Mapping Construction Costs at the National Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction Cost Data Collection
2.2. Interpolation Methods
2.3. Selection of Interpolation Method for Mapping
2.4. Mapping Construction Cost
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dlamini, S. Relationship of Construction Sector to Economic Growth. In Working Paper; School of Construction Management and Engineering, University of Reading: Reading, UK, 2016; Available online: http://sitsabo.co.za/docs/misc/cib_paper2012.pdf (accessed on 5 April 2016).
- Gould, P.E.; Joyce, N. Construction Project Management, 4th ed.; Prentice Hall: Columbus, OH, USA, 2014. [Google Scholar]
- Sears, S.K.; Sears, G.A.; Clough, R.H.; Rounds, J.L.; Segner, R.O., Jr. Construction Project Management—A Practical Guide to Field Construction Management, 6th ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- U.S. Bureau of Labor Statistics. The Employment Situation—November 2016. In News Release; U.S. Bureau of Labor Statistics: Washington, DC, USA, 2016. [Google Scholar]
- Dell’Isola, M.D. Architect’s Essentials of Cost Management; John Wiley & Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Lowe, D.J.; Emsley, M.W.; Harding, A. Predicting Construction Cost Using Multiple Regression Techniques. J. Constr. Eng. Manag. 2006, 132, 750–758. [Google Scholar] [CrossRef] [Green Version]
- Waier, P.R. Building Construction Cost Data 2014; Robert S. Means Co.: Norwell, MA, USA, 2013. [Google Scholar]
- Zhang, S.; Bogus, S.M.; Lippitt, C.D.; Migliaccio, G.C. Estimating Location-adjustment Factors for Conceptual Cost Estimating Based on Nighttime Satellite Imagery. J. Constr. Eng. Manag. 2017, 143, 04016087. [Google Scholar] [CrossRef]
- Dransch, D.; Rotzoll, H.; Poser, K. The Contribution of Maps to the Challenges of Risk Communication to the Public. Int. J. Digit. Earth. 2010, 3, 292–311. [Google Scholar] [CrossRef]
- Vexler, A.; Hutson, A.D.; Chen, X. Statistical Testing Strategies in the Health Science; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- MacEachren, A.M.; Kraak, M. Research Challenges in Geovisualization. Cartogr. Geogr. Inf. Sci. 2001, 28, 3–12. [Google Scholar] [CrossRef]
- Jiang, B.; Li, Z. Geovisualization: Design, Enhanced Visual Tools and Application. Cartogr. J. 2005, 42, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Craglia, M.; Shanley, L. Data Democracy—Increased Supply of Geospatial Information and Expanded Participatory Processes in the Production of Data. Int. J. Digit. Earth 2015, 8, 679–693. [Google Scholar] [CrossRef] [Green Version]
- MacEachren, A.M.; Gahegan, M.; Pike, W.; Brewer, I.; Cai, G.; Lengerich, E.; Hardistry, F. Geovisualization for Knowledge Construction and Decision Support. IEEE Comput. Graph. 2004, 24, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliaccio, G.C.; Zandbergen, P.A.; Martinez, A.A. Empirical Comparison of Methods for Estimating Location Cost Adjustment Factors. J. Manag. Eng. 2013, 31, 04014037. [Google Scholar] [CrossRef]
- Zhang, S.; Migliaccio, G.C.; Zandbergen, P.A.; Guindani, M. Empirical Assessment of Geographically Based Surface Interpolation for Adjusting Construction Cost Estimates by Project Location. J. Constr. Eng. Manag. 2014, 140, 04014015. [Google Scholar] [CrossRef]
- Busygin, S.; Prokopyev, O.; Pardalos, P.M. Biculstering in Data Mining. J. Comput. Oper. Res. 2008, 35, 2964–2987. [Google Scholar] [CrossRef]
- ESRI Data & Maps. Available online: https://www.esri.com/arcgis-blog/products/product/mapping/esri-data-maps/ (accessed on 5 April 2016).
- MacEachren, A.M.; Taylor, D.R.F. Visualization in Modern Cartography; Elsevier Science: Tarrytown, NY, USA, 1994. [Google Scholar]
- Bolstad, P. GIS Fundamentals, a First Text on Geographic Information Systems, 2nd ed.; Eider Press: White Bear Lake, MN, USA, 2005. [Google Scholar]
- Lu, G.; Wong, D. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. J. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Rase, W. Visualization of Polygon-Based Data as a Continuous Surface; Federal Office for Building and Regional Planning: Bonn, Germany, 2009; Available online: http://www.wdrase.de/VisualPycnoInterEngl.pdf (accessed on 16 April 2016).
