Understanding the IPCC Climate Risk-Centered Framework and Its Applications to Assessing Tourism Resilience
Abstract
1. Introduction
- RQ1
- What are the limitations of traditional VA for the tourism industry in the face of increasing climate risks, and how does the CRA framework address these limitations?
- RQ2
- How can CRM practices be effectively integrated into the tourism industry to enhance resilience to both climate and non-climate drivers?
- RQ3
- What challenges and opportunities arise from implementing the IPCC’s CRA framework in diverse tourism settings, and how can tourism stakeholders best collaborate with environmental and social experts to address these?
2. Materials and Methods
3. Results
3.1. Theoretical Concept of Climate Risk
3.2. Climate Risk-Centered Framework and Its Terminological Foundation
3.3. Methodological Framework for VA and CRA Implementation
3.3.1. Evolution of VA into CRA Framework
3.3.2. Stepwise Approach for CRA Implementation
3.4. Societal Responses for Climate Change Adaptation
3.4.1. The CRM Framework for Climate Action
3.4.2. The CCA Options with the Focus on Nature-Based Solutions (NbSs)
4. Discussion
4.1. The Relevance of the Risk-Centered Framework for Climate Resilience of Tourism
4.2. The CRM and Typology of CAA Options
4.3. Theoretical and Practical Implications
- RQ1
- Limitations of traditional vulnerability assessments (VA) for tourism in the face of climate risks and CRA’s solutions
- RQ2
- Integrating climate risk management (CRM) into tourism to enhance resilience
- RQ3
- Challenges and opportunities of implementing the IPCC’s CRA framework in diverse tourism settings
5. Conclusions
- Integrate CRA into Destination Management Plans as a standard planning component
- Develop scenario-based policies using climate projections for adaptive tourism management
- Establish tourism and cross-sectoral coordination platforms to promote awareness and knowledge sharing with case studies and best practices
- Require CRA-based risk evaluations for tourism infrastructure and development investments
- Provide capacity building and training on CRA methods for tourism managers and local authorities
- Create financial incentives to support CRA-informed adaptation by tourism businesses
- Update legal and regulatory frameworks to incorporate climate risk considerations and financial resources
- Implement monitoring and reporting systems with accessible tools and metrics
- Through collaborative and advanced platforms
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schipper, E.; Revi, A.; Preston, B.; Carr, E.; Eriksen, S.; Fernandez-Carril, L.; Glavovic, B.; Hilmi, N.; Ley, D.; Mukerji, R.; et al. Climate resilient development pathways. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 2655–2808. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2023 Synthesis Report: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- World Health Organization. Operational Framework for Building Climate Resilient Health Systems, 1st ed.; WHO: Geneva, Switzerland, 2015; pp. 1–46. [Google Scholar]
- Romanello, M.; Walawender, M.; Hsu, S.C.; Moskeland, A.; Palmeiro-Silva, Y.; Scamman, D.; Ali, Z.; Ameli, N.; Angelova, D.; Ayeb-Karlsson, S.; et al. The 2024 report of the Lancet Countdown on health and climate change: Facing record-breaking threats from delayed action. Lancet 2024, 404, 1847–1896. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Safe, Climate-Resilient and Environmentally Sustainable Health Care Facilities: An Overview, 1st ed.; WHO: Geneva, Switzerland, 2024; pp. 1–43. [Google Scholar]
