Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing
Abstract
1. Introduction
2. Methodology
Mathematical THM Model
3. Validation of the THM Theory
4. Thermal, Hydraulic, and Mechanical Coupling in Unsaturated Soils
5. Impact of Soil Properties on the Processes of Soil Freezing and Thawing
6. Effect of Saturated Hydraulic Conductivity
7. Effect of Soil Particles’ Thermal Conductivity
8. Effect of Soil Particles’ Heat Capacity
9. Conclusions
- Reductions in frost heave, due to variations in particle thermal conductivity and particle heat capacity, are less significant than variations in saturated hydraulic conductivity.
- Silty clay experiences the greatest reduction in frost heave, particularly due to its low saturated hydraulic conductivity resulting from its high-water retention potential.
- The vertical stress values developed in fine sand include both tensile (positive) and compressive (negative) stresses. This polarized stress distribution results from the high permeability of fine sand, which allows for rapid water movement and temperature fluctuations.
- The highest continuous vertical stress build-up is observed in silty clay and sandy clay due to soil property variations. In contrast, fine sand shows a discontinuous vertical stress build-up.
- An increase in particle heat capacity reduces vertical stress build-up in all soil types, except for fine sand beneath asphalt mixture layer, by slowing the rate of temperature change during freezing.
10. Future Scope and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foriero, A.; Ladanyi, B. Pipe Uplift Resistance in Frozen Soil and Comparison with Measurements. J. Cold Reg. Eng. 1994, 8, 93–111. [Google Scholar] [CrossRef]
- Foriero, A.; Ladanyi, B. FEM Assessment of Large-Strain Thaw Consolidation. J. Geotech. Eng. 1995, 121, 126–138. [Google Scholar] [CrossRef]
- Ladanyi, B.; Foriero, A. Evolution of Frost Heaving Stresses Acting on a Pile. In Proceedings of the 7th International Permafrost Conference in Yellowknife, Yellowknife, NT, Canada, 23–27 June 1998; pp. 623–633. [Google Scholar]
- Qi, J.; Ma, W.; Song, C. Influence of Freeze–Thaw on Engineering Properties of a Silty Soil. Cold Reg. Sci. Technol. 2008, 53, 397–404. [Google Scholar] [CrossRef]
- Taber, S. The Mechanics of Frost Heaving. J. Geol. 1930, 38, 303–317. [Google Scholar] [CrossRef]
- Horiguchi, K.; Miller, R.D. Experimental Studies with Frozen Soil in an “Ice Sandwich” Permeameter. Cold Reg. Sci. Technol. 1980, 3, 177–183. [Google Scholar] [CrossRef]
- Zhou, J.; Li, D. Numerical Analysis of Coupled Water, Heat and Stress in Saturated Freezing Soil. Cold Reg. Sci. Technol. 2012, 72, 43–49. [Google Scholar] [CrossRef]
- Huang, X.; Rudolph, D.L. Numerical Study of Coupled Water and Vapor Flow, Heat Transfer, and Solute Transport in Variably-Saturated Deformable Soil During Freeze-Thaw Cycles. Water Resour. Res. 2023, 59, e2022WR032146. [Google Scholar] [CrossRef]
- Lei, D.; Yang, Y.; Cai, C.; Chen, Y.; Wang, S. The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory. Water 2020, 12, 2684. [Google Scholar] [CrossRef]
- Soltanpour, S.; Foriero, A. The Influence of Soil Particle Conductivity on Frost Heave of Unsaturated Soils. In Proceedings of the GeoMontréal 2024, Montréal, QC, Canada, 18 September 2024. [Google Scholar]
- Soltanpour, S.; Foriero, A. Numerical Modelling of Coupled Thermal–Hydraulic–Mechanical Processes in Unsaturated Soils During Freezing and Thawing. Water 2025, 17, 677. [Google Scholar] [CrossRef]
- Armstrong, M.D.; Csathy, T.I. Frost Design Practice in Canada—And Discussion. Highw. Res. Rec. 1963, 33, 170–201. [Google Scholar]
- Bigl, S.R.; Shoop, S.A.; Sally, A. Soil Moisture Prediction During Freeze and Thaw Using a Coupled Heat and Moisture Flow Model; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1994. [Google Scholar]
- Caicedo, B. Physical Modelling of Freezing and Thawing of Unsaturated Soils. Géotechnique 2017, 67, 106–126. [Google Scholar] [CrossRef]
