Effect of Excessive Bleeding on the Properties of Cement Mortar
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of SP on Cement Paste Bleeding
3.2. Effect of sand on Bleeding Capacity
3.3. Evaluation of Internal Bleeding
3.4. Effect of Internal Bleeding
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Chemical Analysis a | %wt |
---|---|
SiO2 | 19.5 |
Al2O3 | 5.37 |
Fe2O3 | 2.24 |
CaO | 62.7 |
MgO | 1.27 |
SO3 | 3.79 |
Na2O | 0.05 |
K2O | 0.85 |
TiO2 | 0.19 |
SO3 (%) | 3 |
Cl− (%) | 0.03 |
Ignition loss b (950 °C) | 2.4 |
Bleeding Capacity (%) | ||||
---|---|---|---|---|
w/c | SP Dosage (%) | s/c | Mean Value (%) | Standard Deviation |
0.45 | 0 | 0 | 0.00 | 0.00 |
0.1 | 0 | 1.94 | 0.09 | |
0.3 | 0.84 | 0.04 | ||
0.6 | 0.61 | 0.08 | ||
2.4 | 0.30 | 0.04 | ||
0.3 | 0 | 15.90 | 1.40 | |
2.4 | 1.77 | 0.16 | ||
0.5 | 0 | 18.70 | 1.60 | |
2.4 | 3.54 | 0.10 | ||
0.8 | 0 | 21.30 | 1.80 | |
2.4 | 4.80 | 0.27 | ||
1 | 0 | 17.14 | 0.90 | |
0.3 | 14.49 | 0.85 | ||
0.6 | 13.22 | 0.74 | ||
2.4 | 7.22 | 0.40 | ||
0.6 | 0 | 0 | 3.85 | 0.15 |
0.3 | 2.26 | 0.15 | ||
0.6 | 1.36 | 0.07 | ||
2.4 | 0.87 | 0.04 | ||
0.1 | 0 | 9.87 | 0.47 | |
0.3 | 6.02 | 0.40 | ||
0.6 | 3.99 | 0.25 | ||
2.4 | 1.49 | 0.21 | ||
0.3 | 0 | 13.33 | 1.42 | |
2.4 | 5.79 | 0.85 | ||
1 | 0 | 18.40 | 1.90 |
w/c | SP Dosage (%) | s/c | Bleed Water (cm3) | Mean Value (cm3) | Standard Deviation | Volume of Water Trapped by Sand (cm3) |
---|---|---|---|---|---|---|
0.45 | 0.1 | 0 | 7.9 | 7.85 | 0.79 | 0.0 |
8.6 | ||||||
7.1 | ||||||
0.3 | 3.9 | 3.77 | 0.13 | 4.1 | ||
3.8 | ||||||
3.7 | ||||||
0.6 | 3.2 | 3.14 | 0.03 | 4.7 | ||
3.2 | ||||||
3.1 | ||||||
2.4 | 2.3 | 2.36 | 0.28 | 5.5 | ||
2.1 | ||||||
2.7 | ||||||
0.6 | 0 | 0 | 15.5 | 15.71 | 0.22 | 0.0 |
15.9 | ||||||
15.8 | ||||||
0.3 | 11.8 | 11.78 | 0.09 | 3.9 | ||
11.9 | ||||||
11.7 | ||||||
0.6 | 7.9 | 7.85 | 0.07 | 7.9 | ||
7.9 | ||||||
7.8 | ||||||
2.4 | 7.8 | 7.85 | 0.02 | 7.9 | ||
7.9 | ||||||
7.9 | ||||||
0.1 | 0 | 46.5 | 47.12 | 0.54 | 0.0 | |
47.5 | ||||||
47.4 | ||||||
0.3 | 31.5 | 31.38 | 0.29 | 15.7 | ||
31.1 | ||||||
31.6 | ||||||
0.6 | 23.2 | 23.56 | 0.67 | 23.6 | ||
24.3 | ||||||
23.2 | ||||||
2.4 | 15.9 | 15.68 | 0.70 | 31.4 | ||
16.3 | ||||||
14.9 |
Mass of Consumed SP (mg/g of Cement) | Yield Stress (Pa) | |||
---|---|---|---|---|
SP Dosage (%) | Mean Value | Standard Deviation | Mean Value | Standard Deviation |
0 | 0.00 | 0.00 | 40.2 | 3.5 |
0.1 | 0.88 | 0.04 | 6.8 | 0.8 |
0.2 | 1.59 | 0.08 | 3.5 | 0.2 |
0.5 | 3.68 | 0.18 | 0.0 | 0 |
1 | 4.76 | 0.24 | 0.0 | 0 |
w/c | SP Dosage (%) | Volume of Water Trapped by Sand (cm3) | Compressive Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|
Mean Value | Standard Deviation | Mean Value | Standard Deviation | Mean Value | Standard Deviation | ||
