Advancing Land Use Modeling with Rice Cropping Intensity: A Geospatial Study on the Shrinking Paddy Fields in Indonesia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Land Use/Land Cover Prediction Map Creation
Landsat Image Classification in GEE and Accuracy Assessment
Predicting Land Use in 2030
2.3.2. RCI Creation
2.3.3. Determining the Potential Rice Loss by 2030
3. Results
3.1. Classification and Accuracy Assessment of LUC Maps
3.2. MLP-NN Evaluation Results and 2030 Land Use Prediction Model
3.3. Results of RCI Mapping Analysis with Sentinel-1A Imagery
3.4. Estimation Results of Rice Field Area and Rice Production Loss in 2030
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badan Pusat Statistik (BPS). Laju Pertumbuhan Penduduk (Persen); BPS: Jakarta, Indonesia, 2024. Available online: https://www.bps.go.id/id/statistics-table/2/MTk3NiMy/laju-pertumbuhan-penduduk.html (accessed on 15 March 2025).
- Badan Pusat Statistik (BPS). Laporan Perekonomian Indonesia 2024; BPS: Jakarta, Indonesia, September 2024; Volume 42. Available online: https://www.bps.go.id/id/publication/2024/09/20/3f6dbcd515737b5c8e40d497/laporan-perekonomian-indonesia-2024.html (accessed on 4 November 2024).
- Ivanka, R.; Atalla, F.; Dita Limbong, A.; Simarmata, T. Assessing the current state and future trends of land use conversion: Implications for food security in Indonesia. Int. J. Life Sci. Agric. Res. 2024, 3, 284–290. [Google Scholar] [CrossRef]
- Alonso, W. Location and land use: Toward a general theory of land rent. Harv. Univ. Press Google Sch. 1964, 2, 16–22. [Google Scholar]
- Harvey, D. Class-monopoly rent, finance capital and the urban revolution. Reg. Stud. 1974, 8, 239–255. [Google Scholar] [CrossRef]
- Qiao, X.; Feng, T. Land rent theory and rent research of digital platform enterprises. J. Digit. Econ. 2023, 2, 52–63. [Google Scholar] [CrossRef]
- Park, J. Land rent theory revisited. Sci. Soc. 2014, 78, 88–109. [Google Scholar] [CrossRef]
- Thrall, G.I. Production theory of land rent. Environ. Plan. A 1991, 23, 955–967. [Google Scholar] [CrossRef]
- Kementerian ATR/BPN. Luas Lahan Baku Sawah 2019; Kementerian ATR/BPN: Jakarta, Indonesia, 2019.
- Badan Pusat Statistik (BPS). Jumlah Penduduk Menurut Provinsi di Indonesia (Ribu Jiwa); BPS: Jakarta, Indonesia, 2024. Available online: https://sulut.bps.go.id/id/statistics-table/2/OTU4IzI=/jumlah-penduduk-menurut-provinsi-di-indonesia.html (accessed on 4 November 2024).
- Badan Pusat Statistik (BPS). Laju Pertumbuhan Produk Domestik Regional Bruto per Kapita Atas Dasar Harga Konstan 2010 Menurut Provinsi (Persen); BPS: Jakarta, Indonesia, 2024. Available online: https://www.bps.go.id/id/statistics-table/3/Tm10bFVGVklLMVF6UzBweFFuRm1XbWxaV0hCcVp6MDkjMyMwMDAw/laju-pertumbuhan-produk-domestik-regional-bruto-per-kapita-atas-dasar-harga-konstan-2010-menurut-provinsi-persen-.html?year=2024 (accessed on 4 November 2024).
