Bibliometric Analysis of Remote Sensing of Inland Waters Publications from 1985 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Methodology
3. Results
3.1. Scientific Production
3.2. Bibliometric Analysis from the 1980s
3.3. Bibliometric Analysis from the 1990s
3.4. Bibliometric Analysis from the 2000s
3.5. Bibliometric Analysis from the 2010s + 2020
3.6. Co-Citation Mapping for the Entire Period (1985–2020)
4. Discussion
4.1. The Search Limitations
4.2. The Inland Water Search
- (1)
- Atmospheric correction over inland aquatic systems, which is essential for the accurate development of remote sensing algorithms;
- (2)
- The development of remote-sensing-blended algorithms considering the existence of different optical water types;
- (3)
- The development of new water quality products, especially for the above-mentioned hyperspectral sensors; some examples of possible products are phytoplankton pigments, phytoplankton groups, primary productivity, dissolved organic matter quality, among others.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo. Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Ogashawara, I.; Kiel, C.; Jechow, A.; Kohnert, K.; Ruhtz, T.; Grossart, H.-P.; Hölker, F.; Nejstgaard, J.C.; Berger, S.A.; Wollrab, S. The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. Remote Sens. 2021, 13, 1542. [Google Scholar] [CrossRef]
- Messager, M.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Tundisi, J.G.; Matsumura-Tundisi, T.; Tundisi, J.E.M. Reservoirs and human well being: New challenges for evaluating impacts and benefits in the neotropics. Braz. J. Biol. 2008, 68, 1133–1135. [Google Scholar] [CrossRef]
- Dekker, A.; Pinnel, N. Feasibility Study for an Aquatic Ecosystem. Earth Observing System, 2nd ed.; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Camberra, Australia, 2018.
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Ogashawara, I.; Li, L.; Moreno-Madriñán, M.J. Slope algorithm to map algal blooms in inland waters for Landsat 8/Operational Land Imager images. J. Appl. Remote Sens. 2017, 11, 012005. [Google Scholar] [CrossRef] [Green Version]
- Bresciani, M.; Cazzaniga, I.; Austoni, M.; Sforzi, T.; Buzzi, F.; Morabito, G.; Giardino, C. Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 2018, 824, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Koparan, C.; Koc, A.B.; Privette, C.V.; Sawyer, C.B. Autonomous In Situ Measurements of Noncontaminant Water Quality Indicators and Sample Collection with a UAV. Water 2019, 11, 604. [Google Scholar] [CrossRef] [Green Version]
- Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in Inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Ogashawara, I.; Mishra, D.; Mishra, S.; Curtarelli, M.; Stech, J. A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters. Remote Sens. 2013, 5, 4774–4798. [Google Scholar] [CrossRef] [Green Version]
- Beck, R.; Zhan, S.; Liu, H.; Tong, S.; Yang, B.; Xu, M.; Ye, Z.; Huang, Y.; Shu, S.; Wu, Q.; et al. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens. Environ. 2016, 178, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Riddick, C.A.L.; Hunter, P.D.; Domínguez-Gómez, J.A.; Martinez-Vicente, V.; Présing, M.; Horváth, H.; Kovács, A.W.; Vörös, L.; Zsigmond, E.; Tyler, A.N. Optimal Cyanobacterial Pigment Retrieval from Ocean Colour Sensors in a Highly Turbid, Optically Complex Lake. Remote Sens. 2019, 11, 1613. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. Citespace ii: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Yan, E.; Cui, M.; Hua, W. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J. Informetr. 2018, 12, 481–493. [Google Scholar] [CrossRef]
- Bukata, R.P.; Bruton, J.E.; Jerome, J.H. Application of Direct Measurements of Optical Parameters to the Estimation of Lake Water Quality Indicators; Scientific Series 140; Inland Waters Directorate National Water Research Institute Canada Centre for Inland Waters: Burlington, ON, Canada, 1985. [Google Scholar]
- Bukata, R.P.; Jerome, J.H.; Bruton, J.E. Remote and in situ Optical Studies of Seston and Suspended Sediment. Concentrations in Lake St. Clair; NWRI Contribution 87-42; Inland Waters Directorate National Water Research Institute Canada Centre for Inland Waters: Burlington, ON, Canada, 1987. [Google Scholar]
- Jerlov, N.G. Marine Optics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Bukata, R.P.; Jerome, J.H.; Bruton, J.E. Particulate Concentrations in Lake St. Clair as Recorded by a Shipborne Multispeetral Optical Monitoring System. Remote Sens. Environ. 1988, 25, 201–229. [Google Scholar] [CrossRef]
- Vetucci, A.F.; Likens, G.E. Spectral reflectance and water quality of Adirondack mountain region lakes. Limnol. Oceanogr. 1989, 24, 1656–1672. [Google Scholar] [CrossRef]