- Lucatello, S.; Sánchez, R. Climate change in North America: Risks, impacts, and adaptation. A reflection based on the IPCC Report AR6—2022. Mex. J. Econ. Financ. 2022, 17, 1–18. [Google Scholar] [CrossRef]
- European Environment Agency. European Climate Risk Assessment Executive Summary—EEA Report No. 1/2024, 1st ed.; EEA: Copenhagen, Denmark, 2024; pp. 1–39. [Google Scholar]
- Davidson, J.P.L.; Kemp, L. Climate catastrophe: The value of envisioning the worst-case scenarios of climate change. Wiley Interdiscip. Rev. Clim. Change 2024, 15, e871. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Zovko, M.; Zovko, D. The new realities of the tourism industry in the era of global climate changes. In Managing the Future of Tourism; Islam, N.U., Chaudhary, M., Vukadin, I.M., Eds.; Emerald Publishing Limited: Leeds, UK, 2024; pp. 27–42. [Google Scholar]
- Becken, S.; Whittlesea, E.; Loehr, J.; Scott, D. Tourism and climate change: Evaluating the extent of policy integration. J. Sustain. Tour. 2020, 28, 1603–1624. [Google Scholar] [CrossRef]
- Scott, D.; Gössling, S. A review of research into tourism and climate change: Launching the annals of tourism research curated collection on tourism and climate change. Ann. Tour. Res. 2022, 95, 103409. [Google Scholar] [CrossRef]
- Posch, E.; Eckert, E. Resilience Analysis Guideline for Tourism Destinations—Introducing Key Concepts and Methodological Steps to Analyse Destination Resilience, 1st ed.; Deutsches Komitee Katastrophenvorsorge & Futouris GmbH: Bonn, Germany, 2022. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2001: Synthesis Report. In A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Intergovernmental Panel on Climate Change. Managing the risks of extreme events and disasters to advance climate change adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- McNamara, D.; Keeler, A. A coupled physical and economic model of the response of coastal real estate to climate risk. Nat. Clim. Change 2013, 3, 559–562. [Google Scholar] [CrossRef]
- Pons, M.; López-Moreno, J.I.; Rosas-Casals, M.; Jover, È. The vulnerability of Pyrenean ski resorts to climate-induced changes in the snowpack. Clim. Change 2015, 131, 591–605. [Google Scholar] [CrossRef]
- Lazzari, N.; Becerro, M.A.; Sanabria-Fernandez, J.A.; Martín-López, M. Assessing social-ecological vulnerability of coastal systems to fishing and tourism. Sci. Total Environ. 2021, 784, 147078. [Google Scholar] [CrossRef]
- Soontiens-Olsen, A.; Genge, L.; Medeiros, A.S.; Klein, G.; Lin, S.; Sheehan, L. Coastal adaptation and vulnerability assessment in a warming future: A systematic review of the tourism sector. Sage Open 2023, 13, 21582440231179215. [Google Scholar] [CrossRef]
- Jamaliah, M.M.; Powell, R.B. Ecotourism resilience to climate change in Dana Biosphere Reserve, Jordan. J. Sustain. Tour. 2018, 26, 1–18. [Google Scholar] [CrossRef]
- Zhou, W.; Faturay, F.; Driml, S.; Sun, Y.Y. Meta-analysis of the climate change-tourism demand relationship. J. Sustain. Tour. 2024, 32, 1762–1783. [Google Scholar] [CrossRef]
- Moreno, A.; Becken, S. A climate change vulnerability assessment methodology for coastal tourism. J. Sustain. Tour. 2009, 17, 473–488. [Google Scholar] [CrossRef]
- Mitrica, B.; Șerban, P.-R.; Roznovietchi Mocanu, I.; Micu, D.; Persu, M.; Grigorescu, I.; Amihaesei, V.; Dumitraşcu, M.; Damian, N. The tourism sector’s vulnerability to climate change-related phenomena: Case study Romania. Int. J. Disaster Risk Reduct. 2025, 118, 105248. [Google Scholar] [CrossRef]
