Microencapsulated Phase Changing Materials for Gypsum Plasters: A Practical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- A conventional gypsum plaster composed of calcium sulfate hemihydrate CaSO4·0.5H2O. This material is referred to as “Plaster”;
- -
- An experimental mix of conventional gypsum plaster and 20 wt.% powder of microencapsulated PCM (Micronal® DS 5001 X, also known as Micronal 26®). The raw PCM microspheres were received as a powder. It consists of capsules made of microscopic PCM particles of n-heptadecane of about 5 µm trapped in tough polymer shell of polymethacrylate (PMMA) of about 200 µm [10]. The melting point indicated by the manufacturer is around 26 °C and the ΔH is 110 kJ·kg−1.
- -
- The mix of common plaster and PCM is synthetized in our laboratory according to standards procedures used in the construction. In this study this material is called “Lab PCM”;
- -
- A commercially available material composed of gypsum plaster and with PCM microspheres at the concentration of 20 wt.%. For ethical reasons and in order to remain strictly fact oriented, the commercial name of this material is not given. In this study this material is called “Commercial PCM”.
2.2. Characterizations
2.2.1. Consistency
2.2.2. Density of Fresh Paste
2.2.3. Determination of Water Retention
2.2.4. Setting Time
2.2.5. Shrinkage
2.2.6. Bulk Densities
2.2.7. Intrinsic Mechanical Properties
2.2.8. Adhesion Properties
2.2.9. Resistance to Mold
2.2.10. Durability Tests
2.2.11. SEM Measurements
2.2.12. FTIR Measurements
3. Results and Discussions
3.1. Preparation and Characterizations of the Fresh Mixes
3.2. Influence on the Shrinkage and on the Density
3.3. Mechanical Properties
3.3.1. Intrinsic Mechanical Performances
3.3.2. Adhesion Properties
3.4. Resistance to Mold
3.5. Durability
3.6. FTIR Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pisello, A.L.; D’Alessandro, A.; Fabiani, C.; Fiorelli, A.P.; Ubertini, F.; Cabeza, L.F.; Materazzi, A.L.; Cotana, F. Multifunctional Analysis of Innovative PCM-filled Concretes. Energy Procedia 2017, 111, 81–90. [Google Scholar] [CrossRef]
- Alawadhi, E.M. The Design, Properties, and Performance of Concrete Masonry Blocks with Phase Change Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; ISBN 9781782423188. [Google Scholar]
- Drissi, S.; Ling, T.C.; Mo, K.H.; Eddhahak, A. A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. Renew. Sustain. Energy Rev. 2019, 110, 467–484. [Google Scholar] [CrossRef]
- Cellat, K.; Beyhan, B.; Güngör, C.; Konuklu, Y.; Karahan, O.; Dündar, C.; Paksoy, H. Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials. Energy Build. 2015, 106, 156–163. [Google Scholar] [CrossRef]
- Sinopoli, J. Heating, Ventilating, and Air Conditioning Systems; Smart Build. Syst. Archit. Owners Build., chapter 3, 31–46; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; ISBN 978-1-85617-653-8. [Google Scholar] [CrossRef]
- Saffari, M.; De Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L.F. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012113. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Pisello, A.L.; Fabiani, C.; Ubertini, F.; Cabeza, L.F.; Cotana, F. Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Appl. Energy 2018, 212, 1448–1461. [Google Scholar] [CrossRef] [Green Version]
- Kośny, J. PCM-Enhanced Building Components: An Application of Phase Change Materials in Building Envelopes and Internal Structures; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783319142852. [Google Scholar]
- Zhao, C.Y.; Zhang, G.H. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renew. Sustain. Energy Rev. 2011, 15, 3813–3832. [Google Scholar] [CrossRef]
- Biggin, I. Soaking up the heat. Phase Change Materials in Construction; BASF CPD Phase Change Material, Phase Energy: Hull, UK, 2015. [Google Scholar]
- Konuklu, Y.; Ostry, M.; Paksoy, H.O.; Charvat, P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 2015, 106, 134–155. [Google Scholar] [CrossRef]
- Borreguero, A.M.; Garrido, I.; Valverde, J.L.; Rodríguez, J.F.; Carmona, M. Development of smart gypsum composites by incorporating thermoregulating microcapsules. Energy Build. 2014, 76, 631–639. [Google Scholar] [CrossRef]
- BASF. BASF Report; 2007. Available online: http://docplayer.org/25546766-Waermedaemmung-vermindert-verluste-durch-die-wand-im-winter-im-sommer-groesster-energieeintrag-durch-fenster-und-innere-lasten.html (accessed on 3 November 2021).
