Acute Effect of Bilateral Horizontal Drop Jumps in Sprint and Jumping Performance and Sprint Mechanical and Kinematics Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BHDJs | Bilateral Horizontal Drop Jumps |
| CMJ | Countermovement Jump |
| EC | Experimental Condition |
| CC | Control Condition |
| PAPE | Post-Activation Potentiation Enhancement |
| 1RM | One-Repetition Maximum |
| VDJs | Vertical Drop Jumps |
| DJs | Drop Jumps |
| RSI | Reactive Strength Index |
| FvP | Force–Velocity–Power |
| F0 | Theoretical Maximal Horizontal Force |
| v0 | Theoretical Maximal Horizontal Velocity |
| Pmax | Maximal Mechanical Power Output |
| RFmax | Mechanical Effectiveness of Horizontal Force Application |
| DRF | Rate of Decline in RF |
| SD | Standard Deviation |
| MD | Mean Difference |
| OP | Observed Power |
References
- Tillin, N.A.; Bishop, D. Factors Modulating Post-Activation Potentiation and Its Effect on Performance of Subsequent Explosive Activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-Activation Potentiation Versus Post-Activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef]
- Smith, C.E.; Hannon, J.C.; McGladrey, B.; Shultz, B.; Eisenman, P.; Lyons, B. The Effects of a Postactivation Potentiation Warm-up on Subsequent Sprint Performance. Hum. Mov. 2018, 15, 36–44. [Google Scholar] [CrossRef]
- Winwood, P.W.; Posthumus, L.R.; Cronin, J.B.; Keogh, J.W.L. The Acute Potentiating Effects of Heavy Sled Pulls on Sprint Performance. J. Strength Cond. Res. 2016, 30, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.A.; Dobbs, I.J.; Watkins, C.M.; Barillas, S.R.; Lin, A.; Archer, D.C.; Lockie, R.G.; Coburn, J.W.; Brown, L.E. Sled Towing Acutely Decreases Acceleration Sprint Time. J. Strength Cond. Res. 2017, 31, 3046–3051. [Google Scholar] [CrossRef]
- Zisi, M.; Stavridis, I.; Agilara, G.-O.; Economou, T.; Paradisis, G. The Acute Effects of Heavy Sled Towing on Acceleration Performance and Sprint Mechanical and Kinematic Characteristics. Sports 2022, 10, 77. [Google Scholar] [CrossRef]
- Seitz, L.B.; Mina, M.A.; Haff, G.G. A Sled Push Stimulus Potentiates Subsequent 20-m Sprint Performance. J. Sci. Med. Sport 2017, 20, 781–785. [Google Scholar] [CrossRef]
- Bauer, P.; Sansone, P.; Mitter, B.; Makivic, B.; Seitz, L.B.; Tschan, H. Acute Effects of Back Squats on Countermovement Jump Performance Across Multiple Sets of a Contrast Training Protocol in Resistance-Trained Men. J. Strength Cond. Res. 2019, 33, 995–1000. [Google Scholar] [CrossRef]
- Fukutani, A.; Takei, S.; Hirata, K.; Miyamoto, N.; Kanehisa, H.; Kawakami, Y. Influence of the Intensity of Squat Exercises on the Subsequent Jump Performance. J. Strength Cond. Res. 2014, 28, 2236–2243. [Google Scholar] [CrossRef]
- Petisco, C.; Ramirez-Campillo, R.; Hernández, D.; Gonzalo-Skok, O.; Nakamura, F.Y.; Sanchez-Sanchez, J. Post-Activation Potentiation: Effects of Different Conditioning Intensities on Measures of Physical Fitness in Male Young Professional Soccer Players. Front. Psychol. 2019, 10, 1167. [Google Scholar] [CrossRef]
