Sedimentological and Mineralogical Signature of Torrential Flow Depositional Area: A Case Study from Eastern Rhodopes, Bulgaria
Abstract
1. Introduction
2. Study Area
2.1. Location and Geographical Environment
2.2. Geological Settings
3. Materials and Methods
3.1. Grain Size Analysis
3.2. X-Ray Diffraction
4. Results
4.1. Grain Size Parameters
4.2. Morphoscopic Analysis of Large Particles
4.3. XRD of Clay and Silt Fraction
5. Discussion
5.1. Grain Size Characteristics and Interpretation
5.2. Mineral Spectrum of Fine Fraction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abancó, C.; Hürlimann, M.; Moya, J.; Berenguer, M. Critical rainfall conditions for the initiation of torrential flows. Results from the Rebaixader catchment (Central Pyrenees). J. Hydrol. 2016, 541, 218–229. [Google Scholar] [CrossRef]
- Oorthuis, R.; Hürlimann, M.; Vaunat, J.; Moya, J.; Lloret, A. Monitoring the role of soil hydrologic conditions and rainfall for the triggering of torrential flows in the Rebaixader catchment (Central Pyrenees, Spain). Landslides 2023, 20, 249–269. [Google Scholar] [CrossRef]
- Lopes, S.; Fragoso, M.; Reis, E. Rainfall analysis in mountain streams affected by torrential floods on Madeira Island, Portugal. Nat. Hazards Earth Syst. Sci. 2025, 25, 3109–3123. [Google Scholar] [CrossRef]
- Pandey, V.K.; Rai, J.; Sharma, K.K.; Singh, R. Analysis of flood and channel dynamics adversity in the Upper Beas Basin during 9–11 July 2023, Himachal Pradesh. Nat. Hazards Res. 2025; in press. [Google Scholar] [CrossRef]
- Arattano, M.; Franzi, L. Analysis of different water-sediment flow processes in a mountain torrent. Nat. Hazards Earth Syst. Sci. 2004, 4, 783–791. [Google Scholar] [CrossRef]
- de Haas, T.; Braat, L.; Leuven, J.R.F.W.; Lokhorst, I.R.; Kleinhans, M.G. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. J. Geophys. Res. Earth Surf. 2015, 120, 1949–1972. [Google Scholar] [CrossRef]
- Ordóñez, J.I. Basic Hydrodynamic Characteristics of Torrential Flow. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019. [Google Scholar] [CrossRef]
- Dobrev, N.; Ivanov, P.; Baltakova, A.; Rizova, R. Peculiarities of the materials involved in the debris flows in Kresna Gorge, Southwest Bulgaria. Eng. Geol. Hydrogeol. 2023, 37, 19–33, (In Bulgarian with an abstract in English). [Google Scholar] [CrossRef]
- Bolliger, D.; Schlunegger, F.; McArdell, B.W. Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps. Nat. Hazards Earth Syst. Sci. 2024, 24, 1035–1049. [Google Scholar] [CrossRef]
- Yousefi, S.; Imaizumi, F.; Takayama, S. Spatial distribution and transport characteristics of debris flow sediment using high-resolution UAV images in the Ohya debris flow fan. Geomorphology 2025, 469, 109533. [Google Scholar] [CrossRef]
- Yang, T.; Liu, D.; Li, Y.; Guo, X.; Zhang, J.; Jiang, Y. Grain Configuration Effect on Pore Water Pressure in Debris Flow. Front. Earth Sci. 2021, 9, 660634. [Google Scholar] [CrossRef]
- Tsunetaka, H.; Hotta, N.; Sakai, Y.; Wasklewicz, T. Effect of debris-flow sediment grain-size distribution on fan morphology. Earth Surf. Dynam. 2022, 10, 775–796. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, J.; Xu, W.; Yuan, B.; He, C. A review of research on the stability of fine-grained sediments in debris flows. Geosciences 2024, 14, 248. [Google Scholar] [CrossRef]