- Susman, R.; Gütte, A.M.; Weith, T. Drivers of land use conflicts in infrastructural mega projects in coastal areas: A case study of patimban seaport, indonesia. Land 2021, 10, 615. [Google Scholar] [CrossRef]
- Handayani, L.S. Menyambut Masa Depan di Petrochemical Pertamina; Republika: Jakarta, Indonesia, 2024. [Google Scholar]
- Osawa, T.; Nishida, T.; Oka, T. Paddy fields as green infrastructure: Their ecosystem services and threatening drivers. In Green Infrastructure and Climate Change Adaptation: Function, Implementation and Governance; Springer Nature: Singapore, 2022; pp. 175–185. [Google Scholar] [CrossRef]
- Huang, T.; Huang, W.; Wang, K.; Li, Y.; Li, Z.; Yang, Y. Ecosystem service value estimation of paddy field ecosystems based on multi-source remote sensing data. Sustainability 2022, 14, 9466. [Google Scholar] [CrossRef]
- Myeong, S.; Yi, D. An estimation of ecosystem service value of rice paddy wetland in Korea using contingent valuation method. Water 2023, 15, 4263. [Google Scholar] [CrossRef]
- Government of Indonesia. Presidential Regulation Number 59 of 2019 on the Control of Conversion of Paddy Fields; Government of Indonesia: Jakarta, Indonesia, 2019. Available online: https://peraturan.bpk.go.id/Details/120618/perpres-no-59-tahun-2019?form=MG0AV3 (accessed on 20 January 2025).
- De Falco, S.; Martino, C. A geographical complementary approach to unveiling the spatial dynamics of Bradyseismic Events at the Campi Flegrei Caldera. Geographies 2025, 5, 4. [Google Scholar] [CrossRef]
- Morgan, G.R.; Otterstrom, S.M.; Stevenson, L.; Otterstrom, A.C. Mapping Rosenwald schools for African Americans in South Carolina: A Geographic analysis of spatial patterns. Geographies 2024, 4, 661–674. [Google Scholar] [CrossRef]
- Fauzi, C. A review geospatial artificial intelligence (Geo-AI): Implementation of machine learning on urban planning. In Proceedings of the International Conference on Applied Science and Technology on Engineering Science 2023 (iCAST-ES 2023), Tarakan, Indonesia, 20 October 2023; pp. 311–329. [Google Scholar] [CrossRef]
- Eisfelder, C.; Boemke, B.; Gessner, U.; Sogno, P.; Alemu, G.; Hailu, R.; Mesmer, C.; Huth, J. Cropland and crop type classification with Sentinel-1 and Sentinel-2 time series using Google Earth Engine for agricultural monitoring in Ethiopia. Remote Sens. 2024, 16, 866. [Google Scholar] [CrossRef]
- Li, Z.; Mueller, R.; Yang, Z.; Johnson, D.; Willis, P. Cloud-powered agricultural mapping: A revolution toward 10m resolution cropland data layers. In Proceedings of the IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 4081–4084. [Google Scholar] [CrossRef]
- Asgarian, A.; Soffianian, A. Past and potential future distribution of white mangroves in an arid estuarine environment: Integration of Maxent and CA-Markov models. Mar. Policy 2023, 147, 105345. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghamary Asl, M. Monitoring urban growth in Google Earth Engine from 1991 to 2021 and predicting in 2041 using CA-MARKOV and geometry: Case study—Tehran. Arab. J. Geosci. 2023, 16, 107. [Google Scholar] [CrossRef]
- Al-Dousari, A.E.; Mishra, A.; Singh, S. Land use land cover change detection and urban sprawl prediction for Kuwait metropolitan region, using multi-layer perceptron neural networks (MLPNN). Egypt. J. Remote Sens. Space Sci. 2023, 26, 381–392. [Google Scholar] [CrossRef]
- Kumar, V.; Agrawal, S. A multi-layer perceptron–Markov chain based LULC change analysis and prediction using remote sensing data in Prayagraj district, India. Environ. Monit. Assess. 2023, 195, 619. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhou, D.; Li, Y. Integrating ANNs and cellular automata–Markov chain to simulate urban expansion with annual land use data. Land 2022, 11, 1074. [Google Scholar] [CrossRef]
- Shen, L.; Li, J.; Wheate, R.; Yin, J.; Paul, S. Multi-layer perceptron neural network and Markov chain based geospatial analysis of land use and land cover change. J. Environ. Inform. Lett 2020, 3, 29–39. [Google Scholar] [CrossRef]
- Pradhan, S.; Dhar, A.; Tiwari, K.N.; Sahoo, S. Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India. Environ. Dev. Sustain. 2023, 25, 7873–7902. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong Delta using Sentinel-1A data: A case of An Giang Province. ISPRS Int. J. Geo Inf. 2019, 8, 211. [Google Scholar] [CrossRef]
- Yulianto, S.; Anisah, A.; Agustan, A.; Sumargana, L.; Anantasena, Y.; Santosa, B.H. Spatial distribution of paddy growth stage using Sentinel-1 based on CART model. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 29–30 September 2021; pp. 73–77. [Google Scholar] [CrossRef]
- He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining rice distribution and cropping intensity in a mixed single-and double-cropping region in South China using all available Sentinel 1/2 images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102351. [Google Scholar] [CrossRef]
- Setiawan, E.F.; Chalil, T.M. Strategi pengembangan kawasan metropolitan Rebana menggunakan Interpretative Structural Modelling (Studi kasus: Kabupaten Cirebon, Kabupaten Majalengka dan Kota Cirebon). J. Multidisiplin West Sci. 2023, 2, 568–579. [Google Scholar] [CrossRef]
- Dinas Kependudukan dan Pencatatan Sipil. Jumlah Penduduk di Kabupaten Indramayu Periode Tahun 2019 s.d. 2024; Pemerinta Daerah Kabupaten Indramayu: Indramayu, Indonesia, 2025. Available online: https://opendata.indramayukab.go.id/dataset/jumlah-penduduk-di-kabupaten-indramayu (accessed on 22 June 2025).