- Atstāja, D.; Cakrani, E. Impact of climate change on international tourism: Evidence from Baltic Sea countries. Sustainability 2024, 16, 5203. [Google Scholar] [CrossRef]
- Wang, T.; Qu, Z.; Yang, Z.; Nichol, T.; Clarke, G.; Ge, J.E. Climate change research on transportation systems: Climate risks, adaptation and planning. Transp. Res. Part D Transp. Environ. 2020, 88, 102553. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Räsänen, A.; Groundstroem, F.; Juhola, S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ. Res. Lett. 2017, 12, 013002. [Google Scholar] [CrossRef]
- Simpson, N.P.; Mach, K.J.; Constable, A.; Hess, J.; Hogarth, R.; Howden, M.; Lawrence, J.; Lempert, R.J.; Muccione, V.; Mackey, B.; et al. A framework for complex climate change risk assessment. One Earth 2021, 4, 489–501. [Google Scholar] [CrossRef]
- Jarratt, D.; Davies, N.J. Planning for climate change impacts: Coastal tourism destination resilience policies. Tour. Plan. Dev. 2020, 17, 423–440. [Google Scholar] [CrossRef]
- Arabadzhyan, A.; Figini, P.; García, C.; González, M.M.; Lam-González, Y.E.; León, C.J. Climate change, coastal tourism, and impact chains—A literature review. Curr. Issues Tour. 2021, 24, 2233–2268. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; da Cunha, C. The role of non-climate data in equitable climate adaptation planning: Lessons from small French and American cities. Sustainability 2023, 15, 1556. [Google Scholar] [CrossRef]
- Klein, R.; Adams, K.; Dzebo, A.; Davis, M.; Siebert, C. Advancing Climate Adaptation Practices and Solutions: Emerging Research Priorities, 1st ed.; Stockholm Environment Institute: Stockholm, Sweden, 2017; pp. 1–24. [Google Scholar]
- Sainz de Murieta, E.; Galarraga, I.; Olazabal, M. How well do climate adaptation policies align with risk-based approaches? An assessment framework for cities. Cities 2021, 109, 103018. [Google Scholar] [CrossRef]
- Sharma, G.D.; Taheri, B.; Chopra, R.; Parihar, J.S. Relationship between climate change and tourism: An integrative review. Serv. Ind. J. 2023, 45, 426–453. [Google Scholar] [CrossRef]
- Reisinger, A.D.; Cammarano, A.; Fischlin, J.S.; Fuglestvedt, G.; Hansen, Y.; Jung, C.; Ludden, V.; Masson-Delmotte, R.; Matthews, J.B.K.; Mintenbeck, D.J.; et al. Annex I: Glossary. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; pp. 119–130. [Google Scholar]
- Gambhir, A.; George, M.; McJeon, H. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat. Clim. Change 2022, 12, 88–96. [Google Scholar] [CrossRef]
- Campiglio, E.; Daumas, L.; Monnin, P.; von Jagow, A. Climate-related risks in financial assets. J. Econ. Surv. 2023, 37, 950–992. [Google Scholar] [CrossRef]
- Cheng, U.; Gupta, B.; Rajan, R.S. Do green financial policies offset the climate transition risk penalty imposed on long-term sovereign bond yields? Res. Int. Bus. Financ. 2023, 65, 101976. [Google Scholar] [CrossRef]
- Moghal, Z.; O’Connell, E. Multiple stressors impacting a small island tourism destination-community: A nested vulnerability assessment of Oistins, Barbados. Tour. Manag. Perspect. 2018, 26, 78–88. [Google Scholar] [CrossRef]
- Phan, T.D.; Bertone, E.; Pham, T.D.; Pham, T.V. Perceptions and willingness to pay for water management on a highly developed tourism island under climate change: A Bayesian network approach. Environ. Chall. 2021, 5, 100333. [Google Scholar] [CrossRef]
- Gonzalez-Perez, D.M.; Martín, J.M.; Guaita Martínez, J.M.; Morales Pachón, A. Analysing the real size of the tourism industry on the basis of an assessment of water consumption patterns. J. Bus. Res. 2023, 157, 113601. [Google Scholar] [CrossRef]