- Alves, K.M.A.S.; Fonseca, D.; Lagos, M.; Barra, J.C. Granulometric characterization of the alluvial-colluvial deposits in microbasins of the Copiapó river –Atacama region (Chile). Rev. Geociênc. Nordeste 2025, 1, 970–987. [Google Scholar] [CrossRef]
- Jan, C.-D.; Nguyen, L.-T.; Dey, L. Effects of grain size distribution on the movement and deposition of granular materials flowing down an inclined channel. J. Mech. 2025, 41, 157–172. [Google Scholar] [CrossRef]
- Bilal, A.; Yang, R.; Chen, S.; Lenhardt, N.; Mughal, M.S.; Kontakiotis, G. Seismically Induced Soft-Sediment Deformation in Alluvial Fans: Mechanisms and Implications for Geological Evolution of the Ordos Basin (China). J. Asian Earth Sci. 2025, 294, 106821. [Google Scholar] [CrossRef]
- Ni, H.; Zheng, W.; Liu, X.; Gao, Y. Fractal–statistical analysis of grain-size distributions of debris-flow deposits and its geological implications. Landslides 2011, 8, 253–259. [Google Scholar] [CrossRef]
- River, M.; Richardson, C.J. Suspended Sediment Mineralogy and the Nature of Suspended Sediment Particles in Stormflow of the Southern Piedmont of the USA. Water Resour. 2019, 55, 5665–5678. [Google Scholar] [CrossRef]
- Baiyegunhi, C.; Liu, K.; Gwavava, O. Grain Size Statistics and Depositional Pattern of the Ecca Group Sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosci. 2017, 9, 554–576. [Google Scholar] [CrossRef]
- Nikolova, V.; Kamburov, A. Geoinformation technologies in the evaluation of short-term geomorphic change: An example of Damdere debris flood area (Bulgaria). J. Geogr. Inst. Jovan Cvijic SASA 2022, 72, 133–145. [Google Scholar] [CrossRef]
- Ivanov, I.; Ivanova, E. Influence of precipitation on landslide activity in Southwestern Bulgaria in the context of climate change. Eng. Geol. Hydrogeol. 2023, 37, 133–144. [Google Scholar] [CrossRef]
- Berov, B.; Gadzhev, G.; Ivanov, P.; Dobrev, N.; Ivanov, V.; Nikolova, N.; Toteva, A.; Krastanov, M.; Nankin, R.; Frantzova, A. Assessment of landslide susceptibility in Bulgaria, in the context of climate change, using the Mora and Vahrson method. Geol. Balc. 2025, 54, 3–16. [Google Scholar] [CrossRef]
- Nikolova, V.; Kamburov, A.; Rizova, R. Morphometric analysis of debris flow basins in the Eastern Rhodopes (Bulgaria) using geospatial technologies. Nat. Hazards 2021, 105, 159–175. [Google Scholar] [CrossRef]
- Hristova, N. The River Waters in Bulgaria; Tip-Top Press Publishing House: Sofia, Bulgaria, 2012; 830p, (In Bulgarian with summary in English); ISBN 9789547230804. [Google Scholar]
- Sarov, S.; Yordanov, B.; Valkov, V.; Georgiev, S.; Kamburov, D.; Raeva, E.; Grozdev, V.; Balkanska, E.; Moskovska, L.; Dobrev, G.; et al. Geological Map of Bulgaria 1:50000, Map Sheet K-35-87-A Ardino, with Explanatory Notes; Geology and Geophysics Ltd.: Sofia, Bulgaria, 2007. [Google Scholar]
- Sarov, S.; Yordanov, B.; Valkov, V.; Georgiev, S.; Kamburov, D.; Raeva, E.; Grozdev, V.; Balkanska, E.; Moskovska, L.; Dobrev, G. Geological Map of Bulgaria 1:50000, Map Sheet K-35-87-B Kardzhali, with Explanatory Notes; Geology and Geophysics Ltd.: Sofia, Bulgaria, 2007. [Google Scholar]
- Yordanov, B.; Sarov, S.; Georgiev, S.; Valkov, V.; Balkanska, E.; Grozdev, V.; Marinova, R.; Markov, N. Explanatory Note to the Geological Map of the Republic of Bulgaria, Scale 1:50,000, Map Sheet K-35-87-A (Ardino); Ministry of Environment and Water, Bulgarian Geological Survey: Sofia, Bulgaria, 2008; 76p.