- Dekker, A.G.; Malthus, T.J.; Seyhan, E. An inland water quality bandset for the CAESAR system based on spectral signature analysis. In Proceedings of the International Symposium of Remote Sensing and Water Resources, Enschede, The Netherlands, 20–24 August 1990; pp. 597–606. [Google Scholar]
- Malinsky-Rushanksy, N.; Berman, T. Picocyanobacteria and Bacteria in Lake Kinneret. Int. Rev. Ges. Hydrobiol. 1991, 76, 555–564. [Google Scholar] [CrossRef]
- Mittenzwey, K.H.; Gitelson, A.A.; Ullrich, S.; Kondratiev, K.Y. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnol. Oceanogr. 1992, 37, 147–149. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Mayo, M.; Yacobi, Y.Z.; Parparov, A.; Berman, T. The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret. J. Plankton Res. 1994, 16, 993–1002. [Google Scholar] [CrossRef]
- Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K.-H.; Karnieli, A.; Kaiser, A. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 14, 1269–1295. [Google Scholar] [CrossRef]
- Aguirre-Gomez, R. Detection of total suspended sediments in the North Sea using AVHRR and ship data. Int. J. Remote Sens. 2000, 21, 1583–1596. [Google Scholar] [CrossRef]
- Binding, C.E.; Bowers, D.G.; Mitchelson-Jacob, E.G. Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties. Remote Sens. Environ. 2005, 94, 373–383. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef] [Green Version]
- Hadjimitsis, D.G.; Clayton, C.R.I.; Hope, V.S. An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. Int. J. Remote Sens. 2004, 25, 3651–3674. [Google Scholar] [CrossRef]
- Tang, J.; Tian, G.; Wang, X.; Wang, X.; Song, Q. Water spectrum measurement and analysis: Measurement method for above water surface. J. Remote Sens. 2004, 8, 37–44. [Google Scholar] [CrossRef]
- Simis, S.G.H.; Peters, S.W.M.; Gons, H.J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 2006, 102, 74–85. [Google Scholar] [CrossRef]
- Odermatt, D.; Giardino, C.; Heege, T. Chlorophyll retrieval with MERIS Case-2-Regional in perialpine lakes. Remote Sens. Environ. 2010, 114, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Gilerson, A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.J.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.Y.; Li, Y.; Wang, Q.; Lv, H.; Le, C.; Huang, C.; Gong, S. Detection of Suspended-Matter Concentrations in the Shallow Subtropical Lake Taihu, China, Using the SVR Model Based on DSFs. IEEE Geosci. Remote. Sens. Lett. 2010, 7, 816–820. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Hu, C. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China. Remote Sens. Environ. 2012, 126, 126–135. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Tan, L.; Jiang, L.; Son, S.H.; Shi, W.; Rausch, K.; Voss, K. Impacts of VIIRS SDR performance on ocean color products. J. Geophys. Res. Atmos. 2013, 118, 10347–10360. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Song, K. Remote sensing of freshwater cyanobacteria: An extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sens. Environ. 2015, 157, 9–23. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical types of inland and coastal waters: Optical types of inland and coastal waters. Limnol. Oceanogr. 2017, 63, 846–870. [Google Scholar] [CrossRef] [Green Version]
- Curran, P.J.; Novo, E. The relationship between suspended sediment concentration and remotely sensed spectral radiance—A review. J. Coast. Res. 1988, 4, 351–368. [Google Scholar]
- Bukata, R.P.; Jerome, J.H.; Kondratyev, K.Y.; Pozdnyakov, D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Simis, S.G.H.; Ruiz-Verdú, A.; Domínguez-Gómez, J.A.; Peña-Martinez, R.; Peters, S.W.M.; Gons, H.J. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sens. Environ. 2007, 106, 414–427. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Gordon, H.R.; Morel, A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer: New York, NY, USA, 1983; 44p. [Google Scholar]
- Botha, E.J.; Anstee, J.M.; Sagar, S.; Lehmann, E.; Medeiros, T.A.G. Classification of Australian Waterbodies across a Wide Range of Optical Water Types. Remote Sens. 2020, 12, 3018. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goal 6 Synthesis Report on Water and Sanitation; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Greb, S.; Dekker, A.; Binding, C. (Eds.) Earth Observations in Support. of Global Water Quality Monitoring; IOCCG Report Series, No. 17; International Ocean Colour Coordinating Group: Dartmouth, NS, Canada, 2018. [Google Scholar]
- Kishino, M.; Takahashi, M.; Okami, N.; Ichimura, S. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci. 1985, 37, 634–642. [Google Scholar]
- Ogashawara, I. Terminology and classification of bio-optical algorithms. Sens. Lett. 2015, 6, 613–617. [Google Scholar] [CrossRef]
- Historical Ocean-Colour Sensors. Available online: https://ioccg.org/resources/missions-instruments/historical-ocean-colour-sensors/ (accessed on 14 October 2021).