- Reisinger, A.; Garschagen, M.; Mach, K.J.; Pathak, M.; Poloczanska, E.; van Aalst, M.; Ruane, A.C.; Howden, M.; Hurlbert, M.; Mintenbeck, K.; et al. The Concept of Risk in the IPCC Sixth Assessment Report: A summary of Cross-Working Group Discussions, 15th ed.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2020; pp. 1–15. [Google Scholar]
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.I.; Coppola, E.; Cruz, F.A.; et al. The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change—Summary for Policymakers, 1st ed.; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021; pp. 1–32. [Google Scholar]
- Mackay, E.A.; Spencer, A. The future of Caribbean tourism: Competition and climate change implications. Worldw. Hosp. Tour. Themes 2017, 9, 44–59. [Google Scholar] [CrossRef]
- Scott, D.; Hall, C.M.; Gössling, S. Global tourism vulnerability to climate change. Ann. Tour. Res. 2019, 77, 49–61. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A.; Hazra, S.; Ghosh, T.; Safra de Campos, R.; Samanta, S. Linking IPCC AR4 & AR5 frameworks for assessing vulnerability and risk to climate change in the Indian Bengal Delta. Prog. Disaster Sci. 2020, 7, 100110. [Google Scholar] [CrossRef]
- Zebisch, M.; Renner, K.; Pittore, M.; Fritsch, U.; Fruchter, S.R.; Kienberger, S.; Schinko, T.; Sparkes, E.; Hagenlocher, M.; Schneiderbauer, S.; et al. Climate Risk Sourcebook, 2nd ed.; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2023; pp. 1–201. [Google Scholar]
- Mastrandrea, M.D.; Mach, K.J.; Plattner, G.K.; Edenhofer, O.; Stocker, T.F.; Field, C.B.; Ebi, K.L.; Matschoss, P.R. The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups. Clim. Change 2011, 108, 675–691. [Google Scholar] [CrossRef]
- Hopster, J. Climate change, uncertainty, and policy. In Handbooks in Philosophy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 977–1000. [Google Scholar] [CrossRef]
- Mechler, R.; Schindler, S.; Hanke, N.; Högl, M.; Siebert, M. Assessment of Climate-Related Risks; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2021. [Google Scholar]
- Smithers, R.J.; Dworak, T. Assessing Climate Change Risks and Vulnerabilities (Climate Risk Assessment): A DIY Manual; European Union, EU Mission on Adaptation to Climate Change: Brussels, Belgium, 2023. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; UNDRR: Geneva, Switzerland, 2015. [Google Scholar]
- Scott, D.; Hall, C.M.; Rushton, B.; Gössling, S. A review of the IPCC Sixth Assessment and implications for tourism development and sectoral climate action. J. Sustain. Tour. 2024, 32, 1725–1742. [Google Scholar] [CrossRef]
- Sharma, J.; Ravindranath, N.H. Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environ. Res. Commun. 2019, 1, 051004. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ishtiaque, A.; Parajuli, J.; Athukorala, D.; Rabby, Y.W.; Ooba, M. Has IPCC’s Revis. Vulnerability Concept Been Well Adopt? Ambio 2022, 52, 376–389. [Google Scholar] [CrossRef]
- Reisinger, A.; Howden, M.; Mathias, C.V.; Hurlbert, C.M.; Kreibiehl, S.; Mach, C.J.; Mintenbeck, K.; O’Neill, B.; Pathak, M.; Pedace, R.; et al. The Concept of Risk in the IPCC Sixth Assessment Report: A summary of Cross Working Group Discussions—Guidance for IPCC Authors, 6th ed.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021. [Google Scholar]
- Leitner, M.; Babcicky, P.; Schinko, T.; Glas, N. The status of climate risk management in Austria: Assessing the governance landscape and proposing ways forward for comprehensively managing flood and drought risk. Clim. Risk Manag. 2020, 30, 100246. [Google Scholar] [CrossRef]