- Firmawan, M.; Nirmala, K. Identifikasi dinamika spasial penggunaan dan tutupan lahan di Kabupaten Indramayu. J. Ilmu Tanah Dan Lingkung. 2021, 23, 78–84. Available online: https://journal.ipb.ac.id/index.php/jtanah/article/view/36946 (accessed on 22 June 2025). [CrossRef]
- Handayani, L.; Tejaningrum, M.; Damrah, F. Modelling of land use change in indramayu district, west Java Province. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012021. [Google Scholar] [CrossRef]
- Badan Pusat Statistik (BPS) Indramayu. Indramayu Regency in Figures 2024; Badan Pusat Statistik (BPS) Indramayu: Indramayu, Indonesia, 2024. Available online: https://indramayukab.bps.go.id/id/publication/2024/02/28/eac236cc254229b0738e9fb5/kabupaten-indramayu-dalam-angka-2024.html (accessed on 28 November 2024).
- Badan Penelitian dan Pengembangan Pertanian. Katam Terpadu Modern Versi 2.6; Badan Penelitian dan Pengembangan Pertanian: Jakarta Selatan, Indonesia, 2018; Available online: https://repository.pertanian.go.id/items/cd4e40a0-2b0c-4ba5-879c-f351da751bef (accessed on 30 May 2024).
- Google. Sentinel-1 SAR GRD: C-Band Synthetic Aperture Radar Ground Range Detected, Log Scaling. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 30 May 2024).
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Kazemi Garajeh, M.; Lakes, T.; Blaschke, T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. 2023, 66, 665–697. [Google Scholar] [CrossRef]
- Tikuye, B.G.; Rusnak, M.; Manjunatha, B.R.; Jose, J. Land use and land cover change detection using the Random Forest approach: The case of the upper blue Nile river basin, Ethiopia. Glob. Chall. 2023, 7, 2300155. [Google Scholar] [CrossRef]
- Gandharum, L.; Hartono, D.M.; Karsidi, A.; Ahmad, M.; Prihanto, Y.; Mulyono, S.; Sadmono, H.; Sanjaya, H.; Sumargana, L.; Alhasanah, F. Past and future land use change dynamics: Assessing the impact of urban development on agricultural land in the Pantura Jabar region, Indonesia. Environ. Monit. Assess. 2024, 196, 645. [Google Scholar] [CrossRef]
- Stewart, W.J. Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Ascencio-Piña, C.; García-De-Lira, S.; Cuevas, E.; Pérez, M. Image segmentation with Cellular Automata. Heliyon 2024, 10, e31152. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet Tutorial: Geospatial Monitoring and Modeling System; Clark University: Worcester, MA, USA, 2016. [Google Scholar]
- Xia, Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. Prog. Mol. Biol. Transl. Sci. 2020, 171, 309–491. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Purwandari, E.P. Pemanfaatan citra penginderaan jauh untuk pemetaan klasifikasi tutupan lahan menggunakan metode unsupervised K-means berbasis web gis (studi kasus sub-das Bengkulu Hilir). Rekursif J. Inform. 2020, 8, 100–110. Available online: https://ejournal.unib.ac.id/index.php/rekursif/article/view/8478 (accessed on 28 May 2024).