- Yordanov, B.; Sarov, S.; Georgiev, S.; Valkov, V.; Balkanska, E.; Grozdev, V.; Marinova, R.; Markov, N. Explanatory Note to the Geological Map of the Republic of Bulgaria, Scale 1:50,000, Map Sheet K-35-87-B (Kardzhali); Ministry of Environment and Water, Bulgarian Geological Survey: Sofia, Bulgaria, 2008; 131p.
- BDS EN ISO 17892-4:2017; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 4: Determination of Particle Size Distribution (ISO 17892-4:2016). Bulgarian Institute for Standardization: Sofia, Bulgaria, 2017.
- Blott, S.J. GRADISTAT, Version 9.1; Kenneth Pye Associates Ltd.: Wallingford, UK, 2020. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain-size parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Zingg, T. Beiträge zur Schotteranalyse. Ph.D. Thesis, ETH Zürich, Zurich, Switzerland, 1935; pp. 39–140. [Google Scholar]
- Serebryanyi, L.R. Laboratory Analysis in Geo-Morphology and Quaternary Paleogeography; Viniti: Moscow, Russia, 1980; p. 160. [Google Scholar]
- Wolman, M.G. A method for sampling coarse river-bed material. Am. Geophys. Union Trans. 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Subramanian, M.; Divakaran Sarasamma, J.; Mohan, V. Grain size distribution of the sediments along the Kollam shoreline, Southwest coast of India. Mar. Georesour. Geotechnol. 2025, 43, 2502–2512. [Google Scholar] [CrossRef]
- Pierson, T.C. Hyperconcentrated flow—Transitional process between water flow and debris flow. In Debris-Flow Hazards and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2005; pp. 159–202. [Google Scholar] [CrossRef]
- Blair, T.C.; McPherson, J.G. Grain-size and textural classification of coarse sedimentary deposits. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Awasthi, A.K. Skewness as an environmental indicator in the Solani River system, Roorkee (India). Sediment. Geol. 1970, 4, 177–183. [Google Scholar] [CrossRef]
- Zaleha, M.J.; Wiesemann, S.A. Hyperconcentrated flows and gastroliths: Sedimentology of diamictites and wackes of the Upper Cloverly Formation, Lower Cretaceous, Wyoming, U.S.A. J. Sediment. Res. 2005, 75, 43–54. [Google Scholar] [CrossRef]
- Kasim, S.A.; Ismail, M.S.; Ahmed, N. Grain size statistics and morphometric analysis of Kluang-Niyor, Layang-Layang, and Kampung Durian Chondong Tertiary sediments, onshore Peninsular Malaysia: Implications for paleoenvironment and depositional processes. J. King Saud Univ. Sci. 2023, 35, 102481. [Google Scholar] [CrossRef]
- Wei, X.; Cai, S.; Zhan, W.; Li, Y. Changes in the distribution of surface sediment in the Pearl River Estuary, 1975–2017, largely due to human activity. Cont. Shelf Res. 2021, 228, 104538. [Google Scholar] [CrossRef]
- Kenderova, R.; Baltakova, A.; Rachev, G. Debris flows in the middle Struma Valley, Southwest Bulgaria. In Geomorphological Impacts of Extreme Weather; Loczy, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 283–287. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Barnard, P.L. Sand sources and transport pathways for the San Francisco Bay coastal system, based on X-ray diffraction mineralogy. Mar. Geol. 2013, 345, 154–169. [Google Scholar] [CrossRef]
- Cheng, S.; Hong, H.; Ji, K.; Li, F.; Wang, X. New insight into biotite weathering in the subtropic Tongcheng granite regolith, Hubei Province, South China. Appl. Clay Sci. 2022, 224, 106518. [Google Scholar] [CrossRef]
