# Local Linear Scale Factors in Map Projections of an Ellipsoid

## Abstract

**:**

## 1. Introduction

- A map distorts distances (linear distortion) wherever the quotient between the lengths of an infinitesimally short line as projected onto the projection surface and as it originally is on the Earth model deviates from 1.
- A map distorts angles wherever the angles measured on the model of the Earth are not conserved in the projection. This is expressed by an ellipse of distortion, which is not a circle.
- A map distorts areas wherever areas measured in the model of the Earth are not conserved in the projection. This is expressed by ellipses of distortion whose areas vary across the map.

## 2. Ellipsoid, Map Projection, and Local Linear Scale Factor

## 3. Local Linear Scale Factors in the Directions of Coordinate Axes

## 4. Local Linear Scale Factor in a Given Direction

_{1}, a

_{2}, and a

_{3}are given by (27) and H by (16).

## 5. Examples

#### 5.1. Local Linear Scale Factors in the Mercator Projection

#### 5.2. Local Linear Scale Factors in the Transverse Mercator Projection

#### 5.3. Local Linear Scale Factors in the Web-Mercator Projection

#### 5.4. Local Linear Scale Factors in the Albers Equal-Area Conic Projection

## 6. Instead of Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Lapaine, M. Map projection article on Wikipedia. Adv. Cartogr. GIScience ICA
**2019**, 1, 1–8. [Google Scholar] [CrossRef] [Green Version] - Snyder, J.P. Map Projections–A Working Manual: U.S. Geological Survey Professional Paper 1395; United States Government Printing Office: Washington, DC, USA, 1987. [Google Scholar]
- Euler, L. De repraesentatione superficiei sphaericae super plano. Acta Acad. Sci. Imp. Petropolitanae
**1778**, 1777, 107–132. [Google Scholar] - Biernacki, F. Teoria Odwzorowań Powierzchni dla Geodetów i Kartografów; Główny Urząd Pomiarów Kraju, Prace Geodezyjnego Instytutu Naukowo-Badawczego: Warsaw, Poland, 1949; Translated into English as Theory of Representation of Surfaces for Surveyors and Cartographers: U.S. Dept. of Commerce, 1965. [Google Scholar]
- Lapaine, M. Kartografske projekcije i njihove deformacije (in Croatian). In Proceedings of the Peti hrvatski kongres o katastru, Zagreb, Croatia, 8–9 May 2014; pp. 15–32, ISBN 978-953-97081-9-9. [Google Scholar]
- Lapaine, M. Mjerilo i istinito mjerilo?/Scale and True Scale? Kartogr. Geoinformacije/Cartogr. Geoinf.
**2021**, 20, 110–111. [Google Scholar] - Tissot, N.A. Mémoire sur la Représentation des Surfaces et les Projections des Cartes Géographiques; Gauthier Villars: Paris, France, 1881. [Google Scholar]
- Lapaine, M.; Frančula, N.; Tutek, Ž. Local linear scale factors in map projections in the direction of coordinate axes. Geo-Spat. Inf. Sci.
**2021**, 1–8. [Google Scholar] [CrossRef] - Canters, F.; Decleir, H. The World in Perspective, a Directory of World Map Projections; John Wiley & Sons: Chichester, UK, 1989. [Google Scholar]
- Bugayevskiy, L.M.; Snyder, J.P. Map Projections: A Reference Manual; Taylor and Francis: London, UK, 1995. [Google Scholar]
- Tissot Mercator. Available online: https://commons.wikimedia.org/wiki/File:Tissot_mercator.png (accessed on 8 August 2021).
- Thomas, P.D. Conformal Projections in Geodesy and Cartography; U.S. Coast and Geodetic Survey Spec. Pub. No. 251; United States Government Printing Office: Washington, DC, USA, 1952.
- Transverse Mercator with Tissot’s Indicatrices of Distortion. Available online: https://commons.wikimedia.org/wiki/File:Transverse_Mercator_with_Tissot%27s_Indicatrices_of_Distortion.svg (accessed on 8 August 2021).
- Lapaine, M.; Frančula, N. Web mercator projection—One of cylindrical projections of an ellipsoid to a plane/web-mercatorova projekcija–jedna od cilindričnih projekcija. Kartogr. Geoinformacije/Cartogr. Geoinf.
**2021**, 20, 30–47. [Google Scholar] - Каврайский, В.В. Избранные труды. Т. 2., Вып. 2. Математическая Картoграфия. Кoнические и Цилиндрические Прoекции, их Применение; Управления начальника Гидрoграфическoй службы ВМФ: Мoсква, Russia, 1959. [Google Scholar]
- The World on an Albers Projection of the Earth’s Sphere, with 10° Graticule and Tissot’s Indicatrices Overlaid. Standard Parallels are at 45° N and 15° N. Available online: https://commons.wikimedia.org/wiki/File:Albers_with_Tissot%27s_Indicatrices_of_Distortion.svg (accessed on 8 August 2021).
- Laskowski, P. Part 1: Distortion-spectrum fundamentals—A new tool for analyzing and visualizing map distortions. Cartographica
**1997**, 34, 3–18. [Google Scholar] [CrossRef] [Green Version] - Mulcahy, K.A.; Clarke, K.C. Symbolization of map projection distortion: A review. Cartogr. Geogr. Inf. Sci.
**2001**, 28, 167–181. [Google Scholar] [CrossRef] - Lapaine, M.; Usery, E.L. (Eds.) Choosing a Map Projection; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Seong, J.C.; Mulcahy, K.A.; Usery, E.L. The sinusoidal projection: A new importance in relation to global image data. Prof. Geogr.
**2002**, 54, 218–225. [Google Scholar] [CrossRef] - Seong, J.C.; Usery, E.L. Assessing raster representation accuracy using a scale factor model. Photogramm. Eng. Remote. Sens.
**2001**, 67, 1185–1191. [Google Scholar] - Usery, E.L.; Seong, J.C. All equal-area map projections are created equal, but some are more equal than others. Cartogr. Geogr. Inf. Sci.
**2001**, 28, 183–194. [Google Scholar] [CrossRef]

