused by toxic gases generated from rigid polyurethane foam (RPUF) fires. Forensic Sci. Int. 2021, 328, 111011. [Google Scholar] [CrossRef] [PubMed]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Marques, D.V.; Barcelos, R.L.; Silva, H.R.T.; Egert, P.; Parma, G.O.C.; Girotto, E.; Consoni, D.; Benavides, R.; Silva, L.; Magnago, R.F. Recycled polyethylene terephthalate-based boards for thermal-acoustic insulation. J. Clean. Prod. 2018, 189, 251–262. [Google Scholar] [CrossRef]
- Tiuc, A.-E.; Vermeşan, H.; Gabor, T.; Vasile, O. Improved Sound Absorption Properties of Polyurethane Foam Mixed with Textile Waste. Energy Procedia 2016, 85, 559–565. [Google Scholar] [CrossRef]
- Simón, D.; Borreguero, A.M.; de Lucas, A.; Rodríguez, J.F. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag. 2018, 76, 147–171. [Google Scholar] [CrossRef]
- Yang, W.; Dong, Q.; Liu, S.; Xie, H.; Liu, L.; Li, J. Recycling and Disposal Methods for Polyurethane Foam Wastes. Procedia Environ. Sci. 2012, 16, 167–175. [Google Scholar] [CrossRef]
- Australian_Building_Codes_Board. National Construction Code. 2024. Available online: https://ncc.abcb.gov.au (accessed on 22 January 2024).
- AS/NZS-4859.1; Materials for Thermal Insulation of Buildings. Australia Standards: Sydney, Australia, 2002.
- Your_Home. Lightweight Framing. 2024. Available online: https://www.yourhome.gov.au/materials/lightweight-framing (accessed on 19 February 2024).
- Earthwool. Earthwool Ceiling (Roof) Insulation Batts. 2020. Available online: https://www.iisinsulation.com.au/insulation/earthwool-insulation/earthwool-ceiling-roof-insulation-batts/# (accessed on 21 February 2024).
Thermal conductivity | 0.005 to 1800 W/m/K |
Thermal diffusivity | 0.1 to 1200 mm2/s. |
Specific heat capacity | Up to 5 MJ/m3K |
Measurement time | 1 to 1280 s |
Reproducibility | Typically, better than 1% |
Accuracy | Better than 5% |
Temperature range | −253 °C to 1000 °C |
With furnace | Ambient to 750 °C (1000 °C oxygen free) |
With circulator | −35° C to 200 °C |
Smallest sample dimensions | 0.5 mm × 2 mm diameter or square for bulk testing 0.1 mm × 10 mm diameter or square for slab testing 10 mm × 5 mm diameter or square for one dimensional testing. |
Sensor types available | All Kapton sensors, All Mica sensors or All Teflon sensors. |
Description | Results |
---|---|
Timespan | 1991:2024 |
Sources (Journals, Books, etc.) | 935 |
Documents | 2627 |
Annual Growth Rate % | 7.82 |
Document Average Age | 5.71 |
Average citations per doc | 15.63 |
Keywords Plus (ID) | 3269 |
Author’s Keywords (DE) | 6434 |
Authors | 8667 |
Authors of single-authored docs | 112 |
Author collaboration | |
Single-authored docs | 117 |
Co-Authors per Doc | 4.5 |
International co-authorships % | 22 |
Document types | |
article | 1987 |
article; early access | 44 |
article; proceedings paper | 29 |
proceedings paper | 416 |
review | 151 |
Material | Thermal Conductivity (W/mK) | Moisture Content (%) | Reference |
---|---|---|---|
Mineral wool | 0.030–0.040 | 0–10 | [21] |