- Repczyńska, M.M.; Molina, J.F.; Cambeses, A.; Montero, P.; Bea, F.; Itano, K.; Pujol-Solà, N.; Novo-Fernández, I.; Barcos, L.; Garcia-Casco, A. Geochemical behaviour of biotite during interaction with aqueous and brine fluids: Constraints from hydrothermal batch experiments. Chem. Geol. 2025, 672, 122486. [Google Scholar] [CrossRef]
- Bartz, M.; Peña, J.; Grand, S.; Kin, G.E. Potential impacts of chemical weathering on feldspar luminescence dating properties. Geochronology 2023, 5, 51–64. [Google Scholar] [CrossRef]
- Dobrev, N.; Georgieva, M. The Debris Flow in the Northern Part of Kresna Gorge: Characterization of the Source Zone and Material Properties. Rev. Bulg. Geol. Soc. 2010, 71, 113–121, (In Bulgarian with an abstract in English). [Google Scholar]









| Equipment | Bruker D2 Phaser |
|---|---|
| Radiation | Cu, λ = 1.54184 |
| Voltage [kV] | 30 |
| Current [mA] | 10 |
| Two Theta [°] | 3.5–90° |
| Increment [°] | 0.02° |
| Time [s] | 0.400 |
| Steps | 4265 |
| Effective Total Time [s] | 1800.4 |
| Sample/Year | Mean | Standard Deviation | Skewness | Kurtosis |
|---|---|---|---|---|
| D1/2023 | −2.658: Fine Gravel | 1.425: Poorly Sorted | 0.296: Fine Skewed | 1.047: Mesokurtic |
| D3/2023 | −2.005: Fine Gravel | 1.539: Poorly Sorted | −0.140: Coarse Skewed | 1.061: Mesokurtic |
| D0/2024 | −1.200: Very Fine Gravel | 1.595: Poorly Sorted | −0.034: Symmetrical | 0.875: Platykurtic |
| D1/2024 | −1.795: Very Fine Gravel | 1.756: Poorly Sorted | 0.202: Fine Skewed | 0.819: Platykurtic |
| D2/2024 | −2.079: Fine Gravel | 1.632: Poorly Sorted | 0.147: Fine Skewed | 0.963: Mesokurtic |
| Parameters | D1/2024—Upstream of the Check Dam | D2/2024—Downstream of the Check Dam |
|---|---|---|
| Minimal values of grain axis (cm): a—long, b—intermediate, and c—short | a = 2.8; b = 1.6; c = 0.5 | a = 4.1; b = 2.5; c = 0.8 |
| Maximal values of grain axis (cm) | a = 8.5; b = 7.8; c = 2.6 | a = 6.8; b = 6.4; c = 3.1 |
| Average values of grain axis (cm) | a = 5.1; b = 3.6; c = 1.5 | a = 6; b = 4.1; c = 2.2 |
| Petrographic composition | gneiss (53%), pegmatite vein (27%), limestone (17%), sandstone (3%) | gneiss (56%), pegmatite vein (22%), tuff (22%) |
| Form (% of the cases) | disk-shaped (50%) | disk-shaped (55%) |
| Transport:dragging:saltation | 79%:21% | 74%:26% |
| Subset of selected samples | ![]() | ![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nikolova, V.; Rizova, R.; Dimitrov, I.; Babej, J.; Dimitrov, D.; Petrović, A.M. Sedimentological and Mineralogical Signature of Torrential Flow Depositional Area: A Case Study from Eastern Rhodopes, Bulgaria. Geographies 2026, 6, 2. https://doi.org/10.3390/geographies6010002
Nikolova V, Rizova R, Dimitrov I, Babej J, Dimitrov D, Petrović AM. Sedimentological and Mineralogical Signature of Torrential Flow Depositional Area: A Case Study from Eastern Rhodopes, Bulgaria. Geographies. 2026; 6(1):2. https://doi.org/10.3390/geographies6010002
Chicago/Turabian StyleNikolova, Valentina, Radostina Rizova, Ivan Dimitrov, Jan Babej, Dimitar Dimitrov, and Ana M. Petrović. 2026. "Sedimentological and Mineralogical Signature of Torrential Flow Depositional Area: A Case Study from Eastern Rhodopes, Bulgaria" Geographies 6, no. 1: 2. https://doi.org/10.3390/geographies6010002
APA StyleNikolova, V., Rizova, R., Dimitrov, I., Babej, J., Dimitrov, D., & Petrović, A. M. (2026). Sedimentological and Mineralogical Signature of Torrential Flow Depositional Area: A Case Study from Eastern Rhodopes, Bulgaria. Geographies, 6(1), 2. https://doi.org/10.3390/geographies6010002