- Scott, D.J.; Ditroilo, M.; Marshall, P. Effect of Accommodating Resistance on the Postactivation Potentiation Response in Rugby League Players. J. Strength Cond. Res. 2018, 32, 2510–2520. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Mina, M.A.; Haff, G.G. Postactivation Potentiation of Horizontal Jump Performance Across Multiple Sets of a Contrast Protocol. J. Strength Cond. Res. 2016, 30, 2733–2740. [Google Scholar] [CrossRef] [PubMed]
- Wyland, T.P.; Van Dorin, J.D.; Reyes, G.F.C. Postactivation Potentation Effects From Accommodating Resistance Combined With Heavy Back Squats on Short Sprint Performance. J. Strength Cond. Res. 2015, 29, 3115–3123. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.P.; Bellhouse, S.; Kilduff, L.P.; Russell, M. Postactivation Potentiation of Sprint Acceleration Performance Using Plyometric Exercise. J. Strength Cond. Res. 2015, 29, 343–350. [Google Scholar] [CrossRef]
- Vanderka, M.; Krčmár, M.; Longová, K.; Walker, S. Acute Effects of Loaded Half-Squat Jumps on Sprint Running Speed in Track and Field Athletes and Soccer Players. J. Strength Cond. Res. 2016, 30, 1540–1546. [Google Scholar] [CrossRef]
- Zisi, M.; Stavridis, I.; Bogdanis, G.; Terzis, G.; Paradisis, G. The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics. Physiologia 2023, 3, 295–304. [Google Scholar] [CrossRef]
- Tobin, D.P.; Delahunt, E. The Acute Effect of a Plyometric Stimulus on Jump Performance in Professional Rugby Players. J. Strength Cond. Res. 2014, 28, 367–372. [Google Scholar] [CrossRef]
- Sharma, S.K.; Raza, S.; Moiz, J.A.; Verma, S.; Naqvi, I.H.; Anwer, S.; Alghadir, A.H. Postactivation Potentiation Following Acute Bouts of Plyometric versus Heavy-Resistance Exercise in Collegiate Soccer Players. Biomed. Res. Int. 2018, 2018, 3719039. [Google Scholar] [CrossRef]
- Byrne, P.J.; Moody, J.A.; Cooper, S.-M.; Callanan, D.; Kinsella, S. Potentiating Response to Drop-Jump Protocols on Sprint Acceleration: Drop-Jump Volume and Intrarepetition Recovery Duration. J. Strength Cond. Res. 2020, 34, 717–727. [Google Scholar] [CrossRef]
- Till, K.A.; Cooke, C. The Effects of Postactivation Potentiation on Sprint and Jump Performance of Male Academy Soccer Players. J. Strength Cond. Res. 2009, 23, 1960–1967. [Google Scholar] [CrossRef]
- Tomlinson, K.A.; Hansen, K.; Helzer, D.; Lewis, Z.H.; Leyva, W.D.; McCauley, M.; Pritchard, W.; Silvestri, E.; Quila, M.; Yi, M.; et al. The Effects of Loaded Plyometric Exercise during Warm-Up on Subsequent Sprint Performance in Collegiate Track Athletes: A Randomized Trial. Sports 2020, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.; Stavridis, I.; Paradisis, G. Acute Effects of Drop Jumps on Lower Limb Stiffness and Mechanical and Kinematic Parameters During High-Speed Treadmill Running. Appl. Sci. 2024, 15, 242. [Google Scholar] [CrossRef]
