Integrated Assessment of Gait and Spinal Kinematics Using Optoelectronic Motion Analysis Systems: Validation and Usability Assessment of a Novel Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Sample Size Determination
2.2. Data Collection
- Two onto the paravertebral points with reference to the left and right transverse processes of the third dorsal vertebra (r 3rd dv, l 3rd dv);
- One in correspondence to the spinous process of the sixth dorsal vertebra (6th dv);
- Two onto the paravertebral points with reference to the left and right transverse processes of the ninth dorsal vertebra (r 9th dv, l 9th dv);
- One in correspondence to the spinous process of the twelfth dorsal vertebra (12th dv);
- Two onto the paravertebral points with reference to the left and right transverse processes of the third lumbar vertebra (r 3rd lv, l 3rd lv).
2.3. Data Processing
- Sagittal vertical axis (SVA), defined as the horizontal distance between the S1 marker and a line dropped from the C7 marker, in the sagittal plane.
- Coronal vertical axis (CVA), defined as the horizontal distance between the S1 marker and a line dropped from the C7 marker, in the coronal plane.
- The angle of obliquity, tilt, and rotation of each considered segment, referring to the adjacent segment or to a global reference system, through a specific model based on the computation of Euler angles in the order of the sagittal plane (flexion or extension), frontal plane (lateral bending), and transversal plane (axial rotation), which is consistent with International Society of Biomechanics recommendations [31].
2.4. Technical Validation
- -
- Intra-operator remarking: repositioning of the markers on the subject by the same operator in different sessions;
- -
- Inter-operator remarking: repositioning of the markers on the subject by 2 different operators.
- Preparation of the subject by the first operator, positioning the markers (30) on the selected body landmarks and taking anthropometric measurements.
- The acquisition of 5 walking trials; during each trial, the subject walks at his/her preferred speed for 6 m.
- Detachment of the markers from the subject.
- Preparation of the subject by the same operator, positioning the markers (30) on the selected body landmarks.
- The acquisition of 5 walking trials; during each trial, the subject walks at his/her preferred speed for 6 m.
- Detachment of the markers from the subject.
2.5. Usability Assessment
- Phase 1: instrument preparation and marker preparation (for the test subjects, the part of instrument preparation was excluded from the questionnaire because the subjects were not involved in this operation);
- Phase 2: subject preparation with patient undressing, anthropometric measurements, and marker positioning;
- Phase 3: recording the movements with the optoelectronic system;
- Phase 4: removing the markers.
2.6. Statistical Analysis
3. Results
3.1. Accuracy Analysis
3.2. Intra-Operator Repeatability Analysis
3.3. Inter-Operator Repeatability Analysis
3.4. Usability Assessment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma’touq, J.; Hu, T.; Haddadin, S. Sub-millimetre accurate human hand kinematics: From surface to skeleton. Comput. Methods Biomech. Biomed. Eng. 2018, 21, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Beghi, E.; De Tanti, A.; Cappozzo, A.; Basaglia, N.; Cutti, A.G.; Cereatti, A.; Stagni, R.; Verdini, F.; Manca, M.; et al. SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference. Gait Posture 2017, 58, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human movement analysis using stereophotogrammetry. Part 1: Theoretical background. Gait Posture 2005, 21, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Piovanelli, B.; Amici, C.; Cappellini, V.; Bovi, G.; Ferrarin, M.; Zaina, F.; Borboni, A. Trunk motion analysis: A systematic review from a clinical and methodological perspective. Eur. J. Phys. Rehabil. Med. 2016, 52, 583–592. [Google Scholar]
