Comparison of Earthquake and Moisture Effects on Rockfall-Runouts Using 3D Models and Orthorectified Aerial Photos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Study Area
2.2. Urban Development: Land Use Classification
2.3. Rockfall Mapping Techniques
2.4. Research Methodology and Materials
2.4.1. Aerial Photos and Interpretation
2.4.2. Orthorectification
2.4.3. Mapping Rockfalls Distribution
2.4.4. Digital Elevation Model
2.4.5. Runout Simulations
3. Results and Discussion
3.1. Mean Kinetic Energy
3.2. Maximum Deposited Rocks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farvacque, M.; Lopez-Saez, J.; Corona, C.; Toe, D.; Bourrier, F.; Eckert, N. Quantitative Risk Assessment in a Rockfall-Prone Area: The Case Study of the Crolles Municipality (Massif de La Chartreuse, French Alps). Géomorphol. Relief Process. Environ. 2019, 25, 7–19. [Google Scholar] [CrossRef]
- Lopez-Saez, J.; Corona, C.; Eckert, N.; Stoffel, M.; Bourrier, F.; Berger, F. Impacts of Land-Use and Land-Cover Changes on Rockfall Propagation: Insights from the Grenoble Conurbation. Sci. Total Environ. 2016, 547, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Giacomini, A.; Thoeni, K. Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices. Rock Mech. Rock Eng. 2016, 49, 2865–2922. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Volcanic Events [3010 Yr Stern, 1991] and One of the NAVZ (Northern Austral Vol- Canic Zone). Geomorphology 1995, 13, 1995. [Google Scholar]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Kakavas, M.; Nikolakopoulos, K. Digital Elevation Models of Rockfalls and Landslides: A Review and Meta-Analysis. Geosciences 2021, 11, 256. [Google Scholar] [CrossRef]
- Dorren, L.K.A. A Review of Rockfall Mechanics and Modelling Approaches. Prog. Phys. Geogr. 2003, 27, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.K.; Ahmad, M.; Singh, R.; Singh, T.N. Rockfall Slope Angle and Its Effect on the Impact and Runout Distance of Falling Block: A Numerical Approach. In Proceedings of the 6th Indian Rock Conference, Mumbai, India, 17–18 June 2016. [Google Scholar]
- Wegner, K.; Haas, F.; Heckmann, T.; Mangeney, A.; Durand, V.; Villeneuve, N.; Kowalski, P.; Peltier, A.; Becht, M. Assessing the Effect of Lithological Setting, Block Characteristics and Slope Topography on the Runout Length of Rockfalls in the Alps and on the Island of La Réunion. Nat. Hazards Earth Syst. Sci. 2021, 21, 1159–1177. [Google Scholar] [CrossRef]
- Sala, Z.; Hutchinson, D.J.; Harrap, R. Simulation of Fragmental Rockfalls Detected Using Terrestrial Laser Scans from Rock Slopes in South-Central British Columbia, Canada. Nat. Hazards Earth Syst. Sci. 2019, 19, 2385–2404. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.-W.; Chen, H.; Lee, C.-F.; Huang, W.-K.; Lin, M.-L.; Chi, C.-C.; Lin, H.-H. The Mechanism of Rockfall Disaster: A Case Study from Badouzih, Keelung, in Northern Taiwan. Eng. Geol. 2014, 183, 116–126. [Google Scholar] [CrossRef]
- Saroglou, C.; Asteriou, P.; Zekkos, D.; Tsiambaos, G.; Clark, M.; Manousakis, J. UAV-Based Mapping, Back Analysis and Trajectory Modeling of a Coseismic Rockfall in Lefkada Island, Greece. Nat. Hazards Earth Syst. Sci. 2018, 18, 321–333. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Harp, E.L.; Kagawa, T. Simulation of Rockfalls Triggered by Earthquakes. Rock Mech. Rock Eng. 1990, 23, 1–20. [Google Scholar] [CrossRef]
- Valagussa, A.; Frattini, P.; Crosta, G.B. Earthquake-Induced Rockfall Hazard Zoning. Eng. Geol. 2014, 182, 213–225. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Litoseliti, A.; Nikolakopoulos, K.; Zygouri, V. Earthquake Triggered Rock Falls and Their Role in the Development of a Rock Slope: The Case of Skolis Mountain, Greece. Eng. Geol. 2015, 191, 71–85. [Google Scholar] [CrossRef]
- Vick, L.M.; Zimmer, V.; White, C.; Massey, C.; Davies, T. Significance of Substrate Soil Moisture Content for Rockfall Hazard Assessment. Nat. Hazards Earth Syst. Sci. 2019, 19, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Duarte, R.M.; Marquínez, J. The Influence of Environmental and Lithologic Factors on Rockfall at a Regional Scale: An Evaluation Using GIS. Geomorphology 2002, 43, 117–136. [Google Scholar] [CrossRef]
- Jones, C.L.; Higgins, J.D.; Andrew, R.D. Higgins, Colorado Rockfall Simulation Program Version 4.0 Manual; Colorado Department of Transportation: Denver, CO, USA, 2000; p. 80222.