- dos Santos Silva, D.; Boullosa, D.; Moura Pereira, E.V.; de Jesus Alves, M.D.; de Sousa Fernandes, M.S.; Badicu, G.; Yagin, F.H.; Aidar, F.J.; dos Santos, L.F.; do Nascimento, H.R.; et al. Post-Activation Performance Enhancement Effect of Drop Jump on Long Jump Performance during Competition. Sci. Rep. 2023, 13, 16993. [Google Scholar] [CrossRef] [PubMed]
- Boullosa, D.; Abad, C.C.C.; Reis, V.P.; Fernandes, V.; Castilho, C.; Candido, L.; Zagatto, A.M.; Pereira, L.A.; Loturco, I. Effects of Drop Jumps on 1000-m Performance Time and Pacing in Elite Male and Female Endurance Runners. Int. J. Sports Physiol. Perform. 2020, 15, 1043–1046. [Google Scholar] [CrossRef]
- Terzis, G.; Spengos, K.; Karampatsos, G.; Manta, P.; Georgiadis, G. Acute Effect of Drop Jumping on Throwing Performance. J. Strength Cond. Res. 2009, 23, 2592–2597. [Google Scholar] [CrossRef]
- Byrne, P.J.; Kenny, J.; O’ Rourke, B. Acute Potentiating Effect of Depth Jumps on Sprint Performance. J. Strength Cond. Res. 2014, 28, 610–615. [Google Scholar] [CrossRef]
- Bomfim Lima, J.; Marin, D.; Barquilha, G.; Da Silva, L.; Puggina, E.; Pithon-Curi, T.; Hirabara, S. Acute Effects of Drop Jump Potentiation Protocol on Sprint and Countermovement Vertical Jump Performance. Hum. Mov. 2011, 12, 324–330. [Google Scholar] [CrossRef]
- Hicks, D.S.; Schuster, J.G.; Samozino, P.; Morin, J.-B. Improving Mechanical Effectiveness During Sprint Acceleration: Practical Recommendations and Guidelines. Strength Cond. J. 2020, 42, 45–62. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Martone, D.; Padulo, J. Acute Effects of Drop-Jump Protocols on Explosive Performances of Elite Handball Players. J. Strength Cond. Res. 2016, 30, 3122–3133. [Google Scholar] [CrossRef]
- Al Kitani, M.; Ambussaidi, A.; Al Busafi, M.; Al-Hadabi, B.; Sassi, R.H.; Bouhlel, E.; Gmada, N. Acute Effect of Post Activation Potentiation Using Drop Jumps on Repeated Sprints Combined with Vertical Jumps in Young Handball Players. Isokinet. Exerc. Sci. 2021, 29, 147–154. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.-B. A Simple Method for Measuring Power, Force, Velocity Properties, and Mechanical Effectiveness in Sprint Running. Scand. J. Med. Sci. Sports 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Young, W.B.; Wilson, G.J.; Byrne, C. A Comparison of Drop Jump Training Methods: Effects on Leg Extensor Strength Qualities and Jumping Performance. Int. J. Sports Med. 1999, 20, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Byrne, P.J.; Moran, K.; Rankin, P.; Kinsella, S. A Comparison of Methods Used to Identify “optimal” Drop Height for Early Phase Adaptations in Depth Jump Training. J. Strength Cond. Res. 2010, 24, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Ball, N.B.; Zanetti, S. Relationship between Reactive Strength Variables in Horizontal and Vertical Drop Jumps. J. Strength Cond. Res. 2012, 26, 1407–1412. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Comyns, T.M. The Use of Contact Time and the Reactive Strength Index to Optimize Fast Stretch-Shortening Cycle Training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Sánchez-López, S.; Rodríguez-Pérez, M.A.; García-Ramos, A.; Jiménez-Reyes, P. Effects of Two Drop-Jump Protocols with Different Volumes on Vertical Jump Performance and Its Association with the Force-Velocity Profile. Eur. J. Appl. Physiol. 2020, 120, 317–324. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint Performance and Mechanical Outputs Computed with an IPhone App: Comparison with Existing Reference Methods. Eur. J. Sport. Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef]