**Figure 2.**An ellipsoidal differential quadrangle (

**left**) and its image in the plane of projection (

**right**).

**Figure 3.**General case of Tissot’s indicatrix showing local linear scale factors along a meridian $h=c\left(d\lambda =0\right)$, along a parallel $k=c\left(d\phi =0\right)$, in the direction of the x-axis $c\left(dy=0\right)$, in the direction of the y-axis $c\left(dx=0\right)$, and extremal values ${c}_{min}$ and ${c}_{max}$. The angle β is the angle between the images of a meridian and a parallel at a point under consideration.

**Figure 4.**Mercator projection map of the earth’s sphere with Tissot’s indicatrices. Source [11].

**Figure 5.**The world on a transverse Mercator projection of the Earth’s sphere, with 10° graticule and Tissot’s indicatrices overlaid. Source [13].

**Figure 6.**The world on an Albers projection of the Earth’s sphere, with 10° graticule and Tissot’s indicatrices overlaid. Standard parallels are at 45° N and 15° N. Source [16].

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lapaine, M.
Local Linear Scale Factors in Map Projections of an Ellipsoid. *Geographies* **2021**, *1*, 238-250.
https://doi.org/10.3390/geographies1030014

**AMA Style**

Lapaine M.
Local Linear Scale Factors in Map Projections of an Ellipsoid. *Geographies*. 2021; 1(3):238-250.
https://doi.org/10.3390/geographies1030014

**Chicago/Turabian Style**

Lapaine, Miljenko.
2021. "Local Linear Scale Factors in Map Projections of an Ellipsoid" *Geographies* 1, no. 3: 238-250.
https://doi.org/10.3390/geographies1030014