Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crowdsourced Labelling of Street-Level Imagery from Google Street View and Mapillary
2.2. Development of a Deep Learning Model for Crop Type Detection
2.3. Evaluation Methods
3. Results
3.1. Crowdsourcing
3.2. MWO CNN
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joint Research Centre (European Commission); Fritz, S.; Bartholomé, E.; Belward, A. Harmonisation, Mosaicing and Production of the Global Land Cover 2000 Database (Beta Version); Publications Office of European Union: Luxembourg, 2004. [Google Scholar]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Bontemps, S.; Boettcher, M.; Brockmann, C.; Kirches, G.; Lamarche, C.; Radoux, J.; Santoro, M.; Vanbogaert, E.; Wegmüller, U.; Herold, M.; et al. Multi-year global land cover mapping at 300 m and characterization for climate modelling: Achievements of the Land Cover component of the ESA Climate Change Initiative. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 323–328. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2021, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A comparison of global agricultural monitoring systems and current gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Discrimination of crop types with TerraSAR-X-derived information. Phys. Chem. Earth 2015, 83–84, 2–13. [Google Scholar] [CrossRef]
- Guo, J.; Wei, P.L.; Liu, J.; Jin, B.; Su, B.F.; Zhou, Z.S. Crop Classification Based on Differential Characteristics of Hα Scattering Parameters for Multitemporal Quad- and Dual-Polarization SAR Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6111–6123. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, J.; Liu, T.; Zhang, H.; Zhang, Z.; Guo, X. Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3295–3306. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Zhan, Y.; Muhammad, S.; Hao, P.; Niu, Z. The effect of EVI time series density on crop classification accuracy. Optik 2018, 157, 1065–1072. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of crop type using multioral TerraSAR-X dual-polarimetric data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef]
- McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [Google Scholar] [CrossRef]
- McNairn, H.; Shang, J.; Jiao, X.; Champagne, C. The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3981–3992. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.; Sanches, I.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Kenduiywo, B.K.; Bargiel, D.; Soergel, U. Higher Order Dynamic Conditional Random Fields Ensemble for Crop Type Classification in Radar Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4638–4654. [Google Scholar] [CrossRef]
- Júnior, C.C.; Schemmer, R.C.; Johann, J.A.; de Almeida Pereira, G.H.; Deppe, F.; Opazo, M.A.U.; Da Silva Junior, C.A. Artificial Neural Networks and Data Mining Techniques for Summer Crop Discrimination: A New Approach. Can. J. Remote Sens. 2019, 45, 16–25. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Castro, J.D.B.; Feitoza, R.Q.; Rosa, L.C.L.; Diaz, P.M.A.; Sanches, I.D.A. A Comparative Analysis of Deep Learning Techniques for Sub-Tropical Crop Types Recognition from Multitemporal Optical/SAR Image Sequences. In Proceedings of the 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Niteroi, Brazil, 17–20 October 2017; pp. 382–389. [Google Scholar]
- Wang, S.; Di Tommaso, S.; Faulkner, J.; Friedel, T.; Kennepohl, A.; Strey, R.; Lobell, D.B. Mapping Crop Types in Southeast India with Smartphone Crowdsourcing and Deep Learning. Remote Sens. 2020, 12, 2957. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, P.; Wu, Y.; Yang, H.; Wang, B. Remote Sensing Crop Recognition by Coupling Phenological Features and Off-Center Bayesian Deep Learning. Remote Sens. 2023, 15, 674. [Google Scholar] [CrossRef]