- Economou, T.; Stavridis, I.; Zisi, M.; Fragkoulis, E.; Olanemi-Agilara, G.; Paradisis, G. Sprint Mechanical and Kinematic Characteristics of National Female Track and Field Champions and Lower-Level Competitors. J. Phys. Educ. Sport. 2021, 21, 3227–3235. [Google Scholar] [CrossRef]
- Stavridis, I.; Economou, T.; Walker, J.; Bissas, A.; Tsopanidou, A.; Paradisis, G. Sprint Mechanical Characteristics of Sub-Elite and Recreational Sprinters. J. Phys. Educ. Sport 2022, 22, 1126–1133. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P.; Murata, M.; Cross, M.R.; Nagahara, R. A Simple Method for Computing Sprint Acceleration Kinetics from Running Velocity Data: Replication Study with Improved Design. J. Biomech. 2019, 94, 82–87. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Yoshimoto, T.; Takai, Y.; Kanehisa, H. Acute Effects of Different Conditioning Activities on Running Performance of Sprinters. Springerplus 2016, 5, 1203. [Google Scholar] [CrossRef]
- Monaghan, D.J.; Cochrane, D.J. Can Backward Sled Towing Potentiate Sprint Performance? J. Strength Cond. Res. 2020, 34, 345–354. [Google Scholar] [CrossRef]
- Kümmel, J.; Bergmann, J.; Prieske, O.; Kramer, A.; Granacher, U.; Gruber, M. Effects of Conditioning Hops on Drop Jump and Sprint Performance: A Randomized Crossover Pilot Study in Elite Athletes. BMC Sports Sci. Med. Rehabil. 2016, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Kapnia, A.Κ.; Dallas, C.N.; Gerodimos, V.; Flouris, A.D. Impact of Warm-Up on Muscle Temperature and Athletic Performance. Res. Q. Exerc. Sport 2023, 94, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Gil, E.; Mateus, N.; Sampaio, J.; Abade, E. Examining the Impact of Different Re-Warm-up Strategies on Non-Starter Basketball Players’ Physical Performance. J. Sports Sci. 2025, 43, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Bigby, A.E.J.; De Keijzer, K.L.; Nakamura, F.Y.; Coratella, G.; McErlain-Naylor, S.A. Post-Activation Potentiation Effect of Eccentric Overload and Traditional Weightlifting Exercise on Jumping and Sprinting Performance in Male Athletes. PLoS ONE 2019, 14, e0222466. [Google Scholar] [CrossRef]
- Weber, K.R.; Brown, L.E.; Coburn, J.W.; Zinder, S.M. Acute Effects of Heavy-Load Squats on Consecutive Squat Jump Performance. J. Strength Cond. Res. 2008, 22, 726–730. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal Reactive Strength Index: Is It an Accurate Variable to Optimize Plyometric Training Effects on Measures of Physical Fitness in Young Soccer Players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A.; Cimadoro, G.; Cleather, D.J. The Magical Horizontal Force Muscle? A Preliminary Study Examining the “Force-Vector” Theory. Sports 2019, 7, 30. [Google Scholar] [CrossRef]