- Soltanpour, S.; Foriero, A. Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils. Int. J. Geotech. Geol. Eng. 2023, 17, 111–118. [Google Scholar]
- Yan, G.; Bore, T.; Schlaeger, S.; Scheuermann, A.; Li, L. Dynamic Effects in Soil Water Retention Curves: An Experimental Exploration by Full-Scale Soil Column Tests Using Spatial Time-Domain Reflectometry and Tensiometers. Acta Geotech. 2024, 19, 7517–7543. [Google Scholar] [CrossRef]
- Carman, P.C. Fluid Flow through Granular Beds. Chem. Eng. Res. Des. 1997, 75, S32–S48. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-348525-0. [Google Scholar]
- Zhang, M.; Wen, Z.; Xue, K.; Chen, L.; Li, D. A Coupled Model for Liquid Water, Water Vapor and Heat Transport of Saturated–Unsaturated Soil in Cold Regions: Model Formulation and Verification. Environ. Earth Sci. 2016, 75, 701. [Google Scholar] [CrossRef]
- Philip, J.R.; De Vries, D.A. Moisture Movement in Porous Materials under Temperature Gradients. Eos Trans. Am. Geophys. Union 1957, 38, 222–232. [Google Scholar] [CrossRef]
- Teng, J.; Zhang, S.; Leng, W.; Sheng, D. Numerical Investigation on Vapor Transfer in Unsaturated Soil during Freezing. Jpn. Geotech. Soc. Spec. Publ. 2015, 1, 29–34. [Google Scholar] [CrossRef]
- Thomas, H.R.; Cleall, P.; Li, Y.-C.; Harris, C.; Kern-Luetschg, M. Modelling of Cryogenic Processes in Permafrost and Seasonally Frozen Soils. Géotechnique 2009, 59, 173–184. [Google Scholar] [CrossRef]
- Tice, A.R.; Anderson, D.M.; Banin, A. The Prediction of Unfrozen Water Contents in Frozen Soils from Liquid Limit Determinations; Cold Regions Research Laboratory: Hanover, NH, USA, 1976. [Google Scholar]
- Hillel, D. Soil and Water: Physical Principles and Processes; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-323-15670-7. [Google Scholar]
- Saito, H.; Šimůnek, J.; Mohanty, B.P. Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone. Vadose Zone J. 2006, 5, 784–800. [Google Scholar] [CrossRef]
- Moldrup, P.; Olesen, T.; Gamst, J.; Schjønning, P.; Yamaguchi, T.; Rolston, D.E. Predicting the Gas Diffusion Coefficient in Repacked Soil Water-Induced Linear Reduction Model. Soil Sci. Soc. Am. J. 2000, 64, 1588–1594. [Google Scholar] [CrossRef]
- Nakano, Y. Quasi-Steady Problems in Freezing Soils: I. Analysis on the Steady Growth of an Ice Layer. Cold Reg. Sci. Technol. 1990, 17, 207–226. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- De Vries, D.A. Simultaneous Transfer of Heat and Moisture in Porous Media. Eos Trans. Am. Geophys. Union 1958, 39, 909–916. [Google Scholar]
- Hansson, K.; Simunek, J.; Mizoguchi, M.; Lundin, L.-C.; van Genuchten, M.T. Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze-Thaw Applications. Vadose Zone J. 2004, 3, 693–704. [Google Scholar] [CrossRef]
- Sakai, M.; Toride, N.; Šimůnek, J. Water and Vapor Movement with Condensation and Evaporation in a Sandy Column. Soil Sci. Soc. Am. J. 2009, 73, 707–717. [Google Scholar] [CrossRef]
- Mordovskii, S.D.; Vychuzhin, T.A.; Petrov, E.E. Coefficients of Linear Expansion of Freezing Soils. J. Min. Sci. 1993, 29, 39–42. [Google Scholar] [CrossRef]
- Bishop, A.W.; Blight, G.E. Some Aspects of Effective Stress in Saturated and Partly Saturated Soils. Géotechnique 1963, 13, 177–197. [Google Scholar] [CrossRef]
- Huang, X.; Rudolph, D.L.; Glass, B. A Coupled Thermal-Hydraulic-Mechanical Approach to Modeling the Impact of Roadbed Frost Loading on Water Main Failure. Water Resour. Res. 2022, 58, e2021WR030933. [Google Scholar] [CrossRef]
- Neaupane, K.M.; Yamabe, T.; Yoshinaka, R. Simulation of a Fully Coupled Thermo–Hydro–Mechanical System in Freezing and Thawing Rock. Int. J. Rock Mech. Min. Sci. 1999, 36, 563–580. [Google Scholar] [CrossRef]
- Aitchison, G. Relationships of Moisture Stress and Effective Stress Functions in Unsaturated Soils. In Golden Jubilee of the International Society for Soil Mechanics and Foundation Engineering: Commemorative Volume; Institution of Engineers, Australia: Barton, Australia, 1985; pp. 20–25. [Google Scholar]
