Associations Between Limited Dorsiflexion Under Load and Compensatory Hip/Pelvic Gait Patterns in Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| WBLT | Weight-Bearing Lunge Test |
| ROM | Range of Motion |
| SPM | Statistical Parametric Mapping |
References
- Lehr, M.E.; Pettineo, S.J.; Fink, M.L.; Meyr, A.J. Closed chain dorsiflexion and the regional interdependence implications on fundamental movement patterns in collegiate athletes. Foot 2021, 49, 101835. [Google Scholar] [CrossRef]
- Aquino, M.R.C.; Resende, R.A.; Kirkwood, R.N.; Souza, T.R.; Fonseca, S.T.; Ocarino, J.M. Spatial-temporal parameters, pelvic and lower limb movements during gait in individuals with reduced passive ankle dorsiflexion. Gait Posture 2022, 93, 32–38. [Google Scholar] [CrossRef]
- Gomes, J.; Neto, T.; Vaz, J.R.; Schoenfeld, B.J.; Freitas, S.R. Is there a relationship between back squat depth, ankle flexibility, and Achilles tendon stiffness? Sports Biomech. 2022, 21, 782–795. [Google Scholar] [CrossRef]
- Wu, S.K.; Lou, S.Z.; Lee, H.M.; Chen, H.Y.; You, J.Y. Gastrocnemius inflexibility on foot progression angle and ankle kinetics during walking. Clin. Biomech. 2014, 29, 556–563. [Google Scholar] [CrossRef]
- You, J.Y.; Lee, H.M.; Luo, H.J.; Leu, C.C.; Cheng, P.G.; Wu, S.K. Gastrocnemius tightness on joint angle and work of lower extremity during gait. Clin. Biomech. 2009, 24, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Fujita, R.; Ueda, M.; Aimoto, K.; Nakanishi, A.; Suzuki, Y. Sex Differences in the Correlation Between Restricted Ankle Dorsiflexion and Knee Joint Biomechanics During Gait-Focus on the Knee Adduction Moment. Biomed. J. Sci. Tech. Res. 2019, 23, 17578–17586. [Google Scholar] [CrossRef]
- Bell-Jenje, T.; Olivier, B.; Wood, W.; Rogers, S.; Green, A.; McKinon, W. The association between loss of ankle dorsiflexion range of movement, and hip adduction and internal rotation during a step down test. Man. Ther. 2016, 21, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Grindstaff, T.L.; Dolan, N.; Morton, S.K. Ankle dorsiflexion range of motion influences Lateral Step Down Test scores in individuals with chronic ankle instability. Phys. Ther. Sport 2017, 23, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Rabin, A.; Portnoy, S.; Kozol, Z. The association of ankle dorsiflexion range of motion with hip and knee kinematics during the lateral step-down test. J. Orthop. Sports Phys. Ther. 2016, 46, 1002–1009. [Google Scholar] [CrossRef]
- da Costa, G.V.; de Castro, M.P.; Sanchotene, C.G.; Ribeiro, D.C.; de Brito Fontana, H.; Ruschel, C. Relationship between passive ankle dorsiflexion range, dynamic ankle dorsiflexion range and lower limb and trunk kinematics during the single-leg squat. Gait Posture 2021, 86, 106–111. [Google Scholar] [CrossRef]
- Hoch, M.C.; Staton, G.S.; McKeon, J.M.M.; Mattacola, C.G.; McKeon, P.O. Dorsiflexion and dynamic postural control deficits are present in those with chronic ankle instability. J. Sci. Med. Sport 2012, 15, 574–579. [Google Scholar] [CrossRef]
- Maeshige, N.; Uemura, M.; Hirasawa, Y.; Yoshikawa, Y.; Moriguchi, M.; Kawabe, N.; Fujii, M.; Terashi, H.; Fujino, H. Immediate Effects of Weight-Bearing Calf Stretching on Ankle Dorsiflexion Range of Motion and Plantar Pressure During Gait in Patients with Diabetes Mellitus. Int. J. Low. Extrem. Wounds 2023, 22, 548–554. [Google Scholar] [CrossRef]
- Scott, G.; Menz, H.B.; Newcombe, L. Age-related differences in foot structure and function. Gait Posture 2007, 26, 68–75. [Google Scholar] [CrossRef]
- Kang, M.-H.; Oh, J.-S. Relationship Between Weightbearing Ankle Dorsiflexion Passive Range of Motion and Ankle Kinematics During Gait. J. Am. Podiatr. Med. Assoc. 2017, 107, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.B.; Wright, E.S.; Waxman, J.P.; Schmitz, R.J.; Groves, J.D.; Shultz, S.J. Ankle Dorsiflexion Affects Hip and Knee Biomechanics During Landing. Sports Health 2022, 14, 328–335. [Google Scholar] [CrossRef]