- Jusseaume, J.; Fornasier-Santos, C.; Morin, J.B.; Millot, B.; Guilhem, G.; Slawinski, J. Kinematic and Kinetic Comparison of Sprint-Specific Exercises: Impact on Maximal Sprint Acceleration Training. J. Hum. Kinet. 2025, 99, 191–205. [Google Scholar] [CrossRef]
- Hunter, A.P.; Marshall, R.N.; Mcnair, P.J. Interaction of Step Length and Step Rate during Sprint Running. Med. Sci. Sports Exerc. 2004, 36, 261–271. [Google Scholar] [CrossRef]
- Salo, A.I.T.; Bezodis, I.N.; Batterham, A.M.; Kerwin, D.G. Elite Sprinting: Are Athletes Individually Step-Frequency or Step-Length Reliant? Med. Sci. Sports Exerc. 2011, 43, 1055–1062. [Google Scholar] [CrossRef]
- Arsac, L.M.; Locatelli, E. Modeling the Energetics of 100-m Running by Using Speed Curves of World Champions. J. Appl. Physiol. (1985) 2002, 92, 1781–1788. [Google Scholar] [CrossRef]
- Ettema, G. The Force-Velocity Profiling Concept for Sprint Running Is a Dead End. Int. J. Sports Physiol. Perform. 2024, 19, 88–91. [Google Scholar] [CrossRef]
- Lindberg, K.; Solberg, P.; Rønnestad, B.R.; Frank, M.T.; Larsen, T.; Abusdal, G.; Berntsen, S.; Paulsen, G.; Sveen, O.; Seynnes, O.; et al. Should We Individualize Training Based on Force-Velocity Profiling to Improve Physical Performance in Athletes? Scand. J. Med. Sci. Sports 2021, 31, 2198–2210. [Google Scholar] [CrossRef]


| Condition | 5 m | 10 m | 15 m | 20 m | 25 m | 30 m | CMJ | ||
|---|---|---|---|---|---|---|---|---|---|
| Performance | CC | Pre | 1.37 ± 0.09 | 2.14 ± 0.14 | 2.82 ± 0.18 | 3.47 ± 0.22 | 4.08 ± 0.27 | 4.70 ± 0.32 | 30.92 ± 6.50 |
| Post | 1.40 ± 0.10 * | 2.18 ± 0.14 * | 2.86 ± 0.18 * | 3.51 ± 0.23 * | 4.14 ± 0.27 * | 4.77 ± 0.33 * | 30.22 ± 6.37 | ||
| 95%CI | −0.05–<−0.01 | −0.06–<−0.01 | −0.07–0.01 | −0.08–0.02 | −0.09–0.02 | −0.09–0.03 | −0.18–1.58 | ||
| %Δ | 2.03% | 1.53% | 1.37% | 1.4% | 1.33% | 1.29% | −2.27% | ||
| ES | 0.68 | 0.73 | 0.81 | 0.98 | 0.96 | 1.05 | 0.46 | ||
| EC | Pre | 1.39 ± 0.10 | 2.16 ± 0.15 | 2.84 ± 0.18 | 3.48 ± 0.23 | 4.09 ± 0.27 | 4.71 ± 0.32 | 31.09 ± 6.11 | |
| Post | 1.40 ± 0.09 | 2.17 ± 0.14 | 2.85 ± 0.18 | 3.50 ± 0.23 | 4.12 ± 0.27 | 4.74 ± 0.27 * | 30.81 ± 4.84 | ||
| 95%CI | −0.02–<−0.01 | −0.04–0.01 | −0.04–0.01 | −0.06–0.01 | −0.07–0.02 | −0.08–0.02 | −2.27–2.83 | ||
| %Δ | 1.08% | 0.53% | 0.45% | 0.72% | 0.66% | 0.68% | −0.90% | ||
| ES | 0.88 | 0.26 | 0.28 | 0.38 | 0.37 | 0.40 | 0.06 | ||
| Condition | F0 (N·kg−1) | v0 (m·s−1) | Pmax (W·kg−1) | SFv (N·s·m−1·kg−1) | RFmax (%) | DRF (%·s·m) | ||
|---|---|---|---|---|---|---|---|---|
| Mechanical Profile | CC | Pre | 7.68 ± 1.00 | 8.60 ± 0.77 | 16.60 ± 3.05 | −0.89 ± 0.11 | 44.29 ± 3.47 | −8.37 ± 0.8 |
| Post | 7.41 ± 1.04 | 8.66 ± 0.94 | 15.91 ± 2.77 | −0.87 ± 0.16 | 43.21 ± 3.40 * | −8.16 ± 1.38 | ||
| 95%CI | −0.02–0.57 | −0.25–0.14 | 0.18–1.19 | −0.07–0.04 | 0.34–1.80 | −0.62–0.20 | ||
| %Δ | −3.60% | 0.62% | −4.14% | −1.61% | −2.42% | −2.51% | ||