- Deubelli, T.M.; Mechler, R. Perspectives on transformational change in climate risk management and adaptation. Environ. Res. Lett. 2021, 16, 053002. [Google Scholar] [CrossRef]
- Chu, E.; Anguelovski, I.; Roberts, D. Climate adaptation as strategic urbanism: Assessing opportunities and uncertainties for equity and inclusive development in cities. Cities 2017, 60, 378–387. [Google Scholar] [CrossRef]
- Füssel, H.-M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Change 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Wilson, A.M.W.; Forsyth, C. Restoring near-shore marine ecosystems to enhance climate security for island ocean states: Aligning international processes and local practices. Mar. Policy 2018, 93, 284–294. [Google Scholar] [CrossRef]
- Rahman, M.A.; Islam, S. Climate change adaptation in urban areas: A critical assessment of the structural and non-structural flood protection measures in Dhaka. Anthr. Polit. Econ. Soc. Sci. 2019, 28, 161–173. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature and Natural Resources. Adapting to Climate Change: Guidance for Protected Area Managers and Planners—Best Practice Protected Area Guidelines Series; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Jiang, J.H.; Zhai, A.J.; Herman, J.; Zhai, C.; Hu, R.; Su, H.; Natraj, V.; Li, J.; Xu, F.; Yung, Y.L. Using Deep Space Climate Observatory measurements to study the Earth as an exoplanet. Astron. J. 2018, 156, 26. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. The Ecosystem Approach; CBD: Montreal, PQ, Canada, 2004. [Google Scholar]
- Cohen-Shacham, E.; Janzen, C.; Maginnis, S.; Walters, G. Nature-Based Solutions to Address Global Societal Challenges; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2016. [Google Scholar]
- Lo, V. Synthesis Report on Experiences with Ecosystem-Based Approaches to Climate Change Adaptation and Disaster Risk Reduction (Technical Series No. 85). Secretariat of the Convention on Biological Diversity: Montreal, PQ, Canada, 2016. [Google Scholar]
- Dudley, N.; Ali, N.; Kettunen, M.; MacKinnon, K. Protected areas and the sustainable development goals. Parks 2017, 23, 9–12. [Google Scholar] [CrossRef]
- Ghana, C.; Obilie-Mante, V.; Nartey, J.; Adamtey, R.K. Restoring Mangrove Ecosystems for Coastal Resilience: Lessons from Ghana’s Coastal Zones; SSRN: Rochester, NY, USA, 2024. [Google Scholar] [CrossRef]
- Ayassamy, P. Mangroves as a nature-based solution and a tool for coastal resilience. Wetlands 2025, 45, 1–18. [Google Scholar] [CrossRef]
- Zanin, G.M.; Muwafu, S.P.; Costa, M.M. Nature-based solutions for coastal risk management in the Mediterranean basin: A literature review. J. Environ. Manag. 2024, 356, 120667. [Google Scholar] [CrossRef]
- Rey, F.; Dupire, S.; Berger, F. Forest-based solutions for reconciling natural hazard reduction with biodiversity benefits. Nat. -Based Solut. 2024, 5, 100114. [Google Scholar] [CrossRef]
- Brathwaite, A.; Clua, E.; Roach, R.; Pascal, N. Coral reef restoration for coastal protection: Crafting technical and financial solutions. J. Environ. Manag. 2022, 310, 114718. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Zhou, C.; Shao, X.; Shi, Z.; Li, H.; Su, H.; Qin, R.; Chang, T.; Hu, X.; et al. Alpine grassland degradation and its restoration in the Qinghai–Tibet plateau. Grasses 2023, 2, 31–46. [Google Scholar] [CrossRef]