- Rao, Y.; Yang, N.; Gao, T.; Zhang, S.; Shi, H.; Lu, Y.; Ren, S.; Huang, H. Effects of peak ankle dorsiflexion angle on lower extremity biomechanics and pelvic motion during walking and jogging. Front. Neurol. 2023, 14, 1269061. [Google Scholar] [CrossRef]
- Mun, K.R.; Guo, Z.; Yu, H. Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking. Med. Biol. Eng. Comput. 2016, 54, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.A.; Cloud, B.A.; Forster, L.A.; Schrank, J.A.; Hollman, J.H. Measurement of Ankle Dorsiflexion: A Comparison of Active and Passive Techniques in Multiple Positions. J. Sport Rehabil. 2011, 20, 333–344. [Google Scholar] [CrossRef]
- Dill, K.E.; Begalle, R.L.; Frank, B.S.; Zinder, S.M.; Padua, D.A. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J. Athl. Train. 2014, 49, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, B.; Bezodis, N.; Bayne, H. Within-subject repeatability and between-subject variability in posture during calibration of an inertial measurement unit system. In Proceedings of the 39th International Society of Biomechanics in Sport Conference, Canberra, Australia (Online), 19–23 July 2021; pp. 224–227. [Google Scholar]
- Strutzenberger, G.; Claußen, L.; Schwameder, H. Analysis of sloped gait: How many steps are needed to reach steady-state walking speed after gait initiation? Gait Posture 2021, 83, 167–173. [Google Scholar] [CrossRef]
- Macfarlane, P.A.; Looney, M.A. Walkway length determination for steady state walking in young and older adults. Res. Q. Exerc. Sport 2008, 79, 261–267. [Google Scholar] [CrossRef]
- Park, S.; Yoon, S. Validity evaluation of an inertial measurement unit (IMU) in gait analysis using statistical parametric mapping (SPM). Sensors 2021, 21, 3667. [Google Scholar] [CrossRef]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.-S. Validity and reliability of wearable sensors for joint angle estimation: A systematic review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef]
- Buganè, F.; Benedetti, M.G.; D’Angeli, V.; Leardini, A. Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: Validation on healthy subjects with stereophotogrammetric system. Biomed. Eng. Online 2014, 13, 146. [Google Scholar] [CrossRef]
- Pataky, T.C. Generalized N-dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Lathrop-Lambach, R.L.; Asay, J.L.; Jamison, S.T.; Pan, X.; Schmitt, L.C.; Blazek, K.; Siston, R.A.; Andriacchi, T.P.; Chaudhari, A.M.W. Evidence for joint moment asymmetry in healthy populations during gait. Gait Posture 2014, 40, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Shin, G. Foot kinematics and leg muscle activation patterns are altered in those with limited ankle dorsiflexion range of motion during incline walking. Gait Posture 2022, 92, 315–320. [Google Scholar] [CrossRef]
- Zelik, K.E.; Adamczyk, P.G. A unified perspective on ankle push-off in human walking. J. Exp. Biol. 2016, 219, 3676–3683. [Google Scholar] [CrossRef]
- Liang, B.W.; Wu, W.H.; Meijer, O.G.; Lin, J.H.; Lv, G.R.; Lin, X.C.; Prins, M.R.; Hu, H.; van Dieën, J.H.; Bruijn, S.M. Pelvic step: The contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill. Gait Posture 2014, 39, 105–110. [Google Scholar] [CrossRef]
- Aronow, M.S.; Diaz-Doran, V.; Sullivan, R.J.; Adams, D.J. The Effect of Triceps Surae Contracture Force on Plantar Foot Pressure Distribution. Am. Orthop. Foot Ankle Soc. 2006, 27, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Bolívar, Y.A.; Munuera, P.V.; Padillo, J.P. Relationship between tightness of the posterior muscles of the lower limb and plantar fasciitis. Foot Ankle Int. 2013, 34, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, F.E.; Rydahl, J.P.; Jacobsen, A.S.; Brahe, C.C.H.; Magnusson, P.S. Foot Posture and Ankle Dorsiflexion as Risk Factors for Developing Achilles Tendinopathy and Plantar Fasciitis: A Case-Control Study. Foot Ankle Int. 2024, 45, 1380–1389. [Google Scholar] [CrossRef] [PubMed]