| ES | 0.54 | 0.16 | 0.78 | 0.15 | 0.84 | 0.30 | ||
| EC | Pre | 7.47 ± 1.03 | 8.72 ± 0.75 | 16.07 ± 2.72 | −0.86 ± 0.13 | 43.64 ± 3.50 | −8.01 ± 1.12 | |
| Post | 7.41 ± 0.90 | 8.60 ± 0.74 | 16.00 ± 2.71 | −0.86 ± 0.11 | 43.50 ± 3.20 * | −8.10 ± 0.98 | ||
| 95%CI | −0.11–0.24 | −0.05–0.29 | −0.47–0.62 | −0.03–0.03 | −0.53–0.82 | −0.18–0.36 | ||
| %Δ | −0.83% | −1.42% | −0.47% | 0% | −0.33% | −1.14% | ||
| ES | 0.20 | 0.42 | 0.08 | 0 | 0.12 | 0.20 | ||
| Condition | 0–5 m | 5–10 m | 10–15 m | 15–20 m | 20–25 m | 25–30 m | ||
|---|---|---|---|---|---|---|---|---|
| Running velocity (m∙s−1) | CC | Pre | 3.66 ± 0.26 | 6.52 ± 0.41 | 7.40 ± 0.53 | 7.81 ± 0.54 | 8.14 ± 0.62 | 8.10 ± 0.72 |
| Post | 3.58 ± 0.25 * | 6.48 ± 0.41 | 7.34 ± 0.55 | 7.71 ± 0.56 * | 8.04 ± 0.65 * | 8.05 ± 0.73 | ||
| 95%CI | 0.01–0.14 | −0.02–0.10 | <−0.01–0.13 | 0.042- 0.19 | 0.04–0.16 | −0.05–0.15 | ||
| %Δ | −2.03% | −0.60% | −0.86% | −1.32% | −1.20% | −0.63% | ||
| ES | 0.70 | 0.39 | 0.54 | 0.68 | 0.91 | 0.30 | ||
| EC | Pre | 3.62 ± 0.24 | 6.46 ± 0.44 | 7.47 ± 0.44 | 7.82 ± 0.58 | 8.17 ± 0.58 | 8.18 ± 0.66 | |
| Post | 3.58 ± 0.24 * | 6.49 ± 0.38 | 7.44 ± 0.45 | 7.68 ± 0.62 | 8.13 ± 0.56 | 8.11 ± 0.63 | ||
| 95%CI | 0.01–0.06 | −0.17–0.10 | −0.06–0.12 | −0.06–0.34 | −0.05–0.14 | −0.04–0.17 | ||
| %Δ | −1.03% | 0.54% | −0.38% | −1.74% | −0.53% | −0.81% | ||
| ES | 0.91 | 0.15 | 0.18 | 0.39 | 0.27 | 0.37 | ||
| Step frequency (Hz) | CC | Pre | 3.32 ± 0.23 | 4.46 ± 0.24 | 4.39 ± 0.25 | 4.47 ± 0.28 | 4.35 ± 0.22 | 4.30 ± 0.34 |
| Post | 3.26 ± 0.27 | 4.38 ± 0.24 * | 4.38 ± 0.22 | 4.38 ± 0.24 * | 4.36 ± 0.24 | 4.26 ± 0.24 | ||
| 95%CI | −0.02–0.13 | 0.01–0.15 | −0.06–0.07 | −0.02–0.16 | −0.06–0.15 | −0.07–0.17 | ||
| %Δ | −1.55% | −1.79% | −0.18% | −2.03% | 0.11% | −1.1% | ||
| ES | 0.4 | 0.67 | 0.07 | 0.75 | 0.05 | 0.23 | ||
| EC | Pre | 3.37 ± 0.25 | 4.41 ± 0.29 | 4.45 ± 0.19 | 4.48 ± 0.29 | 4.41 ± 0.24 | 4.32 ± 0.26 | |
| Post | 3.33 ± 0.22 | 4.47 ± 0.25 | 4.43 ± 0.23 | 4.40 ± 0.28 | 4.39 ± 0.22 | 4.35 ± 0.29 | ||
| 95%CI | −0.01–0.10 | −0.14–0.03 | −0.04–0.09 | −0.04–0.21 | −0.06–0.10 | −0.11–0.05 | ||
| %Δ | −1.25% | 1.20% | −0.55% | −1.85% | −0.53% | 0.74% | ||
| ES | 0.46 | 0.37 | 0.23 | 0.38 | 0.17 | 0.23 | ||
| Step length (m) | CC | Pre | 1.11 ± 0.07 | 1.46 ± 0.09 | 1.69 ± 0.10 | 1.75 ± 0.11 | 1.87 ± 0.12 | 1.89 ± 0.15 |
| Post | 1.10 ± 0.10 | 1.48 ± 0.10 | 1.68 ± 0.12 | 1.76 ± 0.12 | 1.85 ± 0.13 | 1.89 ± 0.15 | ||
| 95%CI | −0.02–0.03 | −0.04–<−0.01 | −0.01–0.04 | −0.04–0.01 | <−0.01–0.05 | −0.05–0.04 | ||
| %Δ | −0.26% | 1.27% | −0.72% | 0.78% | −1.34% | 0.26% | ||
| ES | 0.06 | 0.51 | 0.30 | 0.35 | 0.56 | 0.07 | ||
| EC | Pre | 1.08 ± 0.08 | 1.46 ± 0.09 | 1.68 ± 0.11 | 1.75 ± 0.11 | 1.86 ± 0.14 | 1.89 ± 0.12 | |
| Post | 1.08 ± 0.08 | 1.46 ± 0.09 | 1.68 ± 0.10 | 1.75 ± 0.10 | 1.85 ± 0.13 | 1.86 ± 0.11 | ||
| 95%CI | −0.02–0.02 | <−0.01–0.02 | −0.02–0.01 | −0.02–0.02 | −0.02–0.03 | <−0.01–0.06 | ||
| %Δ | 0.26% | −0.54% | 0.13% | −0.08% | −0.1 9% | −1.58% | ||
| ES | 0.09 | 0.37 | 0.07 | 0.04 | 0.07 | 0.63 | ||