- Galagoda, R.U.; Jayasinghe, G.Y.; Halwatura, R.U.; Rupasinghe, H.T. The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban For. Urban Green. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling nature-based solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Dorst, H.; van der Jagt, A.; Toxopeus, H.; Tozer, L.; Raven, R.; Runhaar, H. What’s behind the barriers? Uncovering structural conditions working against urban nature-based solutions. Landsc. Urban Plan. 2022, 221, 104335. [Google Scholar] [CrossRef]
- Baloch, Q.B.; Shah, S.N.; Iqbal, N.; Sheeraz, M.; Asadullah, M.; Mahar, S.; Khan, A.U. Impact of tourism development upon environmental sustainability: A suggested framework for sustainable ecotourism. Environ. Sci. Pollut. Res. Int. 2023, 30, 5917–5930. [Google Scholar] [CrossRef] [PubMed]
- Steiger, R.; Demiroglu, O.C.; Pons, M.; Salim, E. Climate and carbon risk of tourism in Europe. J. Sustain. Tour. 2023, 32, 1893–1923. [Google Scholar] [CrossRef]
- Rizzi, J.; Gallina, V.; Torresan, S.; Critto, A.; Gana, S.; Marcomini, A. Regional risk assessment addressing the impacts of climate change in the coastal area of the Gulf of Gabes (Tunisia). Sustain. Sci. 2016, 11, 455–476. [Google Scholar] [CrossRef]
- Salvati, G.; Coch Roura, H.; Cecere, C. Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal vulnerability assessment along the north-eastern sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Umgiesser, G. The impact of operating the mobile barriers in Venice (MOSE) under climate change. J. Nat. Conserv. 2020, 54, 125783. [Google Scholar] [CrossRef]
- Faranda, D.; Ginesta, M.; Alberti, T.; Bessat, F.; Barbato, M.; Tosi, L.; Lionello, P.; Zanchettin, D.; Jarosz, E.; Vichi, M. Attributing Venice Acqua Alta events to a changing climate and evaluating the efficacy of MoSE adaptation strategy. NPJ Clim. Atmos. Sci. 2023, 6, 181. [Google Scholar] [CrossRef]
- Boras, M.; Herceg-Bulić, I.; Žgela, M. Urban heat load in a small Mediterranean city in recent, extreme and future climate conditions—A case study for the city of Dubrovnik. Int. J. Climatol. 2025, 45, e8728. [Google Scholar] [CrossRef]
- Noble, I.; Huq, S.; Anokhin, Y.; Carmin, J.; Lansigan, F.; Osman-Elasha, B.; Villamizar, A.; Ayers, J.; Berkhout, F.; Dow, K.; et al. Adaptation needs and options. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, 1st ed.; Patt, A., Takeuchi, K., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; pp. 883–968. [Google Scholar]
- Fritzsche, K.; Schneiderbauer, S.; Bubeck, P.; Kienberger, S.; Buth, M.; Zebisch, M.; Kahlenborn, W. The Vulnerability Sourcebook: Concept and Guidelines for Standardised Vulnerability Assessments, 1st ed.; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2014; pp. 38–84. [Google Scholar]
- Marmorek, D.; Nelitz, M.; Eyzaguirre, J.; Murray, C.; Alexander, C. Adaptive management and climate change adaptation: Two mutually beneficial areas of practice. J. Am. Water Resour. Assoc. 2019, 55, 881–905. [Google Scholar] [CrossRef]
- Cheong, S.M.; Sankaran, K.; Bastani, H. Artificial intelligence for climate change adaptation. WIREs Data Min. Knowl. Discov. 2022, 12, e1459. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- O’Neill, B.; Kriegler, E.; Riahi, K.; Ebi, K.; Hallegatte, S.; Carter, T.; Mathur, R.; van Vuuren, D. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Kriegler, E.; Edmonds, J.; Hallegatte, S.; Ebi, K.L.; Kram, T.; Riahi, K.; Winkler, H.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared climate policy assumptions. Clim. Change 2014, 122, 401–414. [Google Scholar] [CrossRef]
- Meneses Cerón, L.Á.; van Klyton, A.; Rojas, A.; Muñoz, J. Climate risk and its impact on the cost of capital—A systematic literature review. Sustainability 2024, 16, 10727. [Google Scholar] [CrossRef]