- Essary, C.R.; Fischer, L.M.; Irlbeck, E. A statistical approach to classification: A guide to hierarchical cluster analysis in agricultural communications research. J. Appl. Commun. 2022, 106, 3. [Google Scholar] [CrossRef]
- Wijitkosum, S. Integrated spatial analysis of drought risk factors using agglomerative hierarchical clustering and correlation. Environ. Adv. 2025, 21, 100646. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Wagner, W. European rice cropland mapping with Sentinel-1 data: The Mediterranean region case study. Water 2017, 9, 392. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Erten, E.; Hajnsek, I. Estimation of rice crop height from X-and C-band PolSAR by metamodel-based optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 194–204. [Google Scholar] [CrossRef]
- Le Toan, T.; Ribbes, F.; Wang, L.-F.; Floury, N.; Ding, K.-H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [Google Scholar] [CrossRef]
- Inoue, Y.; Kurosu, T.; Maeno, H.; Uratsuka, S.; Kozu, T.; Dabrowska-Zielinska, K.; Qi, J. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens. Environ. 2002, 81, 194–204. [Google Scholar] [CrossRef]
- Asilo, S.; De Bie, K.; Skidmore, A.; Nelson, A.; Barbieri, M.; Maunahan, A. Complementarity of two rice mapping approaches: Characterizing strata mapped by hypertemporal MODIS and rice paddy identification using multitemporal SAR. Remote Sens. 2014, 6, 12789–12814. [Google Scholar] [CrossRef]
- Rudiyanto; Minasny, B.; Shah, R.M.; Che Soh, N.; Arif, C.; Indra Setiawan, B. Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine platform. Remote Sens. 2019, 11, 1666. [Google Scholar] [CrossRef]
- Sekretariat Satu Data Indonesia (SDI). Produktivitas Padi Berdasarkan Kecamatan di Kabupaten Indramayu; Sekretariat Satu Data Indonesia (SDI): Indramayu, Indonesia, 20 December 2022. Available online: https://opendata.indramayukab.go.id/dataset/produktivitas-padi-berdasarkan-kecamatan-di-kabupaten-indramayu (accessed on 8 September 2024).
- Sundram, P. Food security in ASEAN: Progress, challenges and future. Front. Sustain. Food Syst. 2023, 7, 1260619. [Google Scholar] [CrossRef]
- Tuan, N.T.; Hegedűs, G.; Phuong, N.T.T. Urbanization and forecast possibilities of land use changes by 2050: New evidence in Ho Chi Minh city, Vietnam. Open Agric. 2025, 10, 20250421. [Google Scholar] [CrossRef]
- Del Moro, F.N.N.; Dungca, J.T.; Cabral, C.C.; Cabauatan, R.R. Land Conversion and Industrialization and its Impact on Crop Production. Int. J. Environ. Agric. Res. 2024, 10, 111–130. [Google Scholar] [CrossRef]
- Tahir, Z.; Haseeb, M.; Mahmood, S.A.; Batool, S.; Abdullah-Al-Wadud, M.; Ullah, S.; Tariq, A. Predicting land use and land cover changes for sustainable land management using CA-Markov modelling and GIS techniques. Sci. Rep. 2025, 15, 3271. [Google Scholar] [CrossRef]
- Hussain, K.; Mehmood, K.; Yujun, S.; Badshah, T.; Anees, S.A.; Shahzad, F.; Nooruddin; Ali, J.; Bilal, M. Analysing LULC transformations using remote sensing data: Insights from a multilayer perceptron neural network approach. Ann. GIS 2024, 39, 1–28. [Google Scholar] [CrossRef]
- Hidayati, R.; Chrisendo, D. Prediction of planting date and growing period using sea surface temperature (SST) anomalies in Nino 3.4 for Indramayu District. Agromet 2010, 24, 1–8. [Google Scholar] [CrossRef]
- Iskandar, J.; Iskandar, B.S. The Sundanese traditional ecological calendar and socio-cultural changes: Case study from Rancakalong of West Java, Indonesia. In Case Studies in Biocultural Diversity from Southeast Asia: Traditional Ecological Calendars, Folk Medicine and Folk Names; Springer Nature: Singapore, 2022; pp. 79–103. [Google Scholar] [CrossRef]
- Karjanto, N. Revisiting Javanese pranata mangsa: On ethnic groups and the four sample cities in Java. arXiv 2022, arXiv:2204.13893. [Google Scholar] [CrossRef]
- Trompo. Mengenal Saluran Irigasi Serta Turunannya. Kendal Regency Government. Available online: https://trompo.kendalkab.go.id/kabardetail/TDFOTFB0ek1LbHdCVTBBMnNpdlhQUT09/mengenal-saluran-irigasi-serta-turunannya.html#! (accessed on 5 April 2025).