- Leardini, A.; Biagi, F.; Merlo, A.; Belvedere, C.; Benedetti, M.G. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin. Biomech. 2011, 26, 562–571. [Google Scholar] [CrossRef]
- Leardini, A.; Biagi, F.; Belvedere, C.; Benedetti, M.G. Quantitative comparison of current models for trunk motion in human movement analysis. Clin. Biomech. 2009, 24, 542–550. [Google Scholar] [CrossRef]
- Ferrari, A.; Benedetti, M.G.; Pavan, E.; Frigo, C.; Bettinelli, D.; Rabuffetti, M.; Crenna, P.; Leardini, A. Quantitative comparison of five current protocols in gait analysis. Gait Posture 2008, 28, 207–216. [Google Scholar] [CrossRef]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M.G. A new anatomically based protocol for gait analysis in children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef]
- Frigo, C.; Rabuffetti, M.; Kerrigan, D.C.; Deming, L.C.; Pedotti, A. Functionally oriented and clinically feasible quantitative gait analysis method. Med. Biol. Eng. Comput. 1998, 36, 179–185. [Google Scholar] [CrossRef]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. Gait analysis data collection and reduction technique. Hum Mov Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Maaswinkel, E.; Griffioen, M.; Perez, R.S.G.M.; van Dieën, J.H. Methods for assessment of trunk stabilization, A systematic review. J. Electromyogr. Kinesiol. 2016, 26, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Villafañe, J.H.; Zanetti, L.; Isgrò, M.; Cleland, J.A.; Bertozzi, L.; Gobbo, M.; Negrini, S. Methods for the assessment of neuromotor capacity in non-specific low back pain: Validity and applicability in everyday clinical practice. J. Back Musculoskelet. Rehabil. 2015, 28, 201–214. [Google Scholar] [CrossRef]
- Kinel, E.; D’Amico, M.; Roncoletta, P. Normative 3D opto-electronic stereo-photogrammetric sagittal alignment parameters in a young healthy adult population. PLoS ONE 2018, 13, e0203679. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Studer, D.; Hasler, C.C.; Romkes, J.; Taylor, W.R.; Brunner, R.; Lorenzetti, S. Using skin markers for spinal curvature quantification in main thoracic adolescent idiopathic scoliosis: An explorative radiographic study. PLoS ONE 2015, 10, e0135689. [Google Scholar] [CrossRef]
- Crosbie, J.; Vachalathiti, R.; Smith, R. Patterns of spinal motion during walking. Gait Posture 1997, 5, 6–12. [Google Scholar] [CrossRef]
- Andreoni, G.; Negrini, S.; Ciavarro, G.L.; Santambrogio, G.C. ZooMS: A Non Invasive Analysis of Global and Metameric Movement of the Lumbar Spine. Eur. Medicophys. 2005, 41, 7–16. [Google Scholar]
- Ciavarro, G.L.; Andreoni, G.; Negrini, S.; Santambrogio, G.C. Functional assessment of the lumbar spine through the optoelectronic ZooMS system. Clin. Appl. 2006, 42, 135–143. [Google Scholar]
- Attias, M.; Bonnefoy-Mazure, A.; Lempereur, M.; Lascombes, P.; De Coulon, G.; Armand, S. Trunk movements during gait in cerebral palsy. Clin. Biomech. 2015, 30, 28–32. [Google Scholar] [CrossRef]
- Simonet, E.; Winteler, B.; Frangi, J.; Suter, M.; Meier, M.L.; Eichelberger, P.; Baur, H.; Schmid, S. Walking and running with non-specific chronic low back pain: What about the lumbar lordosis angle? J. Biomech. 2020, 108, 109883. [Google Scholar] [CrossRef]