- Zhu, Y.; Carbee, D.L. Uniaxial Compressive Strength of Frozen Silt under Constant Deformation Rates. Cold Reg. Sci. Technol. 1984, 9, 3–15. [Google Scholar] [CrossRef]
- Dong, S. Microstructure Based Multiphysics Simulation of Frozen Unsaturated Soils. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2019. [Google Scholar]
- Ismail, M.K.A.; Mohamed, Z.; Razali, M. Contact Stiffness Parameters of Soil Particles Model for Discrete Element Modeling Using Static Packing Pressure Test. AIP Conf. Proc. 2018, 2020, 020014. [Google Scholar] [CrossRef]
- Karlinasari, R.; Rachmadan, R. Analysis of Lateral Deformation of Mini Pile Around the Vacuum Consolidation Area. In Proceedings of the International Conference on Advancement of Pile Technology and Pile Case Histories (PILE 2017), Bali, Indonesia, 25–27 September 2017. [Google Scholar]
- Kersten, M.S. Thermal Properties of Soils; University of Minnesota Twin Cities: Saint Paul, MN, USA, 1949. [Google Scholar]
- Gangadhara Rao, M.; Singh, D.N. A Generalized Relationship to Estimate Thermal Resistivity of Soils. Can. Geotech. J. 1999, 36, 767–773. [Google Scholar] [CrossRef]
- Chapuis, R.P. Predicting the Saturated Hydraulic Conductivity of Sand and Gravel Using Effective Diameter and Void Ratio. Can. Geotech. J. 2004, 41, 787–795. [Google Scholar] [CrossRef]
- Coduto, D.P. Foundation Design: Principles and Practices; Prentice Hall: Upper Saddle River, NJ, USA, 2001; ISBN 978-0-13-589706-5. [Google Scholar]
- Das, B.M. Principles of Geotechnical Engineering, 10th ed.; 9780357420478-Cengage; Cengage Learning: Boston, MA, USA, 2013; ISBN 978-0357420478. [Google Scholar]
- Zhang, S.; Teng, J.; He, Z.; Liu, Y.; Liang, S.; Yao, Y.; Sheng, D. Canopy Effect Caused by Vapour Transfer in Covered Freezing Soils. Géotechnique 2016, 66, 927–940. [Google Scholar] [CrossRef]
- Williams, P.J.; Smith, M.W. The Frozen Earth. Fundamentals of Geocryology. Geol. Mag. 1989, 127, 472. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
(Kg/m3) | 2646 | (1/m) | 0.193 |
(Kg/m3) | 1000 | 5.015 | |
(Kg/m3) | 917 | (W/m. K) | 2.3 |
0.33 | (W/m. K) | 0.58 | |
0.33 | (W/m. K) | 0.0676 | |
(MPa) | 59.42 | (W/m. K) | 2.2 |
0.45 | (J/Kg.K) | 1192.44 | |
(m/s) | (J/Kg.K) | 4181.3 | |
(m3/m3) | 0.255 | (J/Kg.K) | 1960 |
(m3/m3) | 0.034 | (J/Kg.K) | 700 |
Parameter | Sandy Clay | Silty Clay | |
---|---|---|---|
Hydraulic properties | (m/s) | ||
(m3/m3) | 0.44 | 0.35 | |
(m3/m3) | 0.01 | 0.02 | |
(1/m) | 3.28 | 2.6 | |
1.54 | 2.3 | ||
0.15 | 0.2 | ||
Thermal properties | (W/m. K) | 2.50 | 3.1 |
(J/Kg.K) | 840 | 1020 | |
Mechanical properties | (MPa) | 5.00 | 4.25 |
0.27 | 0.27 | ||
1 | 1 | ||
0.33 | 0.33 |
Cases | Saturated Hydraulic Conductivity | Soil Particles Thermal Conductivity | Soil Particles Heat Capacity |
---|---|---|---|
Fine Sand | |||
FSRC0 | = | = 2.3 | = 1192.4 |
FSC1 | = | = 2.3 | = 1192.4 |
FSC2 | = | = 0.23 | = 1192.4 |
FSC3 | = | = 2.3 | = 1788.6 |
Sandy Clay | |||
SCRC0 | = | = 2.50 | = 840 |
SCC1 | = | = 2.50 | = 840 |
SCC2 | = | = 0.25 | = 840 |
SCC3 | = | = 2.50 | = 1260 |
Silty Clay | |||
SICRC0 | = | = 3.1 | = 1020 |
SICC1 | = | = 3.1 | = 1020 |
SICC2 | = | = 0.31 | = 1020 |
SICC3 | = | = 3.1 | = 1530 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltanpour, S.; Foriero, A. Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing. Geotechnics 2025, 5, 51. https://doi.org/10.3390/geotechnics5030051
Soltanpour S, Foriero A. Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing. Geotechnics. 2025; 5(3):51. https://doi.org/10.3390/geotechnics5030051
Chicago/Turabian StyleSoltanpour, Sara, and Adolfo Foriero. 2025. "Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing" Geotechnics 5, no. 3: 51. https://doi.org/10.3390/geotechnics5030051
APA StyleSoltanpour, S., & Foriero, A. (2025). Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing. Geotechnics, 5(3), 51. https://doi.org/10.3390/geotechnics5030051