0.45 | 0 | 0.0 | 0.00 | 64.00 | 4.9 | 8.30 | 0.1 |
0.1 | 5.5 | 0.3 | 49.10 | 3.7 | 6.40 | 0.3 | |
0.3 | 27.5 | 1.4 | 43.50 | 1.4 | 6.10 | 0.3 | |
0.5 | 27.5 | 1.4 | |||||
0.8 | 27.5 | 1.4 | |||||
0.6 | 0 | 7.9 | 0.4 | 38.10 | 2.2 | 6.30 | 0.10 |
0.1 | 11.8 | 0.6 | 41.60 | 2.4 | 6.20 | 0.30 | |
0.3 | 19.6 | 1.0 |
References
- Loh, C.-K.; Tan, T.-S.; Yong, K.-Y.; Wee, T.-H. An experimental study on bleeding and channelling of cement paste and mortar. Adv. Cem. Res. 1998, 10, 1–16. [Google Scholar] [CrossRef]
- Josserand, L.; Coussy, O.; de Larrard, F. Bleeding of concrete as an ageing consolidation process. Cem. Concr. Res. 2006, 36, 1603–1608. [Google Scholar] [CrossRef]
- Powers, T.C. The Bleeding of Portland Cement Paste, Mortar, and Concrete: Treated as a Special Case of Sedimentation; Portland Cement Association Bulletin. No. 2: Chicago, IL, USA, 1939; Available online: http://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=8504 (accessed on 3 March 2022).
- Powers, T.C. The Properties of Fresh Concrete; John Wiley & Sons: Hoboken, NJ, USA, 1968; pp. 533–652. [Google Scholar]
- Massoussi, N.; Keita, E.; Roussel, N. The heterogeneous nature of bleeding in cement pastes. Cem. Concr. Res. 2017, 95, 108–116. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Cai, X.-P.; Kong, X.-M.; Gao, L. Effects of comb-shaped superplasticizers with different charge characteristics on the microstructure and properties of fresh cement pastes. Constr. Build. Mater. 2017, 155, 441–450. [Google Scholar] [CrossRef]
- Zingg, A.; Winnefeld, F.; Holzer, L.; Pakusch, J.; Becker, S.; Gauckler, L. Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. J. Colloid Interface Sci. 2008, 323, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Plank, J.; Sakai, E.; Miao, C.W.; Yu, C.; Hong, J.X. Chemical admixtures—Chemistry, applications and their impact on concrete microstructure and durability. Cem. Concr. Res. 2015, 78, 81–99. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in understanding hydration of Portland cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- El Bitouri, Y.; Azéma, N. Contribution of turbidimetry on the characterization of cement pastes bleeding. Adv. Cem. Res. 2022, 35, 1–30. [Google Scholar] [CrossRef]
- Tan, T.S.; Wee, T.H.; Tan, S.A.; Tam, C.T.; Lee, S.L. A consolidation model for bleeding of cement paste. Adv. Cem. Res. 1987, 1, 18–26. [Google Scholar] [CrossRef]
- Hoshino, M. Relationship between Bleeding, Coarse Aggregate, and Specimen Height of Concrete. ACI Mater. J. 1989, 86, 185–190. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024621829&partnerID=40&md5=c842f70873d72c4c9ff7bd7bf1235ff5 (accessed on 1 April 2022).