- CEOS Analysis Ready Data. Available online: https://ceos.org/ard/ (accessed on 14 October 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
Journal | Year of the First Issue | Count of Citations |
---|---|---|
Remote Sensing of Environment | 1969 | 549 |
Remote Sensing | 2009 | 284 |
International Journal of Remote Sensing | 1980 | 281 |
IEEE Transactions on Geoscience and Remote Sensing | 1980 * | 199 |
Journal of Geophysical Research-Oceans | 2004 * | 180 |
Optics Express | 1997 | 179 |
Science of Total Environment | 1972 | 169 |
Applied Optics | 1962 | 164 |
Limnology and Oceanography | 1956 | 151 |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2008 | 126 |
Cluster Most Cited Reference | Mutual Terms (LSI and LLR) |
---|---|
Bukata et al. [25] | Secchi disk; useful index; accuracy; band; using linear regression technique |
Vertucci and Likens [26] | optical model; large doc concentration; color purity; responsiveness; water color scale |
Dekker et al. [27] | monitoring modeling; using ratioed wavelength band; radiance; 710 nm range |
Malinsky-Rushanksy and Berman [28] | optical model; TM Landsat; Secchi disk; useful index; future application |
Mittenzwey et al. [29] | upwelling; multispectral statistical modeling; eutrophication processes |
Gitelson et al. [31] | TM Landsat; future application; previous studies; spectral-resolution data; current data base |
Gitelson et al. [30] | assumption; multi-spectral statistical modelling; water quality monitoring; article; concept |
Cluster Most Cited Reference | Mutual Terms (LSI and LLR) |
---|---|
Aguirre-Gomes [32] | visible spectrum; red-near infrared color ratio; distinct absorption trough; second profile |
Ruddick et. al. [34] | Line fluorometer data; atmospheric properties; full spatial coverage; sea-viewing wide field |
Hadjimitsis et al. [35] | correlation; reflectance value; satellite; satellite overpass; biggest dam |
Tang et al. [36] | Suzhou; Taihu lake; analytical method; total suspended matter concentration |
Simis et al. [37] | Spanish dataset; other phytoplankton pigment; increasing pc; single reflectance ratio; pc absorption effect |
Biding et al. [33] | estuaries; water color; test; using visible band satellite data |
Cluster Most Cited Reference | Mutual Terms (LSI and LLR) |
---|---|
Reinart and Kutser [38] | organic matter; water quality; situ measurement; remote sensing reflectance; water bodies |
Odermatt [39] | main river; drinking water; terrestrial humic-like component; nutrients; heavy metal |
Gilerson et al. [40] | three-band algorithm; optical complexity; GA-PLS model |
Sun et al. [41] | complex turbid; neural network; suspended particulate composition; SVR algorithm |
Cretaux et al. [43] | water; application; in situ; new waveform retracker |
Duan et al. [44] | GOCI-derived chl-a; algal growth; Taihu lake; typical plateau lake; phytoplankton bloom |
Wang et al. [45] | biogeochemical product; VIIRS measurement; ocean color data; removing unphysical retrieval |
Li et al. [46] | floating leaf vegetation; quasianalytical algorithm; cyanobacteria bloom; remote sensing technique |
Shi et al. [42] | eastern China; water clarity; large lake; ambient water quality; semianalytical model |
Palmer et al. [47] | shallow water; bottom reflectance; organic matter; lake monitoring; remote sensing indicator |
Vanhellemont and Ruddick [48] | water pixel; atmospheric contribution; NIR band; multispectral instrument; Rrs product |
Spyrakos et al. [49] | classification-based method; water application; aerosol model; Dongting lake |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogashawara, I. Bibliometric Analysis of Remote Sensing of Inland Waters Publications from 1985 to 2020. Geographies 2021, 1, 346-361. https://doi.org/10.3390/geographies1030019
Ogashawara I. Bibliometric Analysis of Remote Sensing of Inland Waters Publications from 1985 to 2020. Geographies. 2021; 1(3):346-361. https://doi.org/10.3390/geographies1030019
Chicago/Turabian StyleOgashawara, Igor. 2021. "Bibliometric Analysis of Remote Sensing of Inland Waters Publications from 1985 to 2020" Geographies 1, no. 3: 346-361. https://doi.org/10.3390/geographies1030019
APA StyleOgashawara, I. (2021). Bibliometric Analysis of Remote Sensing of Inland Waters Publications from 1985 to 2020. Geographies, 1(3), 346-361. https://doi.org/10.3390/geographies1030019