- Ditjen SDA PU. Standar Perencanaan Irigasi Kriteria Perencanaan Bagian Perencanaan Jaringan Irigasi KP-01; Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum (Ditjen SDA PU): South Jakarta, Indonesia, 2013. Available online: https://pu.go.id/pustaka/biblio/standar-perencanaan-irigasi-bagian-perencanaan-jaringan-irigasi-kp-01/BKB2BJ (accessed on 21 February 2025).
- Jonizar, J.; Martini, S. Analisa ketersediaan air sawah tadah hujan di desa mulia sari Kecamatan Muara Telang Kabupaten Banyuasin. Bear. J. Penelit. Dan Kaji. Tek. Sipil 2017, 4, 131–137. Available online: https://jurnal.um-palembang.ac.id/bearing/article/view/695 (accessed on 23 March 2025).
- Kurniawan, A.M.; Sudrajat, S. Diversifikasi pemanfaatan lahan sawah di Desa Tambakrejo Kecamatan Tempel Kabupaten Sleman Daerah Istimewa Yogyakarta. J. Bumi Indones. 2017, 6, 228849. Available online: https://media.neliti.com/media/publications/228849-diversifikasi-pemanfaatan-lahan-sawah-di-4d99bb50.pdf (accessed on 24 March 2025).
- Hadijah, A. Peningkatan produksi jagung melalui penerapan inovasi pengelolaan tanaman terpadu. Iptek Tanam. Pangan 2010, 5, 64–73. Available online: https://repository.pertanian.go.id/handle/123456789/4297 (accessed on 24 March 2025).
- Effendi, P.M.L.; Asmara, A. Dampak pembangunan infrastruktur jalan dan variabel ekonomi lain terhadap luas lahan sawah di koridor ekonomi Jawa. J. Agribisnis Indones. 2014, 2, 21–32. Available online: https://journal.ipb.ac.id/index.php/jagbi/article/view/8852 (accessed on 6 August 2024). [CrossRef]
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2018; Volume 60, Available online: https://openknowledge.fao.org/server/api/core/bitstreams/2c6bd7b4-181e-4117-a90d-32a1bda8b27c/content (accessed on 15 June 2025).
- Purswani, E.; Verma, S.; Jayakumar, S.; Khan, M.; Pathak, B. Examining and predicting land use change dynamics in Gandhinagar district, Gujarat, India. J. Urban Manag. 2022, 11, 82–96. [Google Scholar] [CrossRef]
- Kamwi, J.M.; Cho, M.A.; Kaetsch, C.; Manda, S.O.; Graz, F.P.; Chirwa, P.W. Assessing the spatial drivers of land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Land 2018, 7, 131. [Google Scholar] [CrossRef]
- Priyanta, M. Optimalisasi fungsi dan kedudukan Kajian Lingkungan Hidup Strategis dalam penyusunan dan evaluasi rencana tata ruang dalam sistem hukum lingkungan Indonesia menuju pembangunan berkelanjutan. J. IUS Kaji. Huk. Dan Keadilan 2018, 6, 388–401. [Google Scholar] [CrossRef]
- Gandharum, L.; Hartono, D.M.; Sadmono, H.; Sanjaya, H.; Kusumawardhani, A.D. Agricultural land change and its farmers’ perception in the north coast region of West Java Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2025, 1462, 012027. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Sudirah, S.; Susanto, A.; Sumartono, S.; Syukur, M. Hubungan penguatan modal sosial, mitigasi bencana banjir dan peningkatan produksi pertanian. Equilib. J. Pendidik. 2020, 8, 150–164. [Google Scholar] [CrossRef]
- CNN Indonesia. Target Swasembada Pangan RI Dipercepat Jadi 2027. Available online: https://www.cnnindonesia.com/ekonomi/20241121152325-92-1169183/target-swasembada-pangan-ri-dipercepat-jadi-2027 (accessed on 1 May 2025).