- Khayat, K.H.; Guizani, Z. Use of viscosity-modifying admixture to enhance stability of fluid concrete. ACI Mater. J. 1997, 94, 332–340. [Google Scholar] [CrossRef]
- Peng, Y.; Lauten, R.A.; Reknes, K.; Jacobsen, S. Bleeding and sedimentation of cement paste measured by hydrostatic pressure and Turbiscan. Cem. Concr. Compos. 2017, 76, 25–38. [Google Scholar] [CrossRef]
- Perrot, A.; Lecompte, T.; Khelifi, H.; Brumaud, C.; Hot, J.; Roussel, N. Yield stress and bleeding of fresh cement pastes. Cem. Concr. Res. 2012, 42, 937–944. [Google Scholar] [CrossRef]
- Yim, H.J.; Kim, J.H.; Kwak, H.G.; Kim, J.K. Evaluation of internal bleeding in concrete using a self-weight bleeding test. Cem. Concr. Res. 2013, 53, 18–24. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Picandet, V.; Mélinge, Y. Hydro-mechanical properties of fresh cement pastes containing polycarboxylate superplasticizer. Cem. Concr. Res. 2013, 53, 221–228. [Google Scholar] [CrossRef]
- Ishigaki, K.; Kurumisawa, K.; Nawa, T. The effects of bleeding on the microstructure of hardened cement paste. Cem. Sci. Concr. Technol. 2012, 66, 111–118. [Google Scholar] [CrossRef]
- Boel, V.; Helincks, P.; Desnerck, P.; De Schutter, G. Bond behaviour and shear capacity of self-compacting concrete. In Proceedings of the Design, Production and Placement of Self-Consolidating Concrete: Proceedings of SCC2010, Montreal, QC, Canada, 26–29 September 2010; Springer: Berlin, Germany, 2010; pp. 343–353. [Google Scholar]
- Zhu, W.; Gibbs, J.C.; Bartos, P.J.M. Uniformity of in situ properties of self-compacting concrete in full-scale structural elements. Cem. Concr. Compos. 2001, 23, 57–64. [Google Scholar] [CrossRef]
- Han, J.; Wang, K. Influence of bleeding on properties and microstructure of fresh and hydrated Portland cement paste. Constr. Build. Mater. 2016, 115, 240–246. [Google Scholar] [CrossRef]
- NF-EN 197-Part 1; Composition, Specifications and Conformity Criteria for Common Cements. The European-French Standard: European Committee for Standardization: Brussels, Belgium, 2012.
- NF-EN 1097-6; Tests for Mechanical and Physical Properties of Aggregates–Part 6: Determination of Particle Density and Water Absorption. The European-French Standard: European Committee for Standardization: Brussels, Belgium, 2022.
- ASTM C940-10a; Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2010.
- Josserand, L.; De Larrard, F. A method for concrete bleeding measurement. Mater. Struct. Constr. 2004, 37, 666–670. [Google Scholar] [CrossRef]
- ASTM C243-95; Standard Test Method for Bleeding of Cement Pastes and Mortars. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C232/C232M-09; Standard Test Methods for Bleeding of Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- Aït-Kadi, A.; Marchal, P.; Choplin, L.; Chrissemant, A.S.; Bousmina, M. Quantitative analysis of mixer-type rheometers using the couette analogy. Can. J. Chem. Eng. 2002, 80, 1166–1174. [Google Scholar] [CrossRef]
- Mahaut, F.; Mokéddem, S.; Chateau, X.; Roussel, N.; Ovarlez, G. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem. Concr. Res. 2008, 38, 1276–1285. [Google Scholar] [CrossRef]
- El Bitouri, Y.; Azéma, N. Potential Correlation between Yield Stress and Bleeding. In Proceedings of the SP-349: 11th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, Online, 7–10 June 2021; American Concrete Institute: Farmington Hills, MI, USA, 2022; Volume 349, pp. 479–494. [Google Scholar] [CrossRef]
- Déjardin, P. Volume effect of the adsorbed layer on the determination of adsorption isotherms of macromolecules by the depletion method. J. Phys. Chem. 1982, 86, 2800–2801. [Google Scholar] [CrossRef]
- NF-EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. The European-French Standard: European Committee for Standardization: Brussels, Belgium, 2016.