Expanded Polystyrene (EPS) | 0.030–0.040 | 0–10 | [21] |
Extruded Polystyrene (XPS) | 0.030–0.040 | 0–10 | [21] |
Cellulose | 0.040–0.050 | 0–5 | [21] |
Cork | 0.040–0.050 | - | [21] |
Polyurethane | 0.020–0.030 | 0–10 | [21] |
Material or Group of Materials | Density (kg/m3) MIN | Density (kg/m3) MAX | Thermal Conductivity (W/mK) MIN | Thermal Conductivity (W/mK) MAX | Reference |
---|---|---|---|---|---|
Cellular glass, all densities | 100 | 188 | 0.0355 | 0.0560 | [46] |
Cellular glass, for vertical walls | 100 | 120 | 0.0355 | 0.0433 | [46] |
Glass wool. All densities | 8 | 150 | 0.0291 | 0.0485 | [46] |
Rock wool, all densities (perpendicular flow) | 13 | 241 | 0.0299 | 0.0452 | [46] |
Rock wool, all densities (parallel flow) | 68 | 184 | 0.0364 | 0.0448 | [46] |
Expanded Polystyrene (EPS) | 8 | 58.7 | 0.0291 | 0.0502 | [46] |
Extruded Polystyrene (XPS) | 31 | 50.8 | 0.0317 | 0.0383 | [46] |
Polyurethane Foam (PU) | 27.2 | 114 | 0.0206 | 0.0349 | [46] |
Expanded cork, all densities | 76 | 307 | 0.0361 | 0.0512 | [46] |
Phenolic foam, all densities | 19.2 | 45 | 0.0241 | 0.0307 | [46] |
Sheep wool, all densities | 11 | 93.2 | 0.0307 | 0.0463 | [46] |
Cotton, all densities | 11 | 60 | 0.0329 | 0.0425 | [46] |
Cellulose fibre, all densities | 17 | 115 | 0.0351 | 0.0450 | [46] |
Polyester fibre, all densities | 11.2 | 44.6 | 0.0312 | 0.0494 | [46] |
Glued EPS board | 14 | 35.6 | 0.0365 | 0.0445 | [46] |
Expanded perlite board | 134 | 207 | 0.0468 | 0.0530 | [46] |
Wood wool board | 260 | 719 | 0.0483 | 0.1260 | [46] |
Wood fibre board | 100 | 298 | 0.0380 | 0.0531 | [46] |
Wood chip board | 309 | 681 | 0.0578 | 0.1145 | [46] |
Product | Material Properties | Application | Quantities |
---|---|---|---|
Ticking | A blend of polyester, polypropylene, and viscose rayon polymers | Mattress cover | 7 kg |
Foam Padding | Either polyurethane foam or synthetic latex | Padding for the mattress comfort | 3 kg |
Felt pad | A mix of natural and synthetic textile scrap including acrylic and polyethylene. | Insulator | 0.7 kg |
Non-woven fabric | Polyethylene terephthalate (PET) and/or polypropylene. | To prevent the compression of the load on the springs | 2 kg |
Spring support | High density polyurethane foam or timber slats | Support the springs | 2 kg |
Metal springs | Steel | Prevent mattress from high density | 12.5 kg |
Plastic air Ventilators | Plastics | To allow air circulation through the mattress | 0.5 kg |
Metal wire | steel | Tie the springs together | 3 kg |
Product labels | Satin or rayon textiles | Product branding | 0.1 kg |
Thread | Heavy duty cotton | To connect the ticking together | 0.8 kg |
Total | N/a | N/a | 31.6 kg |
Application | Main Study Focus | Foam Type | Reference |
---|---|---|---|
Fuel source | Pyrolysis | PUF and memory foam | [56] |
Sustainability assessment | Carbon capture during manufacturing | PUF | [57] |
Chemical dispersion | Pyrolysis | PUF and memory foam | [58] |
Optimal mattress environments | Thermal | Sheep wool | [59] |
Alternative mattress materials | Thermal | Textile waste integration | [60] |