- Pei, H.; Owari, T.; Tsuyuki, S.; Zhong, Y. Application of a Novel Multiscale Global Graph Convolutional Neural Network to Improve the Accuracy of Forest Type Classification Using Aerial Photographs. Remote Sens. 2023, 15, 1001. [Google Scholar] [CrossRef]
- Li, G.; Han, W.; Dong, Y.; Zhai, X.; Huang, S.; Ma, W.; Cui, X.; Wang, Y. Multi-Year Crop Type Mapping Using Sentinel-2 Imagery and Deep Semantic Segmentation Algorithm in the Hetao Irrigation District in China. Remote Sens. 2023, 15, 875. [Google Scholar] [CrossRef]
- Weilandt, F.; Behling, R.; Goncalves, R.; Madadi, A.; Richter, L.; Sanona, T.; Spengler, D.; Welsch, J. Early Crop Classification via Multi-Modal Satellite Data Fusion and Temporal Attention. Remote Sens. 2023, 15, 799. [Google Scholar] [CrossRef]
- Fowler, J.; Waldner, F.; Hochman, Z. All pixels are useful, but some are more useful: Efficient in situ data collection for crop-type mapping using sequential exploration methods. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102114. [Google Scholar] [CrossRef]
- Eurostat. LUCAS—Land Use and Land Cover Survey; Eurostat Statistics Explained: Luxembourg, 2019. [Google Scholar]
- Bayas, J.C.L.; See, L.; Bartl, H.; Sturn, T.; Karner, M.; Fraisl, D.; Moorthy, I.; Busch, M.; van der Velde, M.; Fritz, S. Crowdsourcing LUCAS: Citizens Generating Reference Land Cover and Land Use Data with a Mobile App. Land 2020, 9, 446. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- D’Andrimont, R.; Yordanov, M.; Lemoine, G.; Yoong, J.; Nikel, K.; der Velde, M. Crowdsourced Street-Level Imagery as a Potential Source of In-Situ Data for Crop Monitoring. Land 2018, 7, 127. [Google Scholar] [CrossRef]
- Kang, J.; Körner, M.; Wang, Y.; Taubenböck, H.; Zhu, X.X. Building instance classification using street view images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 44–59. [Google Scholar] [CrossRef]
- Cao, R.; Zhu, J.; Tu, W.; Li, Q.; Cao, J.; Liu, B.; Zhang, Q.; Qiu, G. Integrating Aerial and Street View Images for Urban Land Use Classification. Remote Sens. 2018, 10, 1553. [Google Scholar] [CrossRef]
- Cao, R.; Liao, C.; Li, Q.; Tu, W.; Zhu, R.; Luo, N.; Qiu, G.; Shi, W. Integrating satellite and street-level images for local climate zone mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103323. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Fraisl, D.; See, L.; Sturn, T.; MacFeely, S.; Bowser, A.; Campbell, J.; Moorthy, I.; Danylo, O.; McCallum, I.; Fritz, S. Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring. Environ. Sci. Policy 2021, 128, 81–93. [Google Scholar] [CrossRef]
- Erenstein, O.; Chamberlin, J.; Sonder, K. Estimating the global number and distribution of maize and wheat farms. Glob. Food Secur. 2021, 30, 100558. [Google Scholar] [CrossRef]
- Danylo, O.; Moorthy, I.; Sturn, T.; See, L.; Bayas, J.-C.L.; Domian, D.; Fraisl, D.; Giovando, C.; Girardot, B.; Kapur, R.; et al. The picture pile tool for rapid image assessment: A demonstration using hurricane matthew. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 27–32. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Netw. 1988, 1, 119–130. [Google Scholar] [CrossRef]
- Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, High Performance Convolutional Neural Networks for Image Classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011. [Google Scholar]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the 7th International Conference on Document Analysis and Recognition, Edinburgh, UK, 3–6 August 2003; pp. 958–962. [Google Scholar]