- Frigo, C.; Carabalona, R.; Dalla Mura, M.; Negrini, S. The upper body segmental movements during walking by young females. Clin. Biomech. 2003, 18, 419–425. [Google Scholar] [CrossRef]
- Prost, S.; Blondel, B.; Pomero, V.; Authier, G.; Boulay, C.; Luc Jouve, J.; Pesenti, S. Description of spine motion during gait in normal adolescents and young adults. Eur. Spine J. 2021, 30, 2520–2530. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, M.; Kinel, E.; D’Amico, G.; Roncoletta, P. A Self-Contained 3D Biomechanical Analysis Lab for Complete Automatic Spine and Full Skeleton Assessment of Posture, Gait and Run. Sensors 2021, 21, 3930. [Google Scholar] [CrossRef] [PubMed]
- Holewijn, R.M.; Kingma, I.; de Kleuver, M.; Keijsers, N.L.W. Posterior spinal surgery for adolescent idiopathic scoliosis does not induce compensatory increases in distal adjacent segment motion: A prospective gait analysis study. Spine J. 2018, 18, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Begon, M.; Leardini, A.; Belvedere, C.; Farahpour, N.; Allard, P. Effects of frontal and sagittal thorax attitudes in gait on trunk and pelvis three-dimensional kinematics. Med. Eng. Phys. 2015, 37, 1032–1036. [Google Scholar] [CrossRef]
- Miura, K.; Kadone, H.; Koda, M.; Abe, T.; Funayama, T.; Noguchi, H.; Mataki, K.; Nagashima, K.; Kumagai, H.; Shibao, Y.; et al. Thoracic kyphosis and pelvic anteversion in patients with adult spinal deformity increase while walking: Analyses of dynamic alignment change using a three-dimensional gait motion analysis system. Eur. Spine J. 2020, 29, 840–848. [Google Scholar] [CrossRef]
- Chan, P.Y.; Wong, H.K.; Goh, J.C.H. The repeatablity of spinal motion of normal and scoliotic adolescents during walking. Gait Posture 2006, 24, 219–228. [Google Scholar] [CrossRef]
- Müller, J.; Müller, S.; Engel, T.; Reschke, A.; Baur, H.; Mayer, F. Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk—A pilot study. J. Biomech. 2016, 49, 933–938. [Google Scholar] [CrossRef]
- Arauz, P.G.; Garcia, M.G.; Chiriboga, P.; Taco-Vasquez, S.; Klaic, D.; Verdesoto, E.; Martin, B. Spine and lower body symmetry during treadmill walking in healthy individuals—In-vivo 3-dimensional kinematic analysis. PLoS ONE 2022, 17, e0275174. [Google Scholar] [CrossRef]
- Tsushima, H.; Morris, M.E.; McGinley, J. Test-Retest Reliability and Inter-Tester Reliability of Kinematic Data from a Three-Dimensional Gait Analysis System. J. Jpn. Phys. Ther. Assoc. 2003, 6, 9–17. [Google Scholar] [CrossRef]
- Faulkner, L. Beyond the five-user assumption: Benefits of increased sample sizes in usability testing. Behav. Res. Methods Instrum Comput. 2003, 35, 379–383. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. 2005_ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Ko, C.W.; Suh, S.W.; Kumar, S.; Kang, I.K.; Yang, J.H. The effect of age on sagittal plane profile of the lumbar spine according to standing, supine, and various sitting positions. J. Orthop. Surg. Res. 2014, 9, 11. [Google Scholar] [CrossRef]
- Buchecker, M.; Stöggl, T.; Müller, E. Spine kinematics and trunk muscle activity during bipedal standing using unstable footwear. Scand. J. Med. Sci. Sport. 2013, 23, 194–201. [Google Scholar] [CrossRef]
- Zapata, B.C.; Fernández-Alemán, J.L.; Idri, A.; Toval, A. Empirical Studies on Usability of mHealth Apps: A Systematic Literature Review. J. Med. Syst. 2015, 39, 1–19. [Google Scholar] [CrossRef]