- Bajare, D.; Kazjonovs, J.; Korjakins, A. The thermal characteristics of gypsum boards with phase change materials (PCM). Environ. Technol. Resour. 2011, 2, 132–138. [Google Scholar] [CrossRef]
- Oliver, A. Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat. Energy Build. 2012, 48, 1–7. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyama, T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1373–1391. [Google Scholar] [CrossRef]
- Borreguero, A.M.; Carmona, M.; Sanchez, M.L.; Valverde, J.L.; Rodriguez, J.F. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio. Appl. Therm. Eng. 2010, 30, 1164–1169. [Google Scholar] [CrossRef]
- Toppi, T.; Mazzarella, L. Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition. Energy Build. 2013, 57, 227–236. [Google Scholar] [CrossRef]
- Micronal Website. Available online: https://www.maisonpassive.be/IMG/pdf/Micronal_EN.pdf (accessed on 3 November 2021).
- Website Alba Saint-Gobain. Available online: https://www.construction21.org/data/sources/users/3474/extracto-rigipsalbabalance.pdf (accessed on 3 November 2021).
- EN 13279-2: Gypsum Binders and Gypsum Plasters—Part 2: Test Methods; European Committee for Standardization: Brussels, Belgium, 2014.
- EN 1015-6: Methods of Test for Mortar for Masonry—Part 6: Determination of Bulk Density of Fresh Mortar; European Committee for Standardization: Brussels, Belgium, 1998.
- Guide Technique UEAtc Pour l’agrément des Systèmes d’isolation Extérieure des Façades avec Enduits Minéraux; nr 331, Cahier 2602, 23 blz; Cahiers du CSTB, CSTB: Champs-sur-Marne, France, 1992.
- ETAG 004 (2000): Guideline for European Technical Approval of External Thermal Insulation Composite Systems with Rendering; European Organisation for Technical Approvals: Brussels, Belgium, 2000.
- EN 13872-1: Method of Test for Smoothing and/or Levelling Compounds—Determination of Shrinkage; European Committee for Standardization: Brussels, Belgium, 2004.
- EN 14146 : Natural Stone Test Methods—Determination of the Dynamic Modulus of Elasticity (by Measuring the Fundamental Resonance Frequency); European Committee for Standardization: Brussels, Belgium, 2004.
- ASTM D5590-94-Standard Test Method for Determining the Resistance of Paint Films and Related Coatings to Fungal Defacement by Accelerated Four-Week Agar Plate Assay; ASTM International: West Conshohocken, PA, USA, 1994.
- Neuville, M. Les Fluidifiants du Plâtre. Ph.D. Thesis, Université de Nice-Sophia-Antipolis, Nice, France, 2013. Available online: https://tel.archives-ouvertes.fr/tel-00913652 (accessed on 3 November 2021).
- Michon, M. Etude de l’effet D’adjuvants Chimiques sur la Conversion du Plâtre en Gypse. Master’s Thesis, University of Sherbrooke, Sherbrooke, QC, Canada, 2002. [Google Scholar]
- EN 13279-1: Gypsum Binders and Gypsum Plasters—Part 1: Definitions and Requirements; European Committee for Standardization: Brussels, Belgium, 2006.
- Collepardi, M. Scienza e Tecnologia del Calcestruzzo; Hoepli: Milan, Italy, 1992; ISBN 8820319101. [Google Scholar]
- Raja, M.A.; Sophia, M. Influence of Expansive Agent on the Dimensional Stability and Mechanical Properties of Gypsum Plaster. Int. J. Recent Technol. Eng. 2019, 8, 928–931. [Google Scholar] [CrossRef]
- DIN 18947-Earth plasters—Requirements, Test and Labelling; Deutsches Institut Fur Normung E.V. (German National Standard): Berlin, Germany, 2018.
- Les Dossiers du CSTC –N° 2/2009 –Cahier n° 3. Available online: Available: https://www.cstc.be/umbraco/Surface/PublicationItem/DownloadFile?file=31850%2Ffr%2Funprotected%2Fcstc_artonline_2009_3_no3.pdf (accessed on 3 November 2021).
- Fořt, J.; Novotný, R.; Trník, A.; Černý, R. Preparation and characterization of novel plaster with improved thermal energy storage performance. Energies 2019, 12, 3318. [Google Scholar] [CrossRef] [Green Version]
- Bajare, D.; Kazjonovs, J.; Korjakins, A. Development of latent heat storage phase change material containing plaster. Medziagotyra 2016, 22, 94–97. [Google Scholar] [CrossRef] [Green Version]
- EN 771-1: Specification for Masonry Units—Part 1: Clay Masonry Units; European Committee for Standardization: Brussels, Belgium, 2015.