- Wiesner-Hanks, T.; Wu, H.; Stewart, E.; DeChant, C.; Kaczmar, N.; Lipson, H.; Gore, M.A.; Nelson, R.J. Millimeter-Level Plant Disease Detection From Aerial Photographs via Deep Learning and Crowdsourced Data. Front. Plant Sci. 2019, 10, 1550. [Google Scholar] [CrossRef] [PubMed]
- Bowers, A.J.; Zhou, X. Receiver Operating Characteristic (ROC) Area Under the Curve (AUC): A Diagnostic Measure for Evaluating the Accuracy of Predictors of Education Outcomes. J. Educ. Stud. Placed Risk JESPAR 2019, 24, 20–46. [Google Scholar] [CrossRef]
- Rahman, S.S.M.M.; Rafiq, F.B.; Toma, T.R.; Hossain, S.S.; Biplob, K.B.B. Performance Assessment of Multiple Machine Learning Classifiers for Detecting the Phishing URLs. In Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19; Springer: Singapore, 2020; pp. 285–296. [Google Scholar] [CrossRef]
- Fritz, S.; Sturn, T.; Karner, M.; Karanam, S.; See, L.; Bayas, J.C.L.; McCallum, I. Crowdsourcing In-Situ Data Collection Using Gamification. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 254–257. [Google Scholar]
- Van Tricht, K.; Degerickx, J.; Gilliams, S.; Zanaga, D.; Battude, M.; Grosu, A.; Brombacher, J.; Lesiv, M.; Bayas, J.C.L.; Karanam, S.; et al. WorldCereal: A dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping. Earth Syst. Sci. Data Discuss. 2023, 2023, 1–36. [Google Scholar]
Crop Type | Total Images | Test | Training | Validation |
---|---|---|---|---|
Maize | 3592 | 359 | 2873 | 360 |
Wheat | 3592 | 359 | 2873 | 360 |
Other | 3592 | 359 | 2873 | 360 |
Activation Function | Loss Function |
---|---|
Relu | Mean squared error (MSE) |
Identity | Poisson |
Tanh | Mean squared logarithmic error |
SOFTMAX | Cross entropy |
Wheat-Type Crop | Maize | Sunflower | Vineyard | Sorghum | Olive Trees | Other Crop | Total | |
---|---|---|---|---|---|---|---|---|
Wheat-type crop | 468 | 2 | 0 | 1 | 1 | 0 | 3 | 475 |
maize | 2 | 589 | 0 | 0 | 0 | 0 | 0 | 591 |
Sunflower | 0 | 1 | 46 | 0 | 0 | 0 | 2 | 49 |
Vineyard | 0 | 1 | 0 | 939 | 0 | 0 | 0 | 940 |
Sorghum | 0 | 4 | 0 | 0 | 1 | 0 | 0 | 5 |
Olive trees | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Other crop | 9 | 1 | 0 | 0 | 0 | 0 | 6 | 16 |
Total | 484 | 598 | 46 | 941 | 2 | 0 | 11 | 0.986 |
Crop | Precision | Recall | F1 | AUC |
---|---|---|---|---|
Maize | 79.18 | 80.28 | 79.72 | 0.85 |
Wheat | 77.67 | 86.94 | 82.04 | 0.87 |
Other | 69.87 | 60.56 | 64.88 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orduna-Cabrera, F.; Sandoval-Gastelum, M.; McCallum, I.; See, L.; Fritz, S.; Karanam, S.; Sturn, T.; Javalera-Rincon, V.; Gonzalez-Navarro, F.F. Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information. Geographies 2023, 3, 563-573. https://doi.org/10.3390/geographies3030029
Orduna-Cabrera F, Sandoval-Gastelum M, McCallum I, See L, Fritz S, Karanam S, Sturn T, Javalera-Rincon V, Gonzalez-Navarro FF. Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information. Geographies. 2023; 3(3):563-573. https://doi.org/10.3390/geographies3030029
Chicago/Turabian StyleOrduna-Cabrera, Fernando, Marcial Sandoval-Gastelum, Ian McCallum, Linda See, Steffen Fritz, Santosh Karanam, Tobias Sturn, Valeria Javalera-Rincon, and Felix F. Gonzalez-Navarro. 2023. "Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information" Geographies 3, no. 3: 563-573. https://doi.org/10.3390/geographies3030029
APA StyleOrduna-Cabrera, F., Sandoval-Gastelum, M., McCallum, I., See, L., Fritz, S., Karanam, S., Sturn, T., Javalera-Rincon, V., & Gonzalez-Navarro, F. F. (2023). Investigating the Use of Street-Level Imagery and Deep Learning to Produce In-Situ Crop Type Information. Geographies, 3(3), 563-573. https://doi.org/10.3390/geographies3030029