- ISO/IEC.ISO 9241-11; 2018 Ergonomics of human-system interactionPart 11: Usability: Definitions and concepts. ISO/IEC: Geneva, Switzerland, 2018; Published online 2018.
- Friesen, E.L. Measuring at Usability with the Modified System Usability Scale (SUS). Stud. Health Technol. Inform. 2017, 242, 137–143. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Brooke, J. SUS: A “Quick and Dirty” Usability Scale. Usability Eval. Ind. 2020, 189, 207–212. [Google Scholar] [CrossRef]
- Hobbs, B.; Artemiadis, P. A Systematic Method for Outlier Detection in Human Gait Data. In Proceedings of the 2022 International Conference on Rehabilitation Robotics, Rotterdam, The Netherlands, 25–29 July 2022. [Google Scholar] [CrossRef]
- Reberšek, P.; Novak, D.; Podobnik, J.; Munih, M. Intention detection during gait initiation using supervised learning. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26–28 October 2011; pp. 34–39. [Google Scholar] [CrossRef]
- Vera, M.J.; Dubravka, B.; Nikola, J.; Vojin, I.; Bojana, P.B. Detecting and removing outlier(s) in electromyographic gait-related patterns. J. Appl. Stat. 2013, 40, 1319–1332. [Google Scholar] [CrossRef]
- Richards, J.G. The measurement of human motion: A comparison of commercially available systems. Hum. Mov. Sci. 1999, 18, 589–602. [Google Scholar] [CrossRef]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sport. Med. Open 2018, 4, 24. [Google Scholar] [CrossRef]
- Conconi, M.; Pompili, A.; Sancisi, N.; Parenti-Castelli, V. Quantification of the errors associated with marker occlusion in stereophotogrammetric systems and implications on gait analysis. J. Biomech. 2021, 114, 110162. [Google Scholar] [CrossRef] [PubMed]
- Bangor, A.; Kortum, P.; Miller, J. Determining what individual SUS scores mean: Adding an adjective rating scale. J. Usability Stud. 2009, 4, 114–123. [Google Scholar]
- Banaszkiewicz, P.A.; Kader, D.F. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. Class. Pap. Orthop. 2014, 8, 1–624. [Google Scholar] [CrossRef]
- O’Connor, P.D.; Robinson, M.E.; Shirley, F.R.; Mac Milan, M. The effect of marker placement deviations on spinal range of motion determined by video motion analysis. Phys. Ther. 1993, 73, 478–483. [Google Scholar] [CrossRef]
- Ciavarro, G.L.; Tramonte, A.; Fusca, M.; Santambrogio, G.C.; Andreoni, G. Evaluation of 3D kinematic model of the spine for ergonomic analysis. SAE Tech. Pap. 2004, 113, 2004. [Google Scholar] [CrossRef]
Baseline Features | |
---|---|
Age [y] (mean—SD; range) | 17.36—SD 10.2; 5.4–33.1 |
Weight [kg] (mean—SD; range) | 43.10—SD 19.3; 17.00–66.00 |
Height [cm] (mean—SD; range) | 149.30—SD 27.15; 105.0–183.0 |
BMI (mean—SD; range) | 18.11—SD 3.64; 13.55–25.39 |
RMSE | ||
---|---|---|
Shoulder–Ref System (°) | Obliquity | 0.60 |
Rotation | 0.88 | |
Tilt | 0.95 | |
Shoulder–Pelvis (°) | Obliquity | 0.70 |
Rotation | 0.48 | |
Tilt | 1.58 | |
Upper Dorsal–Lower Dorsal (°) | Obliquity | 1.18 |
Rotation | 1.55 | |
Tilt | 2.20 | |
Lower Dorsal–Lumbar (°) | Obliquity | 4.40 |
Rotation | 1.65 | |
Tilt | 1.67 | |
Lumbar–Pelvis (°) | Obliquity | 0.40 |
Rotation | 0.09 | |
Tilt | 1.40 | |
Pelvis–Ref System (°) | Obliquity | 0.10 |
Rotation | 0.40 | |
Tilt | 0.73 | |
CVA (mm) | 0.87 | |
SVA (mm) | 3.08 |
Metric | ICC | ||||
---|---|---|---|---|---|
Right Cycle | ICC Level | Left Cycle | ICC Level | ||
Shoulder– Ref System | Obliquity | 0.934 | +++ | 0.924 | +++ |
Rotation | 0.852 | ++ | 0.834 | ++ | |
Tilt | 0.808 | ++ | 0.853 | ++ | |
Shoulder– Pelvis | Obliquity | 0.875 | ++ | 0.865 | ++ |
Rotation | 0.943 | +++ | 0.957 | +++ | |
Tilt | 0.954 | +++ | 0.862 | ++ | |