- Rocscience Inc. RocFall Version 4.0–Statistical Analysis of Rockfalls. 2021. Available online: https://www.rocscience.com (accessed on 25 September 2022).
- Guzzetti, F.; Crosta, G.; Detti, R.; Agliardi, F. STONE: A Computer Program for the Three-Dimensional Simulation of Rock-Falls. Comput. Geosci. 2002, 28, 1079–1093. [Google Scholar] [CrossRef]
- RocPro3D. RocPro3D Software. 2014. Available online: http://www.rocpro3d.com/rocpro3den.php (accessed on 25 September 2022).
- Bartelt, P.; Bieler, C.; Bühler, Y.; Christen, M.; Christen, M.; Dreier, L.; Gerber, W.; Glover, J.; Schneider, M.; Glocker, C.; et al. RAMMS::ROCKFALL User Manual v1.6, 102; WSL Institute for Snow and Avalanche Research SLF: Davos, Switzerland, 2016. [Google Scholar]
- Bunce, C.M.; Cruden, D.M.; Morgenstern, N.R. Assessment of the Hazard from Rock Fall on a Highway. Can. Geotech. J. 1997, 34, 344–356. [Google Scholar] [CrossRef]
- Cancelli, A.; Crosta, G. 15. Hazard and Risk Assessment in Rockfall Prone Areas. In Risk and Reliability in Ground Engineering; Thomas Telford Publishing: London, UK, 1993; pp. 177–190. [Google Scholar]
- Zheng, L.; Wu, Y.; Zhu, Z.; Ren, K.; Wei, Q.; Wu, W.; Zhang, H. Investigating the Role of Earthquakes on the Stability of Dangerous Rock Masses and Rockfall Dynamics. Front. Earth Sci. 2022, 9, 1338. [Google Scholar] [CrossRef]
- Faour, G. Forest Fire Fighting in Lebanon Using Remote Sensing and GIS; Techinal Report; Association for Forest Development and Conservation Commission: Amaret Chalhoub, Lebanon, 2016. [Google Scholar]
- Dubertert, L. Geological Maps of Syria and Lebanon at 1.50.000. 21 Sheets with Explicative Note; Minister of public affairs, Damas and Beirut; Google: Menlo Park, CA, USA, 1953. [Google Scholar]
- Ozturk, D. Urban Growth Simulation of Atakum (Samsun, Turkey) Using Cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain Models. Remote Sens. 2015, 7, 5918–5950. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Remote Sensing and GIS Integration; McGraw-Hill Professional Publishing: New York, NY, USA, 2010. [Google Scholar]
- Albarelli, D.S.N.A.; Mavrouli, O.C.; Nyktas, P. Identification of Potential Rockfall Sources Using UAV-Derived Point Cloud. Bull. Eng. Geol. Environ. 2021, 80, 6539–6561. [Google Scholar] [CrossRef]
- Walstra, J.; Chandler, J.H.; Dixon, N.; Dijkstra, T.A. Aerial Photography and Digital Photogrammetry for Landslide Monitoring. Geol. Soc. Lond. Spec. Publ. 2007, 283, 53–63. [Google Scholar] [CrossRef]
- Fanos, A.M.; Pradhan, B. Laser Scanning Systems and Techniques in Rockfall Source Identification and Risk Assessment: A Critical Review. Earth Syst. Environ. 2018, 2, 163–182. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef] [Green Version]
- Buill, F.; Núñez-Andrés, M.A.; Lantada, N.; Prades, A. Comparison of Photogrammetric Techniques for Rockfalls Monitoring. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 042023. [Google Scholar] [CrossRef] [Green Version]
- Chandler, J.H.; Moore, R. Analytical Photogrammetry: A Method for Monitoring Slope Instability. Q. J. Eng. Geol. Hydrogeol. 1989, 22, 97–110. [Google Scholar] [CrossRef]
- Abou-Jaoude, G.; Saade, A.; Wartman, J.; Grant, A. Earthquake-Induced Landslide Hazard Mapping: A Case Study in Lebanon. In Geo-Chicago; American Society of Civil Engineers: Chicago, IL, USA, 2016; pp. 177–186. [Google Scholar]
- Rocchini, D.; Metz, M.; Frigeri, A.; Delucchi, L.; Marcantonio, M.; Neteler, M. Robust Rectification of Aerial Photographs in an Open Source Environment. Comput. Geosci. 2012, 39, 145–151. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Federal Geographical Data Committee. Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy; National Aeronautics and Space Administration: Virginia, NV, USA, 1998; p. 28.