| Contact Time (s) | CC | Pre | 0.165 ± 0.01 | 0.130 ± 0.01 | 0.122 ± 0.01 | 0.118 ± 0.01 | 0.114 ± 0.01 | 0.115 ± 0.01 |
| Post | 0.169 ± 0.02 | 0.133 ± 0.01 | 0.124 ± 0.01 | 0.119 ± 0.01 | 0.116 ± 0.01 | 0.117 ± 0.01 | ||
| 95%CI | −0.009–0.001 | −0.005–< 0.001 | −0.007–0.001 | −0.007–0.004 | −0.004–< 0.001 | −0.004–0.001 | ||
| %Δ | 2.67% | 1.97% | 1.43% | 0.91% | 1.57% | 1.43% | ||
| ES | 0.50 | 0.64 | 0.54 | 0.11 | 0.52 | 0.42 | ||
| EC | Pre | 0.164 ± 0.02 | 0.132 ± 0.01 | 0.120 ± 0.01 | 0.117 ± 0.01 | 0.115 ± 0.01 | 0.116 ± 0.01 | |
| Post | 0.166 ± 0.02 | 0.132 ± 0.01 | 0.122 ± 0.01 | 0.118 ± 0.01 | 0.115 ± 0.01 | 0.117 ± 0.01 | ||
| 95%CI | −0.006–0.003 | −0.003–0.003 | −0.004–0.001 | −0.003–< 0.001 | −0.003–0.001 | −0.003–0.002 | ||
| %Δ | 0.87% | −0.11% | 1.49% | 1.16% | 0.50% | −0.55% | ||
| ES | 0.19 | 0.03 | 0.42 | 0.54 | 0.17 | 0.16 | ||
| Flight time (s) | CC | Pre | 0.079 ± 0.01 | 0.096 ± 0.01 | 0.108 ± 0.01 | 0.115 ± 0.03 | 0.115 ± 0.01 | 0.122 ± 0.011 |
| Post | 0.079 ± 0.01 | 0.098 ± 0.01 | 0.105 ± 0.01 | 0.111 ± 0.01 | 0.114 ± 0.01 | 0.121 ± 0.001 | ||
| 95%CI | −0.005–0.004 | −0.007–0.003 | −0.001–0.007 | −0.014–0.021 | −0.002–0.004 | −0.004–0.006 | ||
| %Δ | 0.27% | 2.08% | −2.86% | −3.29% | −0.56% | −0.82% | ||
| ES | 0.03 | 0.23 | 0.44 | 0.13 | 0.12 | 0.12 | ||
| EC | Pre | 0.077 ± 0.01 | 0.096 ± 0.01 | 0.105 ± 0.01 | 0.110 ± 0.01 | 0.113 ± 0.01 | 0.118 ± 0.01 | |
| Post | 0.077 ± 0.01 | 0.095 ± 0.01 | 0.106 ± 0.01 | 0.109 ± 0.01 | 0.112 ± 0.01 | 0.116 ± 0.01 | ||
| 95%CI | −0.003–0.007 | −0.002–0.008 | −0.006–0.003 | −0.002–0.005 | −0.002–0.006 | −0.001–0.009 | ||
| %Δ | 0.56% | −0.37% | 0.61% | −0.33% | −0.25% | −1.40% | ||
| ES | 0.05 | 0.08 | 0.10 | 0.10 | 0.05 | 0.36 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zanni, E.; Stavridis, I.; Zacharogiannis, E.; Chatzakis, P.; Argeitaki, P.; Paradisis, G. Acute Effect of Bilateral Horizontal Drop Jumps in Sprint and Jumping Performance and Sprint Mechanical and Kinematics Characteristics. Biomechanics 2026, 6, 10. https://doi.org/10.3390/biomechanics6010010
Zanni E, Stavridis I, Zacharogiannis E, Chatzakis P, Argeitaki P, Paradisis G. Acute Effect of Bilateral Horizontal Drop Jumps in Sprint and Jumping Performance and Sprint Mechanical and Kinematics Characteristics. Biomechanics. 2026; 6(1):10. https://doi.org/10.3390/biomechanics6010010
Chicago/Turabian StyleZanni, Eirini, Ioannis Stavridis, Elias Zacharogiannis, Prokopios Chatzakis, Polyxeni Argeitaki, and Giorgos Paradisis. 2026. "Acute Effect of Bilateral Horizontal Drop Jumps in Sprint and Jumping Performance and Sprint Mechanical and Kinematics Characteristics" Biomechanics 6, no. 1: 10. https://doi.org/10.3390/biomechanics6010010
APA StyleZanni, E., Stavridis, I., Zacharogiannis, E., Chatzakis, P., Argeitaki, P., & Paradisis, G. (2026). Acute Effect of Bilateral Horizontal Drop Jumps in Sprint and Jumping Performance and Sprint Mechanical and Kinematics Characteristics. Biomechanics, 6(1), 10. https://doi.org/10.3390/biomechanics6010010