- Ruane, A.C.; Vautard, R.; Ranasinghe, R.; Sillmann, J.; Coppola, E.; Arnell, N.; Cruz, F.A.; Dessai, S.; Iles, C.E.; Islam, A.K.M.S.; et al. The Climatic Impact-Driver framework for assessment of risk-relevant climate information. Earth’s Future 2022, 10, e2022EF002803. [Google Scholar] [CrossRef]
- Kause, A.; Bruine de Bruin, W.; Persson, J.; Thorén, H.; Olsson, L.; Wallin, A.; Dessai, S.; Vareman, N. Confidence levels and likelihood terms in IPCC reports: A survey of experts from different scientific disciplines. Clim. Change 2022, 173, 2. [Google Scholar] [CrossRef]
- Chambwera, M.; Dubeux, C.; Hallegatte, S.; Leclerc, L.; Markandya, A.; McCarl, B.A.; Mechler, R.; Neumann, J.E. Economics of adaptation. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Calvo, E., Iglesias, A., Navrud, S., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 945–977. [Google Scholar]
- Eriksen, S.; Lisa, E.; Schipper, F.; Scoville-Simonds, M.; Vincent, K.; Adam, H.N.; Brooks, N.; Harding, B.; Khatri, D.; Le-naerts, L.; et al. Adaptation interventions and their effect on vulnerability in developing countries: Help, hindrance or irrelevance? World Dev. 2021, 141, 105383. [Google Scholar] [CrossRef]
- Valverde, M.J.; Tamayo Tabares, E.; Umana, G.; Neumann, T.; Arvis, B.; Cauchy, A.; Bourkane, A.; Tarpey, J.; McDonald, H.; Tröltszch, J.; et al. Costs of Adaptation vs Costs of Inaction—Final Report, 1st ed.; Ramboll Management Consulting, Ecologic Institute, and Frankfurt School: Brussels, Belgium; Berlin, Germany; Frankfurt am Main, Germany, 2022; pp. 19–52. [Google Scholar]
- Naustdalslid, J. Climate change—The challenge of translating scientific knowledge into action. Int. J. Sustain. Dev. World Ecol. 2011, 18, 243–252. [Google Scholar] [CrossRef]
- Davoudi, S.; Brooks, E.; Mehmood, A. Evolutionary resilience and strategies for climate adaptation. Plan. Pract. Res. 2013, 28, 307–322. [Google Scholar] [CrossRef]
- Sołoducho-Pelc, L.; Sulich, A. Natural environment protection strategies and green management style: Literature review. Sustainability 2022, 14, 10595. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Loreti, M.; Benavidez, R.; Jackson, B.; Schipper, A.M. Comparing three spatial modeling tools for assessing urban ecosystem services. Ecosyst. Serv. 2023, 59, 101500. [Google Scholar] [CrossRef]
- Allen, M.; Mustafa, B.; Shukla, P.R. Global Warming of 1.5 °C—An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty: Summary for Policymakers, 1st ed.; IPCC: Geneva, Switzerland, 2018; pp. 1–24. [Google Scholar]
- Wynberg, R.; Hauck, M. People, power and the coast: A conceptual framework for understanding and implementing benefit sharing. Ecol. Soc. 2014, 19, 27. [Google Scholar] [CrossRef]
- Padma, P.; Ramakrishna, S.; Rasoolimanesh, S.M. Nature-based solutions in tourism: A review of the literature and conceptualization. J. Hosp. Tour. Res. 2022, 46, 442–466. [Google Scholar] [CrossRef]
- Boithias, L.; Terrado, M.; Corominas, L.; Ziv, G.; Kumar, V.; Marqués, M.; Schuhmacher, M.; Acuña, V. Analysis of the uncertainty in the monetary valuation of ecosystem services—A case study at the river basin scale. Sci. Total Environ. 2016, 543, 683–690. [Google Scholar] [CrossRef]
- Förster, J.; Schmidt, S.; Bartkowski, B.; Lienhoop, N.; Albert, C.; Wittmer, H. Incorporating environmental costs of ecosystem service loss in political decision making: A synthesis of monetary values for Germany. PLoS ONE 2019, 14, e0211419. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Andreini, D.; Abumoghli, I.; Barlette, Y.; Bunker, D.; et al. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. Int. J. Inf. Manag. 2022, 63, 102456. [Google Scholar] [CrossRef]