Briquettes | Thermal | PUF | [51] |
Questions | TIC Group |
---|---|
Materials processed | Foam Springs Flock (Ticking) Mixed textiles Latex |
Recycle rate | 70–80% Recycled. 20–30% landfill |
Contamination issues | Irrelevant due to TIC only process the recycling method |
Site OH&S | 90% of handling is machine operated, there is an exhaust system in place to consume air pollutants |
Mattress collection | Contracts with hospitals, hotels, jails, local councils, individual pick up once a month |
Mattress quantity | TIC receive approximately 500 mattresses per day |
Materials recycled | Foam—100% recycled carpet underlay Springs—Cut down and sold as scrap metal Flock—Landfill Mixed textiles—Recycled as cheaper carpet underlay Latex—Landfill |
Costing | Because each mattress will vary in size and material, the costing of the recycling method per mattress is almost impossible to determine. TIC operates on a bulk system method where the output of the materials is the focal point, not individual mattresses. |
Aluminium Alloy | Dense Ceramic | Stainless Steel | Ceramic Material | Plastic | Low-Conducting Material | |
---|---|---|---|---|---|---|
Thermal Conductivity [W/(mK)] | 166 | 40.0 | 14.2 | 1.45 | 0.19 | 0.028 |
Thermal Diffusivity [mm2/s] | 68.5 | 11.4 | 3.74 | 0.96 | 0.11 | 0.75 |
Specific Heat [MJ/m3/K] | 2.42 | 3.5 | 3.8 | 1.51 | 1.73 | 0.037 |
Rec. Temp. Increase [K] | 0.3 | 0.5 | 1.0 | 1.5 | 2.5 | 5.0 |
Disk Radius [mm] | 14.65 | 6.394 | 6.394 | 6.394 | 6.394 | 14.65 |
Sample Size [mm (thickness)/mm (Diameter)] | 30/90 | 30/70 | 20/60 | 15/50 | 10/40 | 30/90 |
Measurement time [s] | 5 | 20 | 10 | 40 | 160 | 160 |
Heating power [W] | 2 | 2 to 5 | 2 | 1.5 | 0.6 | 0.1 |
Temperature (°C) | MJ/m3K |
---|---|
0 | 0.0484 |
20 | 0.0470 |
30 | 0.0463 |
40 | 0.0456 |
50 | 0.0449 |
60 | 0.0443 |
70 | 0.0436 |
80 | 0.0430 |
90 | 0.0424 |
100 | 0.0418 |
110 | 0.0412 |
120 | 0.0406 |
150 | 0.0390 |
200 | 0.0368 |
300 | 0.0342 |
400 | 0.0149 |
500 | 0.00971 |
600 | 0.00860 |
700 | 0.00770 |
750 | 0.00735 |
Thermal Conductivity W/m K | Thermal Diffusivity Mm2/s | Specific Heat MJ/m3K | Probing Depth | Interior Temperature °C |
---|---|---|---|---|
0.04475 | 1.170 | 0.03824 | 27.4 | 39.6 |
0.04216 | 2.993 | 0.01409 | 43.8 | 39.6 |
0.03955 | 3.270 | 0.01209 | 45.7 | 39.6 |
0.04493 | 0.4268 | 0.1053 | 16.5 | 39.6 |
0.04935 | 0.8131 | 0.06069 | 22.8 | 39.6 |
0.04819 | 1.169 | 0.04122 | 27.4 | 39.6 |
0.04554 | 2.384 | 0.01911 | 39.1 | 39.6 |
0.04399 | 2.561 | 0.01718 | 40.5 | 39.6 |
0.04596 | 1.542 | 0.02981 | 31.4 | 39.6 |
Thermal Conductivity W/m K | Thermal Diffusivity Mm2/s | Specific Heat MJ/m3K | Probing Depth | Interior Temperature °C |
---|---|---|---|---|
0.04523 | 1.880 | 0.02406 | 34.7 | 41.4 |
0.05150 | 0.3205 | 0.1607 | 14.3 | 41.4 |
0.06557 | 0.5636 | 0.1163 | 19.0 | 41.4 |
0.06180 | 1.170 | 0.05281 | 27.4 | 41.4 |
0.05401 | 2.131 | 0.02535 | 36.9 | 41.4 |
0.05547 | 0.9839 | 0.05638 | 25.1 | 41.4 |
0.03140 | 6.631 | 0.004736 | 65.1 | 41.4 |