- Brunetti, M.T.; Guzzetti, F.; Rossi, M. Probability Distributions of Landslide Volumes. Nonlinear Process. Geophys. 2009, 16, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Reichenbach, P.; Wieczorek, G.F. Rockfall Hazard and Risk Assessment in the Yosemite Valley, California, USA. Nat. Hazards Earth Syst. Sci. 2003, 3, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, A.M. Evaluation of Rockfall and Its Control. In Highway Research Record; Highway Research Board, National Research Council: Washington, DC, USA, 1963; pp. 13–28. [Google Scholar]
- Darwish, T.; Lebanese National Council for Scientific Research Remote Sensing Center. Soil Map of Lebanon 1:50,000; CNRS, Remote Sensing Center: Beirut, Lebanon, 2006. [Google Scholar]
- Khatiwada, D.; Dahal, R.K. Rockfall Hazard in the Imja Glacial Lake, Eastern Nepal. Geoenvironmental Disasters 2020, 7, 29. [Google Scholar] [CrossRef]
- Dorren, L.K.A. Rockyfor3D (v5.2) Revealed—Transparent Description of the Complete 3D Rockfall Model; ecorisQ Paper; Int. ecorisQ Association: Geneva, Switzerland, 2016; 33p, Available online: https://wwwecorisq.org/tool-manuals/rockyfor3d-user-manual/3-english/file (accessed on 25 September 2022).
- Elias, A. Short Notice on Earthquake Hazard in Lebanon; Geology Department, American University of Beirut: Beirut, Lebanon, 2012. [Google Scholar]
- Harajli, M.; Sadek, S.; Asbahan, R. Evaluation of the Seismic Hazard of Lebanon. J. Seismol. 2002, 6, 257–277. [Google Scholar] [CrossRef]
- Mavrouli, O.; Corominas, J.; Wartman, J. Methodology to Evaluate Rock Slope Stability under Seismic Conditions at Solá de Santa Coloma, Andorra. Nat. Hazards Earth Syst. Sci. 2009, 9, 1763–1773. [Google Scholar] [CrossRef] [Green Version]
- Rabat, R.; Tomás, R.; Cano, M.; Pérez-Rey, I.; Siles, J.S.; Alejano, L.R. Influence of Water Content on the Basic Friction Angle of Porous Limestones—Experimental Study Using an Automated Tilting Table. Bull. Eng. Geol. Environ. 2022, 81, 223. [Google Scholar] [CrossRef]
- El-Sohby, M.A.; Aboushook, M.I. Slope Degradation and Analysis of Mokattam Plateau, Egypt. In Proceedings of the 2nd International Conference on Geotechnical Site Characterization, Porto, Portugal, 19–22 September 2004; pp. 1081–1887. [Google Scholar]
- Asteriou, P.; Saroglou, H.; Tsiambaos, G. Rockfall: Scaling Factors for the Coefficient of Restitution. In Proceedings of the ISRM International Symposium-EUROCK 2013, Wroclaw, Poland, 23–26 September 2013; p. 195. [Google Scholar]
- Robert, S.; Klein, C.; Carmichael. General Considerations Rock Types, Rock. Encycl. Br. 1. 2021. Available online: https://www.britannica.com/science/rock-geology (accessed on 25 September 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shaar, M.; Gérard, P.-C.; Faour, G.; Al-Shaar, W.; Adjizian-Gérard, J. Comparison of Earthquake and Moisture Effects on Rockfall-Runouts Using 3D Models and Orthorectified Aerial Photos. Geographies 2023, 3, 110-129. https://doi.org/10.3390/geographies3010006
Al-Shaar M, Gérard P-C, Faour G, Al-Shaar W, Adjizian-Gérard J. Comparison of Earthquake and Moisture Effects on Rockfall-Runouts Using 3D Models and Orthorectified Aerial Photos. Geographies. 2023; 3(1):110-129. https://doi.org/10.3390/geographies3010006
Chicago/Turabian StyleAl-Shaar, Mohammad, Pierre-Charles Gérard, Ghaleb Faour, Walid Al-Shaar, and Jocelyne Adjizian-Gérard. 2023. "Comparison of Earthquake and Moisture Effects on Rockfall-Runouts Using 3D Models and Orthorectified Aerial Photos" Geographies 3, no. 1: 110-129. https://doi.org/10.3390/geographies3010006
APA StyleAl-Shaar, M., Gérard, P. -C., Faour, G., Al-Shaar, W., & Adjizian-Gérard, J. (2023). Comparison of Earthquake and Moisture Effects on Rockfall-Runouts Using 3D Models and Orthorectified Aerial Photos. Geographies, 3(1), 110-129. https://doi.org/10.3390/geographies3010006