- Neubauer, C.M.; Yang, M.; Jennings, H.M. Interparticle Potential and Sedimentation Behavior of Cement Suspensions: Effects of Admixtures. Adv. Cem. Based Mater. 1998, 8, 17–27. [Google Scholar] [CrossRef]
- El Bitouri, Y.; Azéma, N. On the “Thixotropic” Behavior of Fresh Cement Pastes. Eng 2022, 3, 677–692. [Google Scholar] [CrossRef]
- Zhang, K.; Mezhov, A.; Schmidt, W. Chemical and thixotropic contribution to the structural build-up of cementitious materials. Constr. Build. Mater. 2022, 345, 128307. [Google Scholar] [CrossRef]
- Ollivier, J.P.; Torrenti, J.M. (Eds.) La structure poreuse des bétons et les propriétés de transfert. In La Durabilité des Bétons Chapter: 3; Presses de l’école Nationale des Ponts et Chaussées: Paris, France, 2008; pp. 51–133. [Google Scholar]
- Powers, T.C.; Brownyard, T.L. Studies of the physical properties of hardened Portland cement paste. J. Proc. 1946, 43, 101–132. [Google Scholar]
- Jennings, H.M.; Bullard, J.W.; Thomas, J.J.; Andrade, J.E.; Chen, J.J.; Scherer, G.W. Characterization and modeling of pores and surfaces in cement paste: Correlations to processing and properties. J. Adv. Concr. Technol. 2008, 6, 5–29. [Google Scholar] [CrossRef]
- Aghaee, K.; Sposito, R.; Thienel, K.-C.; Khayat, K.H. Effect of additional water or superplasticizer on key characteristics of cement paste made with superabsorbent polymer and other shrinkage mitigating materials. Cem. Concr. Compos. 2023, 136, 104893. [Google Scholar] [CrossRef]
- Mor, A.; Mehta, P.K. Effect of superplasticizing admixtures on cement hydration. Cem. Concr. Res. 1984, 14, 754–756. [Google Scholar] [CrossRef]
- Ollivier, J.P.; Maso, J.C.; Bourdette, B. Interfacial transition zone in concrete. Adv. Cem. Based Mater. 1995, 2, 30–38. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Crumbie, A.K.; Pratt, P.L. A Stludy of the Interfacial Region Between Cement Paste and Aggregate in Concrete. MRS Online Proc. Libr. 1987, 114, 87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abadassi, M.; El Bitouri, Y.; Azéma, N.; Garcia-Diaz, E. Effect of Excessive Bleeding on the Properties of Cement Mortar. Constr. Mater. 2023, 3, 164-179. https://doi.org/10.3390/constrmater3020011
Abadassi M, El Bitouri Y, Azéma N, Garcia-Diaz E. Effect of Excessive Bleeding on the Properties of Cement Mortar. Construction Materials. 2023; 3(2):164-179. https://doi.org/10.3390/constrmater3020011
Chicago/Turabian StyleAbadassi, Mimoune, Youssef El Bitouri, Nathalie Azéma, and Eric Garcia-Diaz. 2023. "Effect of Excessive Bleeding on the Properties of Cement Mortar" Construction Materials 3, no. 2: 164-179. https://doi.org/10.3390/constrmater3020011
APA StyleAbadassi, M., El Bitouri, Y., Azéma, N., & Garcia-Diaz, E. (2023). Effect of Excessive Bleeding on the Properties of Cement Mortar. Construction Materials, 3(2), 164-179. https://doi.org/10.3390/constrmater3020011