0.05470 | 1.151 | 0.04751 | 27.1 | 41.4 |
0.04813 | 3.599 | 0.01337 | 48.0 | 41.4 |
Thermal Conductivity W/m K | Thermal Diffusivity Mm2/s | Specific Heat MJ/m3K | Probing Depth | Interior Temperature °C |
---|---|---|---|---|
0.04386 | 0.3497 | 0.1254 | 15 | 39 |
0.05424 | 0.6955 | 0.07799 | 21.1 | 39 |
0.05631 | 1.060 | 0.05314 | 26.0 | 39 |
0.05252 | 1.368 | 0.03839 | 29.6 | 39 |
0.04988 | 1.467 | 0.03401 | 30.6 | 39 |
0.04800 | 2.508 | 0.01913 | 40.1 | 39 |
0.04531 | 2.644 | 0.01714 | 41.1 | 39 |
0.04336 | 3.390 | 0.01279 | 46.6 | 39 |
Thermal Conductivity W/m K | Thermal Diffusivity Mm2/s | Specific Heat MJ/m3K | Probing Depth | Sample Sizes | |
---|---|---|---|---|---|
0.04386 | 0.3497 | 0.1254 | 15 | 30 mm | |
0.05424 | 0.6955 | 0.07799 | 21.1 | 30 mm | |
0.05631 | 1.060 | 0.05314 | 26.0 | 30 mm | |
0.05252 | 1.368 | 0.03839 | 29.6 | 30 mm | |
0.04988 | 1.467 | 0.03401 | 30.6 | 30 mm | |
0.05150 | 0.3205 | 0.1607 | 14.3 | 20 mm | |
0.06557 | 0.5636 | 0.1163 | 19.0 | 20 mm | |
0.053411429 | 0.832042857 | 0.086561429 | 22.2285714 | Mean |
Size (cm) | Weight (g) | Volume (cm3) | Density (g/cm3) | Density (kg/m3) | Sample Thickness |
---|---|---|---|---|---|
10 cm × 10 cm × 3 cm | 10.882 | 300 | 0.0362733 | 36.2733 | 30 mm |
10 cm × 10 cm × 3 cm | 9.202 | 300 | 0.0306733 | 30.6733 | 30 mm |
10 cm × 10 cm × 2 cm | 6.306 | 200 | 0.03153 | 31.53 | 20 mm |
10 cm × 10 cm × 2 cm | 7.034 | 200 | 0.03517 | 35.17 | 20 mm |
10 cm × 10 cm × 1 cm | 3.276 | 100 | 0.03276 | 32.76 | 10 mm |
10 cm × 10 cm × 1 cm | 3.634 | 100 | 0.03634 | 36.34 | 10 mm |
Material Type | Density (kg/m3) | Thermal Conductivity (W/m K) | Specific Heat (kj/kg K) | Water Vapour Diffusion Resistance |
---|---|---|---|---|
Rock wool | 40–200 | 0.033–0.040 | 0.8–1.0 | 1–1.3 |
Fibreglass | 15–75 | 0.031–0.037 | 0.9–1.0 | 1–1.1 |
EPS | 15–35 | 0.031–0.038 | 1.25 | 20–70 |
XPS | 32–40 | 0.032–0.037 | 1.45–1.7 | 80–150 |
Polyurethane | 15–45 | 0.022–0.040 | 1.3–1.45 | 30–170 |
Natural wool | 10–25 | 0.038–0.054 | 1.3–1.7 | 1.0–3.0 |
Recycled textiles (commerical) | 30–80 | 0.036–0.042 | 1.2–1.6 | 2.2 |
Recycled textiles (polyester and polyurethane) | 440 | 0.044 | n/a | n/a |
Thickness of Material (mm) | R-Value (Using 0.053 (W/m K)) |
---|---|
90 | 1.69 |
140 | 2.64 |
165 | 3.11 |
185 | 3.49 |
215 | 4.05 |
240 | 4.52 |
260 | 4.90 |
290 | 5.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haigh, R. A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems. Constr. Mater. 2024, 4, 401-424. https://doi.org/10.3390/constrmater4020022
Haigh R. A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems. Construction Materials. 2024; 4(2):401-424. https://doi.org/10.3390/constrmater4020022
Chicago/Turabian StyleHaigh, Robert. 2024. "A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems" Construction Materials 4, no. 2: 401-424. https://doi.org/10.3390/constrmater4020022
APA StyleHaigh, R. (2024). A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems. Construction Materials, 4(2), 401-424. https://doi.org/10.3390/constrmater4020022