| Variable | p-Value | Peak r | % Sig | Cluster Intervals | p-Value | Peak r | % Sig | Cluster Intervals |
|---|---|---|---|---|---|---|---|---|
| LEFT | RIGHT | |||||||
| Ankle Dorsiflexion | 0.037 | 0.53 | 8 | 64–71% | 0.044 * | 0.60 | 28 | 0–5%; 62–83% |
| Ankle Inversion | - | −0.22 | 0 | - | - | 0.43 | 0 | - |
| Ankle Abduction | - | −0.22 | 0 | - | - | −0.44 | 0 | - |
| Knee Flexion | 0.012 * | 0.56 | 27 | 61–87% | 0.045 * | 0.58 | 23 | 0–8%; 85–90% |
| Knee Abduction | - | 0.22 | 0 | - | - | 0.42 | 0 | - |
| Knee Rotation | - | 0.27 | 0 | - | - | 0.20 | 0 | - |
| Hip Flexion | - | 0.31 | 0 | - | 0.002 * | 0.61 | 52 | 0–51% |
| Hip Abduction | <0.001 * | −0.65 | 44 | 0–43% | - | −0.27 | 0 | - |
| Hip Rotation | - | −0.43 | 0 | - | - | 0.31 | 0 | - |
| Pelvic Tilt | - | 0.18 | 0 | - | - | 0.32 | 0 | - |
| Pelvic Tilt Lateral | <0.001 * | −0.58 | 40 | 0–39% | 0.001 * | 0.62 | 33 | 68–100% |
| Pelvic Rotation | - | −0.33 | 0 | - | - | −0.33 | 0 | - |
| Peak Force | - | −0.15 | 0 | - | - | −0.42 | 0 | - |
| Peak Pressure | - | 0.53 | 0 | - | - | −0.54 | 0 | - |
| Variable | Mean ± SD | r Partial | p-Value | r Velocity | p-Value | r Partial | p-Value | r Velocity | p-Value |
|---|---|---|---|---|---|---|---|---|---|
| LEFT | RIGHT | ||||||||
| Heel Peak Force (N/kg) | 6.08 ± 0.76 | 0.37 | 0.062 | 0.62 | <0.001 * | 0.34 | 0.086 | 0.55 | 0.003 * |
| Midfoot Peak Force (N/kg) | 1.74 ± 0.82 | −0.31 | 0.126 | −0.40 | 0.037 * | −0.23 | 0.250 | −0.41 | 0.033 * |
| Forefoot Peak Force (N/kg) | 9.25 ± 0.78 | 0.05 | 0.816 | 0.84 | <0.001 * | −0.13 | 0.515 | 0.83 | <0.001 * |
| Heel Relative Impulse (%) | 30.30 ± 4.75 | 0.56 | 0.003 * | 0.10 | 0.604 | 0.53 | 0.005 * | 0.03 | 0.867 |
| Midfoot Relative Impulse (%) | 11.28 ± 5.61 | −0.32 | 0.111 | −0.45 | 0.018 * | −0.28 | 0.166 | −0.39 | 0.043 * |
| Forefoot Relative Impulse (%) | 58.42 ± 4.81 | −0.23 | 0.230 | 0.42 | 0.027 * | −0.32 | 0.109 | 0.35 | 0.074 |
| Midfoot Contact Start (%) | 7.20 ± 1.57 | 0.39 | 0.049 | 0.19 | 0.355 | 0.23 | 0.265 | 0.05 | 0.795 |
| Forefoot Contact Start (%) | 7.02 ± 1.46 | 0.09 | 0.679 | −0.19 | 0.353 | 0.42 | 0.031 * | 0.09 | 0.673 |
| Heel Contact End (%) | 63.48 ± 4.94 | 0.33 | 0.095 | −0.47 | 0.013 * | 0.51 | 0.008 * | −0.41 | 0.035 * |
| Midfoot Contact End (%) | 81.67 ± 4.18 | −0.04 | 0.865 | −0.48 | 0.012* | 0.24 | 0.245 | −0.22 | 0.261 |
| Heel Peak Time (%) | 20.27 ± 3.03 | 0.35 | 0.082 | −0.40 | 0.039 * | 0.55 | 0.003 * | −0.41 | 0.035 * |
| Midfoot Peak Time (%) | 46.05 ± 9.03 | 0.56 | 0.003 * | −0.40 | 0.038 * | 0.34 | 0.087 | −0.24 | 0.235 |
| Forefoot Peak Time (%) | 76.25 ± 1.48 | 0.02 | 0.925 | 0.10 | 0.630 | 0.10 | 0.640 | 0.10 | 0.632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kunz, K.M.; Kirk, D.G.; Wadner, J.; Martonick, N.J.P. Associations Between Limited Dorsiflexion Under Load and Compensatory Hip/Pelvic Gait Patterns in Healthy Adults. Biomechanics 2026, 6, 6. https://doi.org/10.3390/biomechanics6010006
Kunz KM, Kirk DG, Wadner J, Martonick NJP. Associations Between Limited Dorsiflexion Under Load and Compensatory Hip/Pelvic Gait Patterns in Healthy Adults. Biomechanics. 2026; 6(1):6. https://doi.org/10.3390/biomechanics6010006
Chicago/Turabian StyleKunz, Kaden M., David G. Kirk, John Wadner, and Nickolai J. P. Martonick. 2026. "Associations Between Limited Dorsiflexion Under Load and Compensatory Hip/Pelvic Gait Patterns in Healthy Adults" Biomechanics 6, no. 1: 6. https://doi.org/10.3390/biomechanics6010006
APA StyleKunz, K. M., Kirk, D. G., Wadner, J., & Martonick, N. J. P. (2026). Associations Between Limited Dorsiflexion Under Load and Compensatory Hip/Pelvic Gait Patterns in Healthy Adults. Biomechanics, 6(1), 6. https://doi.org/10.3390/biomechanics6010006