- Chiang, J.H.; Plotner, S.C. Building Construction Cost Data 2004; Robert S. Means Co.: Norwell, MA, USA, 2003. [Google Scholar]
- Balboni, B.; Bastoni, R.A. Building Construction Cost Data 2005; Robert S. Means Co.: Norwell, MA, USA, 2004. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2006; Robert S. Means Co.: Norwell, MA, USA, 2005. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2007; Robert S. Means Co.: Norwell, MA, USA, 2006. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2008; Robert S. Means Co.: Norwell, MA, USA, 2007. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2009; Robert S. Means Co.: Norwell, MA, USA, 2008. [Google Scholar]
- Waier, P.R.; Babbitt, C.; Baker, T.; Balboni, B.; Bastoni, R.A. Building Construction Cost Data 2010; Robert S. Means Co.: Norwell, MA, USA, 2009. [Google Scholar]
- Waier, P.R.; Babbitt, C.; Baker, T. Building Construction Cost Data 2011; Robert S. Means Co.: Norwell, MA, USA, 2010. [Google Scholar]
- Waier, P.R.; Charest, A.C.; Babbitt, C.; Baker, T.; Balboni, T. Building Construction Cost Data 2012; Robert S. Means Co.: Norwell, MA, USA, 2011. [Google Scholar]
- Waier, P.R.; Charest, A.C. Building Construction Cost Data 2013; Robert S. Means Co.: Norwell, MA, USA, 2012. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2015; Robert S. Means Co.: Norwell, MA, USA, 2014. [Google Scholar]
- Kiss, E.; Zichar, M.; Fazekas, I.; Karancsi, G.; Balla, D. Categorization and Geovisualization of Climate Change Strategies Using an Open-Access WebGIS Tool. Infocommun. J. 2020, 12, 32–37. [Google Scholar] [CrossRef]
- Hoarau, C.; Christophe, S. Cartographic Continuum Rendering Based on Color and Texture Interpolation to Enhance Photo-Realism Perception. ISPRS J. Photogramm. Remote Sens. 2017, 127, 27–38. [Google Scholar] [CrossRef]
- Balla, D.; Zichar, M.; Toth, R.; Kiss, E.; Karancsi, G.; Mester, T. Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools. Appl. Sci. 2020, 10, 6701. [Google Scholar] [CrossRef]
- Hildebrandt, D. A Software Reference Architecture for Service-Oriented 3D Geovisualization Systems. ISPRS Int. J. Geo-Inf. 2014, 3, 1445–1490. [Google Scholar] [CrossRef] [Green Version]
State | City | Material | Installation | Total |
---|---|---|---|---|
Alabama | Birmingham | 97.4 | 75.2 | 87.6 |
Tuscaloosa | 96.0 | 60.2 | 80.2 | |
Jasper | 96.3 | 58.5 | 79.6 | |
Decatur | 96.0 | 61.8 | 80.9 | |
Huntsville | 96.0 | 70.1 | 84.6 | |
Gadsden | 95.9 | 59.2 | 79.7 | |
Montgomery | 97.1 | 58.3 | 80.0 | |
Anniston | 95.2 | 67.0 | 82.8 | |
Dothan | 95.9 | 53.7 | 77.3 | |
Evergreen | 95.4 | 55.6 | 77.8 | |
Mobile | 97.1 | 67.4 | 84.0 | |
Selma | 95.6 | 53.5 | 77.0 | |
Phoenix City | 96.4 | 57.2 | 79.1 | |
Butler | 95.8 | 53.9 | 77.3 | |
Arizona | Phoenix | 99.9 | 74.6 | 88.7 |
Mesa/Tempe | 99.4 | 64.4 | 83.9 | |
Globe | 99.5 | 60.5 | 82.3 | |
Tucson | 98.2 | 69.9 | 85.7 | |
Show Low | 99.6 | 61.6 | 82.8 | |
Flagstaff | 101.6 | 70.4 | 87.9 | |
Prescott | 99.1 | 61.1 | 82.4 | |
Kingman | 97.2 | 67.9 | 84.3 | |
Chambers | 97.3 | 61.8 | 81.6 |
Methods | Advantages | Disadvantages |
---|---|---|
NN | Fast and easy to calculate | Less accurate |
Widely adopted by the construction industry to conduct cost estimates | Lack of variation within the polygon; no use of state boundary | |
Can estimate CCI values for all cities at the national level | Rough surfaces for the interpolated CCI values | |
CNN | More accurate | Slow and difficult to calculate |
Consider state policies’ and regulations’ impact on cost variation | Lack of variation within the polygon | |
Can estimate CCI values for all cities at the national level | Rough surfaces for the interpolated CCI values | |
IDW | More accurate | Slow and difficult to calculate |
Smooth surfaces for the interpolated CCI values which provide a more intuitive look to identify patterns | More parameters such as power to consider and test prior to deployment | |
Can estimate CCI values for all cities at the national level | Unable to consider state policies’ impact on cost variation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Lippitt, C.D.; Bogus, S.M.; Taylor, T.D.; Haley, R. Mapping Construction Costs at the National Level. Geographies 2022, 2, 132-144. https://doi.org/10.3390/geographies2010009
Zhang S, Lippitt CD, Bogus SM, Taylor TD, Haley R. Mapping Construction Costs at the National Level. Geographies. 2022; 2(1):132-144. https://doi.org/10.3390/geographies2010009
Chicago/Turabian StyleZhang, Su, Christopher D. Lippitt, Susan M. Bogus, Tammira D. Taylor, and Renee Haley. 2022. "Mapping Construction Costs at the National Level" Geographies 2, no. 1: 132-144. https://doi.org/10.3390/geographies2010009