Upper Dorsal– Lower Dorsal | Obliquity | 0.923 | +++ | 0.927 | +++ |
Rotation | 0.761 | ++ | 0.839 | ++ | |
Tilt | 0.739 | + | 0.839 | ++ | |
Lower Dorsal– Lumbar | Obliquity | 0.891 | ++ | 0.856 | ++ |
Rotation | 0.810 | ++ | 0.813 | ++ | |
Tilt | 0.898 | ++ | 0.951 | +++ | |
Lumbar–Pelvis | Obliquity | 0.851 | ++ | 0.840 | ++ |
Rotation | 0.736 | + | 0.719 | + | |
Tilt | 0.861 | ++ | 0.933 | +++ | |
Pelvis– Ref System | Obliquity | 0.893 | ++ | 0.872 | ++ |
Rotation | 0.962 | +++ | 0.958 | +++ | |
Tilt | 0.867 | ++ | 0.839 | ++ | |
Range CVA | 0.926 | +++ | 0.949 | +++ | |
Range SVA | 0.914 | +++ | 0.768 | ++ |
Metric | ICC | ||||
---|---|---|---|---|---|
Right Cycle | ICC Level | Left Cycle | ICC Level | ||
Shoulder– Ref System | Obliquity | 0.943 | +++ | 0.938 | +++ |
Rotation | 0.886 | ++ | 0.944 | ++ | |
Tilt | 0.827 | ++ | 0.898 | ++ | |
Shoulder– Pelvis | Obliquity | 0.511 | + | 0.645 | + |
Rotation | 0.932 | +++ | 0.943 | +++ | |
Tilt | 0.847 | ++ | 0.877 | ++ | |
Upper Dorsal– Lower Dorsal | Obliquity | 0.893 | ++ | 0.892 | ++ |
Rotation | 0.596 | + | 0.563 | + | |
Tilt | 0.677 | + | 0.655 | + | |
Lower Dorsal– Lumbar | Obliquity | 0.839 | ++ | 0.851 | ++ |
Rotation | 0.692 | ++ | 0.745 | + | |
Tilt | 0.912 | ++ | 0.911 | +++ | |
Lumbar–Pelvis | Obliquity | 0.655 | + | 0.742 | + |
Rotation | 0.511 | + | 0.641 | + | |
Tilt | 0.899 | ++ | 0.947 | +++ | |
Pelvis– Ref System | Obliquity | 0.606 | + | 0.731 | + |
Rotation | 0.955 | +++ | 0.954 | +++ | |
Tilt | 0.721 | + | 0.783 | ++ | |
Range CVA | 0.927 | +++ | 0.905 | +++ | |
Range SVA | 0.817 | ++ | 0.586 | + |
Operators | Patient | ||||||
---|---|---|---|---|---|---|---|
Phase | 1 | 2 | 3 | 4 | 2 | 3 | 4 |
Mean | 4.45 | 4.45 | 4.40 | 4.37 | 4.45 | 4.40 | 4.38 |
SD | 0.93 | 0.60 | 0.78 | 0.67 | 0.58 | 0.78 | 0.67 |
MAX | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
min | 4.00 | 3.00 | 3.00 | 3.00 | 3.00 | 2.00 | 3.00 |
Time to Complete the Protocol (Also Divided into Four Phases) | |||||
---|---|---|---|---|---|
Phase No. | 1 | 2 | 3 | 4 | TOTAL |
Mean [min] | 1.74 | 13.05 | 5.35 | 1.32 | 21.46 |
SD | 0.54 | 1.35 | 0.91 | 0.19 | 2.06 |
MAX [min] | 3.38 | 16.40 | 8.83 | 2.02 | 28.55 |
Min [min] | 1.13 | 11.18 | 3.65 | 1.10 | 18.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccinini, L.; Molteni, L.E.; Panzeri, D.; Micheletti, E.; Pintabona, G.; Andreoni, G. Integrated Assessment of Gait and Spinal Kinematics Using Optoelectronic Motion Analysis Systems: Validation and Usability Assessment of a Novel Protocol. Biomechanics 2025, 5, 24. https://doi.org/10.3390/biomechanics5020024
Piccinini L, Molteni LE, Panzeri D, Micheletti E, Pintabona G, Andreoni G. Integrated Assessment of Gait and Spinal Kinematics Using Optoelectronic Motion Analysis Systems: Validation and Usability Assessment of a Novel Protocol. Biomechanics. 2025; 5(2):24. https://doi.org/10.3390/biomechanics5020024
Chicago/Turabian StylePiccinini, Luigi, Luca Emanuele Molteni, Daniele Panzeri, Ettore Micheletti, Giovanni Pintabona, and Giuseppe Andreoni. 2025. "Integrated Assessment of Gait and Spinal Kinematics Using Optoelectronic Motion Analysis Systems: Validation and Usability Assessment of a Novel Protocol" Biomechanics 5, no. 2: 24. https://doi.org/10.3390/biomechanics5020024
APA StylePiccinini, L., Molteni, L. E., Panzeri, D., Micheletti, E., Pintabona, G., & Andreoni, G. (2025). Integrated Assessment of Gait and Spinal Kinematics Using Optoelectronic Motion Analysis Systems: Validation and Usability Assessment of a Novel Protocol. Biomechanics, 5(2), 24. https://doi.org/10.3390/biomechanics5020024