- Note D’information Technique 271; Belgium Building Research Institute: Limelette, Belgium, 2020.
- Fischer, H.B. Primers role in plastering systems on concrete surfaces. IOP Conf. Ser. Mater. Sci. Eng. 2015, 71, 012020. [Google Scholar] [CrossRef] [Green Version]
- Gartner, E.M. Cohesion and expansion in polycrystalline solids formed by hydration reactions—The case of gypsum plasters. Cem. Concr. Res. 2009, 39, 289–295. [Google Scholar] [CrossRef]
- Edwards, A.J. Properties of Hydraulic and Non-Hydraulic Limes for Use in Construction. Ph.D. Thesis, Napier University, Edinburgh, UK, 2005. [Google Scholar]
Type of Fresh Mix | Composition of Fresh Mix (wt.%) | Consistency (mm) | Density of Fresh Mix (kg/m3) | Water Retention (%) | Setting Time (min) | ||
---|---|---|---|---|---|---|---|
Plaster Powder | Microcapsule of PCM | Water | |||||
Plaster | 61 | / | 39 | 169 | 1401 | 92.5 ± 0.2 | 239 |
Lab PCM | 37 | 11 | 52 | 133 (2 min of mixing) 165 (15 min of mixing) | 1237 | 91.2 ± 0.1 | 138 |
Commercial PCM | 54 | 13 | 33 | 143 | 1390 | 95.7 ± 0.2 | 264 |
Materials | Bulk Density (kg/m3) |
---|---|
Plaster | 1007 |
Lab PCM (real) | 680 |
Lab PCM (theoretical) 1 | 844 1 |
Commercial PCM | 923 |
Plaster | 1007 |
Material | Edyn (MPa) | Bending Strength (N/mm2) | Compressive Strength (N/mm2) |
---|---|---|---|
Plaster | 2519 ± 4 | 1.2 ± 0.11 | 2.7 ± 0.23 |
Lab PCM | 260 ± 5 | 0.5 ± 0.07 | 0.5 ± 0.01 |
Commercial PCM | 936 ± 3 | 1.1 ± 0.01 | 1.6 ± 0.05 |
Requirement of standard EN 13279-1 | / | ≥1.0 | ≥2.0 |
Type of Substrate | Concrete Slab | Hollow Clay Brick | Solid Brick | |
---|---|---|---|---|
Initial rate of water absorption IW (kg/m2·min) | >0.5 | 1.0 | 4.5 | |
Plaster | Adhesion (N/mm2) | 0.57 (±0.085) | 0.39 (±0.058) | 0.31 (±0.084) |
Area of rupture | 100% plaster | 100% substrate | 100% interface | |
Lab PCM | Adhesion (N/mm2) | 0.04 (±0.018) | 0.04 (±0.016) | 0.12 (±0.050) |
Area of rupture | 100% plaster | 40% interface-60% plaster | 65% interface-35% plaster | |
Commercial PCM | Adhesion (N/mm2) | 0.27 (±0.073) | 0.23 (±0.11) | 0.31 (±0.087) |
Area of rupture | 100% plaster | 58% interface-42% plaster | 29% interface-71% plaster |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claude, V.; Charron, S.; de Barquin, F.; Dirkx, I. Microencapsulated Phase Changing Materials for Gypsum Plasters: A Practical Approach. Constr. Mater. 2021, 1, 188-202. https://doi.org/10.3390/constrmater1030012
Claude V, Charron S, de Barquin F, Dirkx I. Microencapsulated Phase Changing Materials for Gypsum Plasters: A Practical Approach. Construction Materials. 2021; 1(3):188-202. https://doi.org/10.3390/constrmater1030012
Chicago/Turabian StyleClaude, Vincent, Stéphane Charron, Fabrice de Barquin, and Inge Dirkx. 2021. "Microencapsulated Phase Changing Materials for Gypsum Plasters: A Practical Approach" Construction Materials 1, no. 3: 188-202. https://doi.org/10.3390/constrmater1030012
APA StyleClaude, V., Charron, S., de Barquin, F., & Dirkx, I. (2021). Microencapsulated Phase Changing Materials for Gypsum Plasters: A Practical Approach. Construction Materials, 1(3), 188-202. https://doi.org/10.3390/constrmater1030012