Probability Change to: | ||||||
---|---|---|---|---|---|---|
Rivers/Lakes | Forest/Plantations | Cropland | Built-Up | Ponds | ||
Rivers/Lakes | 0.7256 | 0.0093 | 0.2557 | 0.0094 | 0.0000 | |
Forest/Plantations | 0.0008 | 0.6105 | 0.3624 | 0.0242 | 0.0021 | |
Given: | Cropland | 0.0023 | 0.0055 | 0.9757 | 0.0122 | 0.0044 |
Built-up | 0.0009 | 0.0033 | 0.0000 | 0.9909 | 0.0049 | |
Ponds | 0.0000 | 0.0046 | 0.0181 | 0.0033 | 0.974 |
LUC 2013 | LUC 2020 | LUC 2024 | |
---|---|---|---|
Overall accuracy | 91.67% | 95.67% | 90.65% |
Kappa statistic | 0.75 | 0.87 | 0.72 |
No. | Category | 2013 | 2020 | 2030 | Δ2013–2020 | Δ2020–2030 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
(Hectare) | (%) | (Hectare) | (%) | (Hectare) | (%) | (Hectare) | (%) | (Hectare) | (%) | ||
1. | Rivers/Lakes | 1921.86 | 0.92 | 1720.62 | 0.82 | 1720.62 | 0.82 | −201.24 | −0.10 | 0 | 0.00 |
2. | Forest/Plantations | 6922.26 | 3.32 | 4665.33 | 2.24 | 4665.33 | 2.24 | −2256.93 | −1.08 | 0 | 0.00 |
3. | Cropland | 159,536.34 | 76.48 | 158,012.19 | 75.75 | 153,271.8 | 73.48 | −1524.15 | −0.73 | −4740.39 | −2.27 |
4. | Built-up | 19,933.56 | 9.56 | 23,412.96 | 11.22 | 28,334.16 | 13.58 | 3479.4 | 1.67 | 4921.2 | 2.36 |
5. | Ponds | 20,280.6 | 9.72 | 20,783.52 | 9.96 | 20,602.71 | 9.88 | 502.92 | 0.24 | −180.81 | −0.09 |
Total | 208,594.6 | 100.0 | 208,594.6 | 100.0 | 208,594.6 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandharum, L.; Hartono, D.M.; Sadmono, H.; Sanjaya, H.; Sumargana, L.; Kusumawardhani, A.D.; Alhasanah, F.; Sencaki, D.B.; Setyaningrum, N. Advancing Land Use Modeling with Rice Cropping Intensity: A Geospatial Study on the Shrinking Paddy Fields in Indonesia. Geographies 2025, 5, 31. https://doi.org/10.3390/geographies5030031
Gandharum L, Hartono DM, Sadmono H, Sanjaya H, Sumargana L, Kusumawardhani AD, Alhasanah F, Sencaki DB, Setyaningrum N. Advancing Land Use Modeling with Rice Cropping Intensity: A Geospatial Study on the Shrinking Paddy Fields in Indonesia. Geographies. 2025; 5(3):31. https://doi.org/10.3390/geographies5030031
Chicago/Turabian StyleGandharum, Laju, Djoko Mulyo Hartono, Heri Sadmono, Hartanto Sanjaya, Lena Sumargana, Anindita Diah Kusumawardhani, Fauziah Alhasanah, Dionysius Bryan Sencaki, and Nugraheni Setyaningrum. 2025. "Advancing Land Use Modeling with Rice Cropping Intensity: A Geospatial Study on the Shrinking Paddy Fields in Indonesia" Geographies 5, no. 3: 31. https://doi.org/10.3390/geographies5030031
APA StyleGandharum, L., Hartono, D. M., Sadmono, H., Sanjaya, H., Sumargana, L., Kusumawardhani, A. D., Alhasanah, F., Sencaki, D. B., & Setyaningrum, N. (2025). Advancing Land Use Modeling with Rice Cropping Intensity: A Geospatial Study on the Shrinking Paddy Fields in Indonesia. Geographies, 5(3), 31. https://doi.org/10.3390/geographies5030031