- Cardey, S.; Eleazar, P.J.M.; Ainomugisha, J.; Kalowekamo, M.; Vlasenko, Y. Communication for development: Conceptualising changes in communication and inclusive rural transformation in the context of environmental change. Soc. Sci. 2024, 13, 324. [Google Scholar] [CrossRef]
- Sikandar, S.M.; Ali, S.M.; Hassa, Z. Harmonizing smart city tech and anthropocentrism for climate resilience and Nature’s benefit. SSHO 2024, 10, 101026. [Google Scholar] [CrossRef]
- De Maio, A.; Musmanno, R.; Skrame, A. A human-centric decision-support system for smart and sustainable tourism management in urban settings. Curr. Issues Tour. 2024, 28, 643–665. [Google Scholar] [CrossRef]
- Sarker, M.N.I.; Yang, B.; Lv, Y.; Huq, M.E.; Kamruzzaman, M. Climate change adaptation and resilience through big data. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 214705825. [Google Scholar] [CrossRef]
- Leal Filho, W.; Wall, T.; Rui Mucova, S.A.; Nagy, G.J.; Balogun, A.-L.; Luetz, J.M.; Ng, A.V.; Kovaleva, M.; Safiul Azam, F.M.; Alves, F.; et al. Deploying artificial intelligence for climate change adaptation. Technol. Forecast. Soc. Change 2022, 180, 121662. [Google Scholar] [CrossRef]
NbS Type/Intervention | Climate Hazard Addressed | Tourism Co-Benefits | Reference |
---|---|---|---|
Mangrove restoration with boardwalk ecotourism (Caribbean) | Coastal erosion, storm surge | Ecotourism diversification, habitat for wildlife tours | Ghana et al., 2024 [70] |
Dune and wetland restoration (Mediterranean resorts) | Storm surge, flooding | Scenic value, birdwatching, improved beach quality | Ayassamy, 2025 [71]; Zanin et al., 2024 [72] |
Forest cover restoration and avalanche protection forests (Alpine regions) | Landslides, avalanches, erosion | Hiking, ski safety, biodiversity-based tourism | Rey et al., 2024 [73] |
Coral reef restoration (tropical destinations) | Wave energy, coastal flooding | Dive tourism, snorkelling, beach protection | Brathwaite et al., 2022 [74] |
Mountain meadow rehabilitation (European Alps) | Soil erosion, biodiversity loss | Summer hiking, landscape aesthetics | Zhou et al., 2023 [75] |
Urban greenways and shaded corridors (tourism cities) | Urban heat stress | Visitor comfort, cultural tourism enhancement | Galagoda et al., 2018 [76] |
Category | Implications for Tourism | Advantages | Constraints/Challenges |
---|---|---|---|
Climate Risk Management (CRM) |
|
|
|
Structural (Physical) CCA Options |
|
|
|
Social CCA Options |
|
|
|
Institutional CCA Options |
|
|
|
Technology and Data Role in CCA |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zovko, M.; Marković Vukadin, I.; Zovko, D. Understanding the IPCC Climate Risk-Centered Framework and Its Applications to Assessing Tourism Resilience. Geographies 2025, 5, 45. https://doi.org/10.3390/geographies5030045
Zovko M, Marković Vukadin I, Zovko D. Understanding the IPCC Climate Risk-Centered Framework and Its Applications to Assessing Tourism Resilience. Geographies. 2025; 5(3):45. https://doi.org/10.3390/geographies5030045
Chicago/Turabian StyleZovko, Mira, Izidora Marković Vukadin, and Damjan Zovko. 2025. "Understanding the IPCC Climate Risk-Centered Framework and Its Applications to Assessing Tourism Resilience" Geographies 5, no. 3: 45. https://doi.org/10.3390/geographies5030045
APA StyleZovko, M., Marković Vukadin, I., & Zovko, D. (2025). Understanding the IPCC Climate Risk-Centered Framework and Its Applications to Assessing Tourism Resilience. Geographies, 5(3), 45. https://doi.org/10.3390/geographies5030045